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We investigate the principal functions corresponding to the eigenvalues and the spectral
singularities of the boundary value problem (BVP) a,_1y,-1 + buYn + @nyns1 = Ayn, n € N and

(Yo +11M)y1 + (Bo + p1A)yo = 0, where (a,) and (b,,) are complex sequences, \ is an eigenparameter,
andy;, fi € Cfori=0, 1.

1. Introduction

Let us consider the (BVP)

" +q(x)y =Ny, 0<x<oo,

y'(0) - hy(0) =0

(1.1)

in L*(R,), where q is a complex-valued function and A € C is a spectral parameter and
h € C. The spectral theory of the above BVP with continuous and point spectrum was
investigated by Naimark [1]. He showed that the existence of the spectral singularities in the
continuous spectrum of the BVP. He noted that the spectral singularities that belong to the
continuous spectrum are the poles of the resolvents kernel but they are not the eigenvalues
of the BVP. Also he showed that eigenfunctions and the associated functions (principal
functions) corresponding to the spectral singularities are not the element of L?(R.). The
spectral singularities in the spectral expansion of the BVP in terms of principal functions have
been investigated in [2]. The spectral analysis of the quadratic pencil of Schrodinger, Dirac,
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and Klein-Gordon operators with spectral singularities was studied in [3-8]. The spectral
analysis of a non-selfadjoint difference equation with spectral parameter has been studied in
[9]. In this paper, it is proved that the BVP

an-1Yn-1 + bnyn + AnlYn+1 = )Lyn/ neN, (1'2)

(o +y1)y1 + (fo + P1d)yo = 0 (1.3)

has a finite number of eigenvalues and spectral singularities with a finite multiplicities if

sup[exp<5n5>(|1 —ay| + |bn|)] < oo (1.4)

neN

forsomee>0and 1/2<6 < 1.
Let L denote difference operator of second order generated in ¢,(N) by

(€Y), = an-1Yn-1 + buln + @nYns1, nEN (1.5)
and with boundary condition
(o+nV)yi+ (Bo+ i)y =0, yoPri—1fo#0, y1#ay fo, (1.6)

where {a,},cn, {bn} ey are complex sequences and a, #0 for alln € NU {0} and y;, ; € C for
i=0,1

In this paper, which is extension of [9], we aim to investigate the properties of the
principal functions corresponding to the eigenvalues and spectral singularities of the BVP
(1.2)-(1.3).

2. Discrete Spectrum of (1.2)-(1.3)

Let

sup[exp<£n5>(|l —an| + |bn|)] < oo (2.1)

neN

for some ¢ > 0 and 1/2 < 6 < 1. The following result is obtained in [10, 11]: under the
condition (2.1), equation (1.2) has the solution

en(z) = ae™ <1 + ZAnmefmZ>, n € NU {0} (2.2)

m=1
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for A = 2cosz, where z € C, := {z:z€C Imz >0} and a,, Aum are expressed in terms of
(an) and (by,) as

ATll - - Z bk/
k=n+1
(2.3)
A== (1-a2)+ 3 b D by,
k=n+1 k=n+1 p=k+1
An,m+2 = Z <1 - ai>Ak+1,m Z bkAk,m+1 + An+1,m-
k=n+1 k=n+1
Moreover, A,,, satisfies
[ee)
|Auml <C D0 (11— ax| + |bxl), (2.4)

k=n+[m/2]

where [m/2] is the integer part of m/2 and C > 0is a constant. So e(z) = {e,(z)} is continuous
inImz = 0 and analytic in C, := {z : z € C, Im z > 0} with respect to z.
Let us define f(z) using (2.2) and the boundary condition (1.3) as

f(z) = (yo+2y1cos z)ei(z) + (o + 21 cos z) ey (z). (2.5)

The function f is analytic in C,, continuous in C,, and f(z) = f(z+2m).

We denote the set of eigenvalues and spectral singularities of L by o4(L) and oss(L),
respectively. From the definition of the eigenvalues and spectral singularities, we have
[12]

o4(L)y={A:A=2cosz, z€ Py, F(z) =0},

(2.6)
0ss(L) = {)L tA=2cosz, z€ [—%,37][], F(z) :O} \ {0}.
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From (2.2) and (2.5), we get

f(z)= [Yo +1n <eiz + e’iz>] I:aleiz <1 + iAlmeimz>:|

m=1

+ [ﬁo + ﬂl (eiz + e—iz)] |:a0 <1 + ZAomeimz>:|
m=1
= apfre™ + y1e + agfo + (Yo + cxoﬂl)eiz + Y1018 (2.7)

o) o)
+ Zaoﬁ1A0m€l(mfl)z + Z (Y11 A + aoPoAom ) €™

m=1 m=1

© ©
+ Z (YorxlAlm + aoﬂlem)ei(mH)z + ZYlalAlmei(m+2)z.

