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This paper is concerned with a generalization of the g-Bernstein polynomials and Stancu operators,
where the function is evaluated at intervals which are in geometric progression. It is shown that

these polynomials can be generated by a de Casteljau algorithm, which is a generalization of that
relating to the classical case and g-Bernstein case.

1. Introduction

Let g > 0. For any fixed real number g > 0 and for n € Z = {0,+1,+2, ...}, the g-integers of the
number [n] are defined by

_ (-9

RN

for g#1, [n] =n, forg=1. (1.1)

The g-factorial [n]!, for n € Ny = {0,1,2,...}, is defined by

]! =[1][2]--[n] (n=1,2,...), [0]'=1. (1.2)
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For the integers n, k, (n > k > 0), the g-binomial or the Gaussian coefficients are defined by
(see [1, page 12])

nf [n]!
[k] © k] [n-k]" (13)

For f € C[0;1], g > 0, a > 0 and each positive integer n, we introduce (see [2]) the following
generalized g-Bernstein operators:
) (1.4)

B (i) = Sl (1
k=0

r—w
|_z

where

Pnk(x) [ ]H (x+a[1])H" = k(l q x+a[s]) (15)

I (1 +ali])

Note, that an empty product in (1.5) denotes 1. In the case where a = 0, B} (f; x) reduces to
the well-known g-Bernstein polynomials introduced by Phillips [3, 4] in 1997

Bug(f;x) = i[:]xkn k- 1<1 q x> ({:}) (1.6)

i=0

In the case where g = 1, B} (f; x) reduces to Bernstein-Stancu polynomials, introduced by
Stancu [5] in 1968

IR Y AL S+ a) [T (1 - x + sax) k
Salfix) = kZa<k> T (1 + ia) G 07

When g =1 and a = 0, we obtain the classical Bernstein polynomial defined by

B.(f;x) =§<Z>xk(1—x)"‘kf<§>. (1.8)

Basic facts on Bernstein polynomials, their generalizations, and applications can be found
for example in [6-8]. In recent years, the g-Bernstein polynomials have attracted much
interest, and a great number of interesting results related to the B, 4(f) polynomials have
been obtained (see [3, 4, 9-12]). Some approximation properties of the Stancu operators are
presented in [5, 13-15].

Let Agf]- = fj, for j=0,1,...,n, and recursively,

AL fj = Agfin — dE AL, (1.9)
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fork = 0,1,...,n—-j—-1and f; = f([j]/[n]). It is easily established by induction that g-
differences satisfy the relation

Z( 1) ql(l 1)/2 [k]f+k i (110)

In [2], we prove that the operators B ( f;x) defined by (1.4) can be expressed in terms of
g-differences

S R e

k=0

which generalized the well-known result [3, 4] for the g-Bernstein polynomial. In this paper,
we show that polynomials defined by (1.4) can be generated by a de Castljau algorithm,
which is a generalization of that relating to the classical case [16] and g-Bernstein case [4, 11].

2. Auxiliary Results

We note that B} ( f;x) defined by (1.4), is a monotone linear operator for any 0 < g < 1 and
a > 0. These operators reproduces linear functions [2], that is,

BZ’a(ax +b;x)=ax+b, abeR (2.1)

They also satisfy the end point interpolation conditions B}“(f;0) = £(0) and B}*(f;1) = f(1).
These properties are significant in designing curves and surfaces.
Moreover, the following holds.

Lemma 2.1. Let 0 < g <1, a > 0. Then,

m—-r—1

H(q —g'x+a([u] -[r])) = Z( 1)5go(s-1/2+m= S)T[ ]H(x+a )H (1+alj]

]sr

(2.2)

forallme N, r € No=NU {0} and x € [0;1].
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Proof. We use induction on m. First, we see from equality [-r] = —q"[r], (r € N), that (2.2)

is evident for m = 1. Let us assume that (2.2) holds for a given m € N. Then, using (2.2), we
obtain

H(q —q"x + a([u] - [r]))

— (5] -q x+0c( m] )Z( l)s s(s—1)/2+(m— s)r[ ]
S

m-r-1

] (x +ali )H (1+alj])
0

]ST

S—

i=

— zm:(_l)sqs(sfl)/%r(mfs)r(qr +a[m] _ LZ[T‘] + (qu[S]) I:I:]
5=0

t/:
._;

m-r-1

(x+alil) [T (1 +a[j])

j=s-r

T\
(=)

i

(2.3)

m+1 m
+ Z (_1)sq(s—l)(s—2)/2+(m—s+1)r+m(1 + a[s - 1])
s=1 s—1

,_.

m-r-1

(x+alil) [T (1+a[j])

j=s-r

S—

I
(e}

i

m—-r-1

q" (q" +a[m] - )H(1+a

+ (=1)"gmemD2m (] 4 a[m - r])ﬁ(x +ali])
i=0

s5-1 m-r-1
+Z( 1)5 s(s-1)/2+(m+1- s)ru H x+a ) H (1 +a[]
i=0 j=s-r

where
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Using the obvious equalities

