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A rate of complete convergence for weighted sums of arrays of rowwise independent random vari-
ables was obtained by Sung and Volodin (2011). In this paper, we extend this result to negatively
associated and negatively dependent random variables. Similar results for sequences of ϕ-mixing
and ρ∗-mixing random variables are also obtained. Our results improve and generalize the results
of Baek et al. (2008), Kuczmaszewska (2009), and Wang et al. (2010).

1. Introduction

The concept of complete convergence of a sequence of random variables was introduced by
Hsu and Robbins [1]. A sequence {Xn, n ≥ 1} of random variables converges completely to
the constant θ if

∞∑

n=1

P(|Xn − θ| > ε) < ∞ ∀ε > 0. (1.1)

In view of the Borel-Cantelli lemma, this implies that Xn → θ almost surely. Therefore, the
complete convergence is a very important tool in establishing almost sure convergence of
summation of random variables as well as weighted sums of random variables. Hsu and
Robbins [1] proved that the sequence of arithmetic means of independent and identically
distributed random variables converges completely to the expected value if the variance of
the summands is finite. Erdös [2] proved the converse. The result of Hsu-Robbins-Erdös is a
fundamental theorem in probability theory and has been generalized and extended in several
directions by many authors.

Ahmed et al. [3] obtained complete convergence for weighted sums of arrays of row-
wise independent Banach-space-valued random elements.
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We recall that the array {Xni, i ≥ 1, n ≥ 1} of random variables is said to be stochas-
tically dominated by a random variable X if

P(|Xni| > x) ≤ CP(|X| > x) ∀x > 0, ∀i ≥ 1, n ≥ 1, (1.2)

where C is a positive constant.

Theorem 1.1 (Ahmed et al. [3]). Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise independent ran-
dom elements which are stochastically dominated by a random variable X. Let {ani, i ≥ 1, n ≥ 1} be
an array of constants satisfying

sup
i≥1

|ani| = O
(
n−γ) for some γ > 0, (1.3)

∞∑

i=1

|ani| = O(nα) for some α < γ. (1.4)

Suppose that there exists δ > 1 such that 1 + α/γ < δ ≤ 2. Let β /= − 1 − α and ν = max{1 + (1 + α +
β)/γ, δ}. If E|X|ν < ∞ and

∑∞
i=1aniXni → 0 in probability, then

∞∑

n=1

nβP

(∥∥∥∥∥

∞∑

i=1

aniXni

∥∥∥∥∥ > ε

)
< ∞ ∀ε > 0. (1.5)

Note that there was a typographical error in Ahmed et al. [3] (the relation δ > 0 should
be δ > 1). If β < −1, then the conclusion of Theorem 1.1 is immediate. Hence, Theorem 1.1 is
of interest only for β ≥ −1.

Baek et al. [4] extended Theorem 1.1 to negatively associated random variables.

Theorem 1.2 (Baek et al. [4]). Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise negatively associated
random variables which are stochastically dominated by a random variable X. Let {ani, i ≥ 1, n ≥ 1}
be an array of constants satisfying (1.3) and (1.4). Suppose that there exists δ > 0 such that 1+α/γ <
δ ≤ 2. Let β ≥ −1 and ν = max{1 + (1 + α + β)/γ, δ}. If EXni = 0, for all i ≥ 1 and n ≥ 1, and

E|X| log|X| < ∞, for 1 + α + β = 0,

E|X|ν < ∞, for 1 + α + β > 0,
(1.6)

then

∞∑

n=1

nβP

(∣∣∣∣∣

∞∑

i=1

aniXni

∣∣∣∣∣ > ε

)
< ∞ ∀ε > 0. (1.7)

Sung and Volodin [5] improved Theorem 1.1 as follows.

Theorem 1.3 (Sung and Volodin [5]). Suppose that β ≥ −1. Let {Xni, i ≥ 1, n ≥ 1} be an array of
rowwise independent random elements which are stochastically dominated by a random variableX. Let
{ani, i ≥ 1, n ≥ 1} be an array of constants satisfying (1.3) and (1.4). Assume that

∑∞
i=1aniXni → 0
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in probability. If

E|X| log|X| < ∞, for 1 + α + β = 0,

E|X|1+(1+α+β)/γ < ∞, for 1 + α + β > 0,
(1.8)

then (1.5) holds.