m=1 m=1

Let
F(z) = f(Z)eiz = aofr + (y1a1 + aoﬂo)eiz + (yoa1 + aoﬁl)eﬁz + Y1a1€3iz
[ee) ) © ‘
+ Zaoﬂlemelmz + Z (YlalAlm + aoﬁoAOm)el(erl)z
e m=1 (2.8)

[ee) o)
+ Z (Yoa1 A1m + aofpr Aom ) €% + ZYl“lAlmei(m+3)z;

m=1 m=1

then the function F is analytic in C,, continuous in C,, and F(z) = F(z + 2zr). It follows from
(2.6) and (2.8) that

o4(L)y={A:A=2cosz, z€ Py, F(z) =0},

2 (2.9)

Oss(L) = {.)LZ.)LIZCOSZ, z € [—%,7], F(z) :0} \ {0}.

Definition 2.1. The multiplicity of a zero of F in P is called the multiplicity of the correspond-
ing eigenvalue or spectral singularity of the BVP (1.2) and (1.3).

3. Principal Functions

Let Ay, Az, ..., Ay and Apy1, Apio, ..., Ay denote the zeros of Fin Py := {z : z € C,z = x +
iy, ~-r/2 < x < 3x/2, y > 0} and [-or/2, 3or/2] with multiplicities my,ms, ..., m, and
Mpi1, Mpy2, . .., Mg, Tespectively.
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Definition 3.1. Let L = 1o be an eigenvalue of L. If the vectors y©@,y®, ... y©); y& =

{y,ﬁk) Ve k=0,1,..., s satisfy the equations

(ly(0)> ~doyy =0,
n

3.1)
<ly(k)>n _ )Loyflk) _ y,(qk‘l) =0, k=1,2,..,s; neN,

then vector y© is called the eigenvector corresponding to the eigenvalue A = Ao of L. The
vectors y, ...,y are called the associated vectors corresponding to A = \o. The eigenvector
and the associated vectors corresponding to A = 1¢ are called the principal vectors of the
eigenvalue A = Ao.

The principal vectors of the spectral singularities of L are defined similarly.

We define the vectors

1| dk .
V}Ek)(,\]-) = H{wEn(J\)} , k=01,....mi-1;,j=12,...,p,

A=),
(3.2)
(k) 1 dk .
Vi (Aj) = o WE,[()L) , k=01,...,mj-1;, j=p+1,p+2,...,q
’ A=)
where A =2cosz, z € Py, and
A

{E,(V)} := {en (arccosE) }, neN. (3.3)

Moreover, if y(1) = {y, (1)}, is a solution of (1.2), then (d*/drxyy (L) = {(dk/dAR)y, (L)}
satisfies

neN

k k k k-1

dr A bd A d )L—)Ld A kd A (34)
anquﬂ( )+ nW}/n( )+anWyn+1( )= Wyn( )+ W}/n( )- :

From (3.2) and (3.4), we get that

(evOy)) -4V =0,
(3.5)
(v @)) -4V ) -ViEP W) =0, k=12.m-1 j=1,2,....4.

Consequently, the vectors V,Ek)(Aj); k=01..m-17j=12..pand V,Ek)(Aj); k =
0,1,....mj =1,j = p+1,p+2,...,q are the principal vectors of eigenvalues and spectral
singularities of L, respectively.
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Theorem 3.2.

vPOW) eam); k=01,...,m-1,j=12,..,p,

(3.6)
V) g 6m); k=0,1,...,m-1, j=p+1,...,q.
Proof. Using E,, () = e, (arccos(1/2)), we obtain that
dk k av
{WEn(A)} . - vzzoc{ Wen(z)}ZZZi, neN, (3.7)

-

\)/Lvhere Aj=2coszj;zj€ P=PyU[-x/2,3x/2], j=1,2,...,4; C, is a constant depending on
]'.
From (2.2), we find that

{ ;:,, en(Z)}

= a,e"? {(in)v + Z [i(n+ m)]"Anmeimzf}
z=z m=1

(3.8)

[ee]
= a,e™ (in)" + a,e™i Z [i(n+m)]"Apne™ .
m=1

For the principal vectors Vi) = {(V®Q)) ., k = 0,1,...,m; -1, j = 1,2,...,p,
corresponding to the eigenvalues A\; =2cosz;,j=1,2,...,p, of L, we get

k =
{ dd—)kan (J\)} =2.C {anei"z’ (in)” + ane™ Y [i(n+m)]” Apme™ }; o)