(9 +a[m] —al[r])g" =1+a[m-r],

m m
[ -
s s—1

we have

m
LIS:[ ](1+a[m—r])
s

+ [Srill]qm‘“l(l + a([m— s+ 1]qs"_1 +[s-r- 1]))

It is easy to see that

s—r-1

[m-s+1]q

SR

m+1
U5=(1+a[m—r])[ ]

S

Therefore,

From last equality and (2.3), we obtain

[T - q“x+a([u] - [r])
u=0

m—-r-1

"(q" + a[m] - )H(1+zx

+ (=1 gmm=D/Zm ]y g [m - r])ﬁ(x +ali])
i=0

+Z( 1)°gs(s=D/2me1=s)r [m ](1 +a[m - r])I_I(JCJFOt D H (1+alj]
S

m+1

5=0 j=s-r

This completes the proof of the lemma.

+[s-r-1] =[m-r],

_ Z( 1)sqs(s 1)/2+(m+1- s)r[ ]H(x+a H (1 +D£ ]])

(2.5)

(2.6)

2.7)

(2.8)

(2.9)
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input: g; f([0]/[n]), f([1]/[n]),..., f([n]/[n])

forr=0ton
o ._ (Ir]
fr —f<7]>

m @ =g xra(m=1] = [ + e+ alr)) £
o 1+a[m-1]

next r
form=1ton
forr=0ton-m

nextr
next m

Algorithm 1: De Casteljau type algorithm.

3. Main Result

The generalized g-Bernstein polynomials, defined by (1.4), may be evaluated by Algorithm 1.

In the case, where a = 0, this is the de Casteljau algorithm for evaluating the g-
Bernstein polynomial [3, 4]. Note that with g = 1 and a = 0, we recover the original
classical de Casteljau algorithm (see Hoschek and Lasser [16]). The algorithm is justifed by

the following theorem.

Theorem 3.1. Each intermediate point fr[m] of the algorithm can be expressed as

m— -1
fﬁ”=<Ifa+aﬁD>
i=0

(3.1)
m -1 m—t-1
D fru [ﬂ [TG+alr+s) [T (@ —q"x+a(lu] - [r])),
t=0 s=0 u=0
and, in particular
0" = B (i), (32)

Proof. We use induction on m. From the initial conditions in the algorithm, f,[O] = f([r]/[n]) =
fr, 0 <r < m,itis clear that (3.1) holds for m = 0 and 0 < r < n. Let us assume that (3.1) holds
for some m such that 0 < m < n, and for all » such that 0 < r < n—m. Then, for0 < r <n-m-1,
it follows from the algorithm that

1
1+a[m]’

fr[m”] = { (" - q"x +a([m] - [r]))fr[m] +(x+ “[T])fr[ﬁ]} (33)
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and using (3.1), we obtain

flml <H(1 +a 1])> =(q" - q"x+a([m] - [r]))

1 -1 m—t-1
- Zofm [n:]l_g(x +afr+s])- ]_g (@" = q"x +a([u] - [r]))
t= s=| u=|

+ (x+af[r me”l: :Ilt;l[(x+a[r+s+l])
5=0

m—t-1
(4! - q"x + a([u] - [r +1]))
u=0
=(q -q"x+a([m ))frl—[(q —q"x +a([u] - [r]))

+(q" - q"x+a([m] - [r])) - me[ ]

m—t-1

H<x+ar+s> H(q —q"x +a([u] - [r]))

m m -
+(x+zx[r])-;fr+t[t_1]g(x+“[r+5+1]) (3.4)

-

3

(47" - q"x+ a([u] - [r +1))

=
Il
o

+ (ot alr]) frama] [0+ alr +s+1])

m

= £ [(@ - q“x + a([u] - [r]))
u=0

+ i{(qr —q"x +a([m] - [r])) [ﬂ
t=1

m—t-1

-1
'H(x+zx[r+s H (q" - q"x+a([u] - [r])
s=0 u=0

+(x+a r])[t ]ﬁ(x+a[r+s+1])
0

3

<qr+1 _qux""x([u] T+1 )}fr+t

Il
f==}

u:

3

+ fr+m+1H(x + a[r + s]).
s=0
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We see that
m—t
(47 - g“x+a(fu] - [r+1]))
u=0
o m—t-1 .
= - 1] g+ N-[r+1
<q x—al[r+ )u:()( iy ra(u+1]-[r+ ])>
: (3.5)
= (¢ -x—alr+11) TT (4" - 4“"x + aq(u] - []))
u=0
m—t—1
= (q”l —x-—a[r+ 1]>q"“t H (" - q"x+a([u] - [r])),
u=0
and hence,
[m1] <H(1 +ali] >
=] [(a" - q“x +a([u] - [r]))
u=0
(3.6)
+§m:{[ ](‘7 -q"x+a([m] - [r])) + [ m1] <q7+1—x—a[r+1]>qm‘t}
=1
m—t—1
fr+tH(x+ afr +s]) H (" —q"x+a([u] - [r])) +fr+m+11_[(x+ afr +s]).
It is easy to verify that
m _— [ m ~ m+1
AR IR
(3.7)