In this paper, we extend Theorem 1.3 to negatively associated and negatively depen-
dent random variables. We also obtain similar results for sequences of ϕ-mixing and ρ∗-mix-
ing random variables. Our results improve and generalize the results of Baek et al. [4], Kucz-
maszewska [6], and Wang et al. [7].

Throughout this paper, the symbol C denotes a positive constant which is not neces-
sarily the same one in each appearance. It proves convenient to define logx = max{1, lnx},
where lnx denotes the natural logarithm.

2. Preliminaries

In this section, we present some background materials which will be useful in the proofs of
our main results.

The following lemma is well known, and its proof is standard.

Lemma 2.1. Let {Xn, n ≥ 1} be a sequence of random variables which are stochastically dominated
by a random variable X. For any α > 0 and b > 0, the following statements hold:

(i) E|Xn|αI(|Xn| ≤ b) ≤ C{E|X|αI(|X| ≤ b) + bαP(|X| > b)},
(ii) E|Xn|αI(|Xn| > b) ≤ CE|X|αI(|X| > b).

Lemma 2.2 (Sung [8]). Let X be a random variable with E|X|r < ∞ for some r > 0. For any t > 0,
the following statements hold:

(i)
∑∞

n=1n
−1−tδE|X|r+δI(|X| ≤ nt) ≤ CE|X|r for any δ > 0,

(ii)
∑∞

n=1n
−1+tδE|X|r−δI(|X| > nt) ≤ CE|X|r for any δ > 0 such that r − δ > 0,

(iii)
∑∞

n=1n
−1+trP(|X| > nt) ≤ CE|X|r .

The Rosenthal-type inequality plays an important role in establishing complete con-
vergence. The Rosenthal-type inequalities for sequences of dependent random variables have
been established by many authors.

The concept of negatively associated random variables was introduced by Alam and
Saxena [9] and carefully studied by Joag-Dev and Proschan [10]. A finite family of random
variables {Xi, 1 ≤ i ≤ n} is said to be negatively associated if for every pair of disjoint subsets
A and B of {1, 2, . . . , n},

Cov
(
f1(Xi, i ∈ A), f2

(
Xj, j ∈ B

)) ≤ 0, (2.1)

whenever f1 and f2 are coordinatewise increasing and the covariance exists. An infinite fam-
ily of random variables is negatively associated if every finite subfamily is negatively asso-
ciated.
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The following lemma is a Rosenthal-type inequality for negatively associated random
variables.

Lemma 2.3 (Shao [11]). Let {Xn, n ≥ 1} be a sequence of negatively associated random variables
with EXn = 0 and E|Xn|q < ∞ for some q ≥ 2 and all n ≥ 1. Then there exists a constant C > 0
depending only on q such that

E

⎛

⎝max
1≤j≤n

∣∣∣∣∣

j∑

i=1

Xi

∣∣∣∣∣

q
⎞

⎠ ≤ C

⎧
⎨

⎩

n∑

i=1

E|Xi|q +
(

n∑

i=1

EX2
i

)q/2
⎫
⎬

⎭. (2.2)

The concept of negatively dependent random variables was given by Lehmann [12].
A finite family of random variables {X1, . . . , Xn} is said to be negatively dependent (or nega-
tively orthant dependent) if for each n ≥ 2, the following two inequalities hold:

P(X1 ≤ x1, . . . , Xn ≤ xn) ≤
n∏

i=1

P(Xi ≤ xi),

P(X1 > x1, . . . , Xn > xn) ≤
n∏

i=1

P(Xi > xi),

(2.3)

for all real numbers x1, . . . , xn. An infinite family of random variables is negatively dependent
if every finite subfamily is negatively dependent.

Obviously, negative association implies negative dependence, but the converse is not
true.

The following lemma is a Rosenthal-type inequality for negatively dependent random
variables.