A=A i v=0 m=1

then

k 0
v () = 1 {ch I:anei"zf (in)” + ane™i > [i(n + m)]"Anmeimzf] } (3.10)
v=0

k! foac]

fork=0,1,...,mj-1,j=1,2,...,p.
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SinceIml; >0,j=1,2,...,p from (3.10) we obtain that

1 [ w k
33 (Cullanle ™™ n|

| n=1v=0

2
: (k!)*

0 k
Z %ZCvcxneinzf (in)”

n=1 v=0

(:)2 e (1 +n+n®+-

n=1

<

<

2
A - —nimz;j
< (k!)z (k + 1)2 <n2=13 I /nk>

< oo,

where A is a constant. Now we define the function

o]

1 & . .
§n(2) = g 2y e D lirm)l Aue™, 21,2,

m=1

From (2.4), we obtain that

k [*e]
|gn(2)] < Z|“n|€7nlmz"Z|n + || Ap|e”™ I F
v=0

m=1

) )
< |an|efnlmzj I:Z|Anm|emlmzj + Z(n +m)|Anm|efmImzj

m=1 m=1

[oo]
+oet Z(n + m)k|Anm|emImzf]

m=1

< Be™ Imz]-/
where B = |a,| >0y Zﬁ:o |Apmle™™ ™% (n + m)”. Therefore, we have

Z|gn(z)|2 < ZBze_Z"Imzf, i=1,2,...,p
n=1 n=1

< o0o.

It follows from (3.11) and (3.14) that VA (1)) € &(N), k =0,1,...,m; - 1

]2
2
) (3.11)
P (3.12)
(3.13)

(3.14)

,i=12,...,p.
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If we consider (3.10) for the principal vectors corresponding to the spectral singular-
ities \; = 2coszj, j = p+1, p+2,...,q9, of L and consider that Imz; = 0 for the spectral
singularities, then we have

A () = o {ZC a,e™i(in)” + aye mz,z Z [i(n+m)]" Aum ””z/'} (3.15)

v=0 m=1

fork=0,1,....mj-1,j=p+1,p+2,...,q
SinceIm\; =0,j=p+1,...,q from (3.15) we find that

1 2]
| o
Now we define t,(z) = Zﬁ:o S li(n+m)]” Ayme'™?, and using (2.4) we get
k o
[tn(2)] < Z Z |(” + m)v||Anm|
v=0 m=1
k o 0
Z Sn+m)’C > (11— ak|+|bxl)
v=0 m=1 k=n+[m/2]
k o 0
< CZ Z(n +m)” Z exp(—ek) exp(ek) (|1 — ax| + |bk|)
v=0 m=1 k=n+[m/2]
k o _ © (3.17)
<cSSuemres |50 S explek)( -+ )
v=0 m= =n+[m/2]

k o
< C1Z Z(n+m)vexp[_?g(n+m)

v=0 m=1

= et e/4>nz Z(n+m) exP< )

m=1 v=0

— Ae(—s/4)n

where

A= Clz Z(n +m)” exp( > (3.18)

m=1 v=0
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If we use (3.17), we obtain that

1& k o ) 1&
- einzi 1(n +m) Apme™i| < — (X2A2€_€n/2
k! ; Zmz k% ! (3.19)
< oo.
SoVi¥ ¢ &,(N), k=0,1,...,mj-1,j=p+1,p+2,...q. O

Let us introduce Hilbert spaces

neN

(3.20)
Hi(N) = {u = {ttn b = >, (1+ 1) e < oo}, k=0,1,2,...,

neN

with ||y||i = en(1+ |n|)2k|yn|2, Nl = 3en (1 + 1)) |u, |, respectively. It is obvious that
Ho(N) = £(N) and

Hia(N) & Hk(N) G b(N) & Hix(N) G H )(N), k=1,2,... (3.21)

Theorem 3.3. V,ik)()uj) €eH y(N), k=0,1,...,mj-1,j=p+1,...,q

Proof. From (3.15), we have

D1+ [u))2ED = Coane™ (in)”
n=1 k! v=0

. (3.22)

< o

o 1 k ) ) )
Z(l + |n|)—2(k+1) _'Zanemzj Z [i(Tl + m)]vAnmelmzj
n=1 k! v=0 m=1

fork=0,1,...,mj-1,j=p+1,p+2,...,q. Therefore, we obtain that V,ik) (1)) € H_(x41)(N),
k:O,l,...,m]-—l,j:p+1,p+2,...,q. O

Let us choose my = max{mp1,Mp2,...,my}. By Theorem 3.2 and (3.21), we get the
following.

Theorem 3.4. V' (1;) € H_,py(N), k=0,1,...,m; -1, j=p+1,p+2,...,q.

Proof. The proof of theorem is trivial. O
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