AR
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Therefore,
" (q" - q"x+a([m] - [r])) + m <’+1—x—a[r+1]> et
; -9 i1 q q
— " m + m—t+1 m —x m—t m + t m
1 t 1 t—1 1 t—1 1 t
+L r m + m—t+1 m _ m—t m + t m
—-q 1 t 1 t—1 1 t—1 1 t
m+1
:[ t ]{(qr—xqmt)+1x([m—t]—[r])}.
Consequently,

i=0 u=0

t=

+i[m+1] —xq"") +a([m—t] - [r])}

m—t-1

fr+tH(x+a[r+s]) H (q" - q"x+a([u] - [r]))

+ fr+m+11‘[<x+a[r+s]>

m+1

—Z[ ] fr+tH(x+ar+s H(q —gx + a([u

Thus, one has the desired result.
Theorem 3.2. For 0 <m <nand 0 <r <n-m, we have

m] T (x + ali])
(m-s)r i=r
=2 [ ] M)

forall x € [0;1].
Proof. Using (2.2) and (3.1), we have

m

m—1
fr[m]l_[(l +ali]) =] [ﬂ fretSe(m),
i=0

t=0

- [r]))-
(3.9)

O

(3.10)

(3.11)
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where

m-—t
Si(m) = Z( 1)u w(u=1)/2+(m—t- u)r[ ]

u
(3.12)

t+r—1 m—t-r-1

xH(x+cx[s] H(x+a i]) (1+alj]) (O<t<m).
j=u-r
First, we prove that

t+u+r-1

Si(m) = Z( 1)14 u(u-1)/2+(m~t- u)r[ ] H (x + ai )H(l +a[] (3.13)
j=u+t

forallme Ny =1{0,1,2,...},t € Ny, and x € [0;1]. Note that an empty sum denotes 0.

We use the induction on m. First, we see that (3.13) holds for m = 0 and all t € Nj. Let
us assume that (3.13) holds for a given m, and for all t € Ny. Then, from (3.12) and (3.13), we
obtain

m+1—t m—-t+1
Si(m+1) = (x +aft+r—1]) Z (~1)Hgrle /2 mtel- W[ ]

u
tu=-2+r
. H(x+a H (1+alj])
i=r j=u+t-

17 f—
mi: t(_1)uqu(u—l)/2+(m_t+1_u)r [m t+ 1]

u=0 u
(3.14)

tHu+r-1

H (x + a[i] H (1+alj])

]—u+

t+1 —
+am2r ( 1)14 u(u—-1)/2+(m-t+1- u)r[ £+ 1]

u
tu—2+r m-1

(t+r+1]-[t+u+r+1]) H (x +a[i]) H (1+alj])-
i=r j=u+t-1

We see that

m—t+1 m—t+1
[ ]([t+r—1]—[t+u+r—1])=—qt+"1[m—t—u+2][ ], (3.15)
u u-1
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and hence,

u=0 u

— 1 _
Si(m+1) = mZH (=1)"gHtu-D/2+(m-t1-u)r [m b+ 1]

t+u+r-1

H (x +ali]) H (1+alj])

j=u+t-1

w m—t+1
+ az (_1)uqu(u—l)/2+(m—t+1—u)rqu+t—1 [ ]

u=0 u
t+u+r-1

m—-t-u+1] H (x +afi] )H(1+a

et (3.16)
— (_1)m—t+lq(m—t+1)(mft)/2ﬁ(x +oc[1])
+Z( 1)u u(u-1)/2+(m—t+1-u)r
m-t+1
-(1+a[u+t—1]+aq”+t_1[m—t—u+1]>|: ]
u
t+u+r-1
H (x+af 1])H(1+zx
j=u+t
Next, in view of the equality

<1 +afu+t-1]+aq ' m-t-u+ 1]) =1+a[m], (3.17)

we obtain (3.13). Consequently, in view of (3.11) and (3.13), we get

m—1 m [m
f}m]l_[(l +[x[1]) — Z[t] r+t2( 1)u u(u-1)/2+(m-t-u)r
i=0 £=0
tu+r-1
[ ] H(x+(x )H(1+a[]])
j=u+t

(3.18)

m m [m
- Z Z [ :Ifr+t(—1)utq(”_t)(u—f—l)/2+(m_u)r
t

t=0 u=t

m — t|utr-1
[ ]H(x+a[1 )H(1+a
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FE-CIL

Next, in view of the equality

we obtain
m = - m U— u—-t)(u—it— +(m—-u)r
st = 55ty
u=0 t=0 | U
u |utr=1
[t] H (x + a[i] H(l +alj])
(3.20)
m [m u+r-1
= Z[ gtm=r H (x +afi )H(l +alj
u=0 U
v [u
=0
The condition (1.10) completes the proof. O

Theorems 3.1 and 3.2 are generalizations of Theorems 2.1 and 2.3 in [11].
Note that when m = n and r = 0, (3.10) does indeed reduce to (1.11)
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