Lemma 2.4 (Asadian et al. [13]). Let {Xn, n ≥ 1} be a sequence of negatively dependent random
variables with EXn = 0 and E|Xn|q < ∞ for some q ≥ 2 and all n ≥ 1. Then there exists a constant
C > 0 depending only on q such that

E

∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣

q

≤ C

⎧
⎨

⎩

n∑

i=1

E|Xi|q +
(

n∑

i=1

EX2
i

)q/2
⎫
⎬

⎭. (2.4)

For a sequence {Xn, n ≥ 1} of random variables defined on a probability space (Ω,
F, P), letFm

n denote the σ-algebra generated by the random variablesXn,Xn+1, . . . , Xm. Define
the ϕ-mixing coefficients by

ϕ(n) = sup
k≥1

sup
{
|P(B | A) − P(B)|, A ∈ Fk

1 , P(A)/= 0, B ∈ F∞
k+n

}
. (2.5)

The sequence {Xn, n ≥ 1} is called ϕ-mixing (or φ-mixing) if ϕ(n) → 0 as n → ∞.
For any S ⊂ N, let FS = σ(Xi, i ∈ S). Define the ρ∗-mixing coefficients by

ρ∗(n) = sup corr
(
f, g
)
, (2.6)
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where the supremum is taken over all S, T ⊂ N with dist(S, T) ≥ n, and all f ∈ L2(FS) and
g ∈ L2(FT ). The sequence {Xn, n ≥ 1} is called ρ∗-mixing (or ρ̃-mixing) if there exists k ∈ N

such that ρ∗(k) < 1.
Note that if {Xn, n ≥ 1} is a sequence of independent random variables, then ϕ(n) = 0

and ρ∗(n) = 0 for all n ≥ 1.
The following lemma is a Rosenthal-type inequality for ϕ-mixing random variables.

Lemma 2.5 (Wang et al. [7]). Let {Xn, n ≥ 1} be a sequence of ϕ-mixing random variables with
EXn = 0 and E|Xn|q < ∞ for some q ≥ 2 and all n ≥ 1. Assume that

∑∞
n=1ϕ

1/2(n) < ∞. Then there
exists a constant C > 0 depending only on q and ϕ(·) such that

E

⎛

⎝max
1≤j≤n

∣∣∣∣∣

j∑

i=1

Xi

∣∣∣∣∣

q
⎞

⎠ ≤ C

⎧
⎨

⎩

n∑

i=1

E|Xi|q +
(

n∑

i=1

EX2
i

)q/2
⎫
⎬

⎭. (2.7)

The following lemma is a Rosenthal-type inequality for ρ∗-mixing random variables.

Lemma 2.6 (Utev and Peligrad [14]). Let {Xn, n ≥ 1} be a sequence of random variables with
EXn = 0 and E|Xn|q < ∞ for some q ≥ 2 and all n ≥ 1. If ρ∗(k) < 1 for some k, then there exists a
constant C > 0 depending only on q, k, and ρ∗(k) such that

E

⎛

⎝max
1≤j≤n

∣∣∣∣∣

j∑

i=1

Xi

∣∣∣∣∣

q
⎞

⎠ ≤ C

⎧
⎨

⎩

n∑

i=1

E|Xi|q +
(

n∑

i=1

EX2
i

)q/2
⎫
⎬

⎭. (2.8)

3. Main Results

In this section, we extend Theorem 1.3 to negatively associated and negatively dependent
random variables.We also obtain similar results for sequences of ϕ-mixing and ρ∗-mixing ran-
dom variables.

The following theorem extends Theorem 1.3 to negatively associated random vari-
ables.

Theorem 3.1. Suppose that β ≥ −1. Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise negatively asso-
ciated random variables which are stochastically dominated by a random variable X. Let {ani, i ≥ 1,
n ≥ 1} be an array of constants satisfying (1.3) and (1.4). If EXni = 0 for all i ≥ 1 and n ≥ 1, and
(1.8) holds, then

∞∑

n=1

nβP

(
sup
j≥1

∣∣∣∣∣

j∑

i=1

aniXni

∣∣∣∣∣ > ε

)
< ∞ ∀ε > 0. (3.1)

Proof. Since ani = a+
ni − a−

ni, we may assume that ani ≥ 0. For i ≥ 1 and n ≥ 1, define

X′
ni = XniI(|Xni| ≤ nγ) + nγI(Xni > nγ) − nγI(Xni < −nγ), X′′

ni = Xni −X′
ni. (3.2)

Then {X′
ni, i ≥ 1, n ≥ 1} is still an array of rowwise negatively associated random variables.

Moreover, {aniX
′
ni, i ≥ 1, n ≥ 1} is also an array of rowwise negatively associated random
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variables. Since EXni = 0 for all i ≥ 1 and n ≥ 1, it suffices to show that

I1 =:
∞∑

n=1

nβP

(
sup
j≥1

∣∣∣∣∣

j∑

i=1

ani

(
X′

ni − EX′
ni

)
∣∣∣∣∣ > ε

)
< ∞,

I2 =:
∞∑

n=1

nβP

(
sup
j≥1

∣∣∣∣∣

j∑

i=1

ani

(
X′′

ni − EX′′
ni

)
∣∣∣∣∣ > ε

)
< ∞.

(3.3)

We will prove (3.3) with three cases.

Case 1 (1+(1+α+β)/γ = 1(i.e., 1+α+β = 0)). For I1, we get byMarkov’s inequality, Lemmas
2.1–2.3, (1.3), and (1.4) that

I1 ≤ ε−2
∞∑

n=1

nβE sup
j≥1

∣∣∣∣∣

j∑

i=1

ani(X′
ni − EX′

ni)

∣∣∣∣∣

2

≤ C
∞∑

n=1

nβ
∞∑

i=1

|ani|2E
∣∣X′

ni

∣∣2 (
by Lemma 2.3

)

≤ C
∞∑

n=1

nβ
∞∑

i=1

|ani|2
{
E|X|2I(|X| ≤ nγ) + n2γP(|X| > nγ)

} (
by Lemma 2.1

)

≤ C
∞∑

n=1

nβn−γnα
{
E|X|2I(|X| ≤ nγ) + n2γP(|X| > nγ)

} (
by (1.3) and (1.4)

)

≤ CE|X|1+(1+α+β)/γ < ∞.

(3.4)

The fifth inequality follows from Lemma 2.2.
For I2, we get by Markov’s inequality, stochastic domination, and (1.4) that

I2 ≤ ε−1
∞∑

n=1

nβE sup
j≥1

∣∣∣∣∣

j∑

i=1

ani

(
X′′

ni − EX′′
ni

)
∣∣∣∣∣

≤ 2ε−1
∞∑

n=1

nβ
∞∑

i=1

|ani|E
∣∣X′′

ni

∣∣

≤ C
∞∑

n=1

nβ
∞∑

i=1

|ani|E|X|I(|X| > nγ)

≤ C
∞∑

n=1

nβnαE|X|I(|X| > nγ)

= C
∞∑

n=1

n−1
∞∑

i=n

E|X|I(iγ < |X| ≤ (i + 1)γ
)
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= C
∞∑

i=1

E|X|I(iγ < |X| ≤ (i + 1)γ
) i∑

n=1

n−1

≤ CE|X| log|X| < ∞.

(3.5)

Case 2 (1 < 1 + (1 + α + β)/γ < 2). As in Case 1, we have that I1 ≤ CE|X|1+(1+α+β)/γ < ∞.
Similar to I2 in Case 1, we have that

I2 ≤ C
∞∑

n=1

nα+βE|X|I(|X| > nγ)

= C
∞∑

n=1

nα+β
∞∑

i=n

E|X|I(iγ < |X| ≤ (i + 1)γ
)

= C
∞∑

i=1

E|X|I(iγ < |X| ≤ (i + 1)γ
) i∑

n=1

nα+β

≤ CE|X|1+(1+α+β)/γ < ∞.

(3.6)

Case 3 (1 + (1 + α + β)/γ ≥ 2). For I1, we take t > 0 sufficiently large such that (γ − α)(1 + (1 +
α + β)/γ + t)/2 > 1 + β. Then we obtain by Markov’s inequality and Lemma 2.3 that

I1 ≤ ε−1−(1+α+β)/γ−t
∞∑

n=1

nβE sup
j≥1

∣∣∣∣∣

j∑

i=1

ani(X′
ni − EX′

ni)

∣∣∣∣∣

1+(1+α+β)/γ+t

≤ C
∞∑

n=1

nβ
∞∑

i=1

E
∣∣aniX

′
ni

∣∣1+(1+α+β)/γ+t

+ C
∞∑

n=1

nβ

( ∞∑

i=1

E
∣∣aniX

′
ni

∣∣2
)(1+(1+α+β)/γ+t)/2

=: I3 + I4.

(3.7)

Similar to I1 in Case 1, we obtain that

I3 ≤ C
∞∑

n=1

nβn−γ((1+α+β)/γ+t)nα
{
E|X|1+(1+α+β)/γ+tI(|X| ≤ nγ) + nγ(1+(1+α+β)/γ+t)P(|X| > nγ)

}

= C
∞∑

n=1

n−1−γtE|X|1+(1+α+β)/γ+tI(|X| ≤ nγ) + C
∞∑

n=1

nα+β+γP(|X| > nγ)

≤ CE|X|1+(1+α+β)/γ < ∞.

(3.8)
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Noting E|X′
ni|2 ≤ CE|X|2, we obtain by (1.3) and (1.4) that

I4 ≤ C
∞∑

n=1

nβ

(
CE|X|2

∞∑

i=1

|ani|2
)(1+(1+α+β)/γ+t)/2

≤ C
∞∑

n=1

nβ
(
CE|X|2nα−γ

)(1+(1+α+β)/γ+t)/2
< ∞,

(3.9)

since (γ − α)(1 + (1 + α + β)/γ + t)/2 − β > 1. Hence, I1 < ∞. As in Case 2, we obtain I2 ≤
CE|X|1+(1+α+β)/γ < ∞.

Remark 3.2. The moment condition of Theorem 3.1 is weaker than that of Theorem 1.2. Also,
the conclusion of Theorem 3.1 implies the conclusion of Theorem 1.2. Hence, Theorem 3.1
improves Theorem 1.2. Moreover, the method of the proof of Theorem 3.1 is simpler than
that of the proof of Theorem 1.2.

Corollary 3.3. Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise negatively associated random variables
which are stochastically dominated by a random variableX. Let {ani, i ≥ 1, n ≥ 1} be a Toeplitz array
satisfying

sup
i≥1

|ani| = O
(
n1/t−δ

)
for some t > 0, δ > 0. (3.10)

If

E|X| < ∞, for 0 < t < 1,

E|X| log|X| < ∞, for t = 1,

E|X|1+(1−1/t)/δ < ∞, for t > 1,

(3.11)

then

∞∑

n=1

P

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

aniXni

∣∣∣∣∣ > εn1/t

)
< ∞ ∀ε > 0. (3.12)

Proof. For the case 0 < t < 1, the result can be easily proved by

∞∑

n=1

P

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

aniXni

∣∣∣∣∣ > εn1/t

)
≤ ε−1

∞∑

n=1

n−1/tEmax
1≤j≤n

∣∣∣∣∣

j∑

i=1

aniXni

∣∣∣∣∣

≤ ε−1
∞∑

n=1

n−1/t
n∑

i=1

|ani|E|Xni|

≤ CE|X|
∞∑

n=1

n−1/t < ∞.

(3.13)
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For the case t ≥ 1, we let bni = anin
−1/t. Observe that

sup
i≥1

|bni| = O
(
n−δ
)
,

∞∑

i=1

|bni| = O
(
n−1/t

)
. (3.14)

By Theorem 3.1 with α = −1/t, β = 0, γ = δ, and ani replaced by bni, we get that

∞∑

n=1

P

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

bni(Xni − EXni)

∣∣∣∣∣ > ε

)
< ∞ ∀ε > 0. (3.15)

To complete the proof, we only prove that

J =: max
1≤j≤n

∣∣∣∣∣

j∑

i=1

bniEXni

∣∣∣∣∣ −→ 0, (3.16)

but J ≤∑n
i=1|bni|E|Xni| ≤ CE|X|n−1/t → 0 as n → ∞.

Remark 3.4. When 0 < t < 1, Corollary 3.3 holds without negative association. Kucz-
maszewska [6, Corollary 2.4], proved Corollary 3.3 under the stronger moment condition
E|X|1+1/δ < ∞.

The following theorem extends Theorem 1.3 to negatively dependent random vari-
ables.

Theorem 3.5. Suppose that β ≥ −1. Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise negatively depen-
dent random variables which are stochastically dominated by a random variable X. Let {ani, i ≥ 1,
n ≥ 1} be an array of constants satisfying (1.3) and (1.4). If EXni = 0 for all i ≥ 1 and n ≥ 1, and
(1.8) holds, then (1.7) holds.

Proof. The proof is the same as that of Theorem 3.1 except that we use Lemma 2.4 instead of
Lemma 2.3.

If the array {Xni, i ≥ 1, n ≥ 1} in Theorem 3.1 is replaced by the sequence {Xn, n ≥ 1},
then we can extend Theorem 3.1 to ϕ-mixing and ρ∗-mixing random variables.

Theorem 3.6. Suppose that β ≥ −1. Let {Xn, n ≥ 1} be a sequence of ϕ-mixing random variables
which are stochastically dominated by a random variable X. Let {ani, i ≥ 1, n ≥ 1} be an array of
constants satisfying (1.3) and (1.4). Assume that

∑∞
n=1ϕ

1/2(n) < ∞. If EXn = 0 for all n ≥ 1, and
(1.8) holds, then

∞∑

n=1

nβP

(
sup
j≥1

∣∣∣∣∣

j∑

i=1

aniXi

∣∣∣∣∣ > ε

)
< ∞ ∀ε > 0. (3.17)
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Proof. Since EXn = 0 for all n ≥ 1, it suffices to show that

∞∑

n=1

nβP

(
sup
j≥1

∣∣∣∣∣

j∑

i=1

ani(XiI(|Xi| ≤ nγ) − EXiI(|Xi| ≤ nγ))

∣∣∣∣∣ > ε

)
< ∞,

∞∑

n=1

nβP

(
sup
j≥1

∣∣∣∣∣

j∑

i=1

ani(XiI(|Xi| > nγ) − EXiI(|Xi| > nγ))

∣∣∣∣∣ > ε

)
< ∞.

(3.18)

The rest of the proof is the same as that of Theorem 3.1 except that we use Lemma 2.5 instead
of Lemma 2.3 and it is omitted.

Remark 3.7. Can Theorem 3.6 be extended to the array {Xni, i ≥ 1, n ≥ 1} of rowwise ϕ-
mixing random variables? Let {ϕn(i), i ≥ 1} be the sequence of ϕ-mixing coefficients for the
nth row {Xn1, Xn2, . . .} of the array {Xni}. When we apply Lemma 2.5 to the nth row, the cons-
tant C depends on both q and ϕn(·). That is, the constant C depends on n. Hence we cannot
extend Theorem 3.6 to the array by using the method of the proof of Theorem 3.1.

Corollary 3.8. Let {Xn, n ≥ 1} be a sequence of ϕ-mixing random variables which are stochastically
dominated by a random variable X. Let {ani, i ≥ 1, n ≥ 1} be a Toeplitz array satisfying (3.10).
Assume that

∑∞
n=1ϕ

1/2(n) < ∞. If (3.11) holds, then

∞∑

n=1

P

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

aniXi

∣∣∣∣∣ > εn1/t

)
< ∞ ∀ε > 0. (3.19)

Proof. The proof is the same as that of Corollary 3.3 except that we use Theorem 3.6 instead of
Theorem 3.1.

Remark 3.9. When 0 < t < 1, Corollary 3.8 holds without ϕ-mixing. Wang et al. [7, Theo-
rem 2.5] proved Corollary 3.8 under the stronger moment condition E|X|max{2/δ,1+1/δ} < ∞.

Theorem 3.10. Suppose that β ≥ −1. Let {Xn, n ≥ 1} be a sequence of ρ∗-mixing random variables
which are stochastically dominated by a random variable X. Let {ani, i ≥ 1, n ≥ 1} be an array of
constants satisfying (1.3) and (1.4). If EXn = 0 for all n ≥ 1, and (1.8) holds, then (3.17) holds.

Proof. The proof is the same as that of Theorem 3.6 except that we use Lemma 2.6 instead of
Lemma 2.5.

Remark 3.11. Likewise in Remark 3.7, we also cannot extend Theorem 3.10 to the array by
using the method of the proof of Theorem 3.1.
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