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The nonhomogeneous initial boundary value problem for the two-component Camassa-Holm
equation, which describes a generalized formulation for the shallow water wave equation, on an
interval is investigated. A local in time existence theorem and a uniqueness result are achieved.
Next by using the fixed-point technique, a result on the global asymptotic stabilization problem by
means of a boundary feedback law is considered.

1. Introduction

In this paper, we are concerned with the initial boundary value problem and the asymptotic
stabilization of the two-component Camassa-Holm equation on a compact interval by means
of a stationary feedback law acting on the boundary. The two-component Camassa-Holm
equation reads as follows:

ut − uxxt + 3uux − 2uxuxx − uuxxx + ρ ρx = 0,

ρt + ρxu + ρux = 0,
(1.1)

which was first derived as a bi-Hamiltonian models by Olver and Rosenau, see [1]. The
system (1.1) shares many features with the Korteweg-De Vries equation Camassa-Holm
equation and Degasperis-Procesi Equation; for instance, it has a Lax pair formulation, and
it is integrable. In fact, the system (1.1) is related to the first negative flow of the AKNS
hierarchy via a reciprocal transformation [2, 3]. In [4], Constantin and Ivanov deviated (1.1)
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in the context of shallow water waves theory. As well as they showed that it has global strong
solutions and also finite time blow-up solutions. Well-posedness and blow-up results are
obtained in [5, 6].

For ρ ≡ 0, the equation (1.1) becomes the Camassa-Holm equation, which is modeling
the unidirectional propagation of shallow water waves over a flat bottom. Here u(t, x)
stands for the fluid velocity at time t in the spatial x direction [7–11]. The Camassa-Holm
equation is also a model for the propagation of axially symmetric waves in hyperelastic
rods [12, 13]. It has a bi-Hamiltonian structure [3] and is completely integrable [7, 14]. Also
there is a geometric interpretation of the equation (1.1) in terms of geodesic flow on the
diffeomorphism group of the circle [15, 16]. Its solitary waves are peaked [17]. They are
orbitally stable and interact like solitons [18, 19].

The Cauchy problem and initial-boundary value problem for the Camassa-Holm
equation have been studied extensively in [20–26] and references within. It has been shown
that this equation is locally well posed [20–23, 26] for some initial data. The advantage of
the Camassa-Holm equation in comparison with the KdV equation lies in the fact that the
Camassa-Holm equation has peaked solitons and models wave breaking [27, 28] (by wave
breaking we understand that the wave remains bounded while its slope becomes unbounded
in finite time [29]).

For ρ /= 0, the Cauchy problems of (1.1) have been discussed in [5, 30], respectively.
Recently, a new global existence result and several new blow-up results of strong solutions
for the Cauchy problem of (1.1) were obtained in [6]. And a new local existence result and
several new blow-up results and blow-up rate of strong solutions for the Cauchy problem of
(1.1) defined in a torus were obtained in [31]. Guan and Yin proved the existence of global
week solutions to (1.1) provided the initial data satisfying some certain conditions, see [32].

As far as the initial boundary value problem and the asymptotic stabilization of the
two-component Camassa-Holm equation on a compact interval are concerned, there are
seldom results yet, to the authors’ knowledge. Our aim of this paper is to prove the existence
of the initial boundary value problem and the asymptotic stabilization of the two-component
Camassa-Holm equation on a compact interval by acting on the boundary feedback law,
precisely,

(1) the exact controllability problem: given two states (u0, ρ0) and (u1, ρ1) and a time
T > 0, can one find a certain function v(t) such that the solution to (1.1) satisfies
u(T) = u1, ρ(T) = ρ1? and

(2) the stabilizability problem: can one find a stationary feedback law v(x), such that
for any state (u0, ρ0) a solution pair (u(t), ρ(t)) to closed-loop system is global?

To explain our boundary formulation of (1.1), let us first introduce some transforma-
tion, precisely, m = u − uxx and ρ = ρ − 1, which lead the system (1.1) to be equivalent to the
system:

mt + umx + 2mux + ρρx + ρx = 0,

ρt + uρx + ρux + ux = 0.
(1.2)
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Let T be a positive number. In the following we take ΩT = [0, T] × [0, 1]. Let vl and vr be in
C0([0, T], R) andm0 ∈ L∞(0, 1), ρ0 ∈W1,∞(0, 1). We set

Γl = {t ∈ [0, T] | vl(t) > 0}, Γr = {t ∈ [0, T] | vr(t) < 0}. (1.3)

In the following, we will always suppose that the sets

Pl = {t ∈ [0, T] | vl(t) = 0}, Pr = {t ∈ [0, T] | vr(t) = 0} (1.4)

have a finite number of connected components. Finally, let ml, ρl ∈ L∞(Γl) × W1,∞(Γl) and
mr, ρr ∈ L∞(Γr)×W1,∞(Γr). The given functions vl, vr ,ml, ρl, andmr , ρr will be the boundary
values for the equation; m0, ρ0 are the initial data. Let now A(t, x) be the auxiliary function
which lifts the boundary values vl and vr and is defined by

(1 − ∂xx)A(t, x) = 0, ∀(t, x) ∈ ΩT ,

A(t, 0) = vl(t), A(t, 1) = vr(t), ∀t ∈ [0, T].
(1.5)

Setting u = θ + A, we can further rewrite the system (1.1) as

m(t, x) = (1 − ∂xx)θ(t, x),
θ(t, 0) = θ(t, 1) = 0,

(1.6)

mt + (θ + A)mx = −2m∂x(θ + A) − ρρx − ρx,
ρt + (θ + A)ρx = −(ρ + 1

)
∂x(θ + A),

m(0, ·) = m0, m(·, 0)|Γl = ml, m(·, 1)|Γr = mr,

ρ(0, ·) = ρ0, ρ(·, 0)|Γl = ρl, ρ(·, 1)|Γr = ρr.

(1.7)

Let y =
(m
ρ
)
, y0 =

(m0
ρ0

)
, b(t, x) =

( −2∂x(θ+A) 0
0 −∂x(θ+A)

)
, f(t, x) =

( −ρρx−ρx
−∂x(θ+A)

)
, and the system

(1.7) can be written as

∂ty + (θ + A)∂xy = b(t, x)y + f(t, x),

y(0, ·) = y0, y(·, 0)|Γl = yl, y(·, 1)|Γr = yr.
(1.8)

We first define what we mean by a weak solution to (1.8). Our test functions will be in the
space:

adm(ΩT ) =
{
ψ ∈ C1(ΩT ) × C1(ΩT ) | ∀x ∈ [0, 1], ψ(t, x) = 0; ∀t ∈ [0, T]/Γl,

ψ(t, 0) = 0; ∀t ∈ [0, T]/Γr , ψ(t, 1) = 0
}
.

(1.9)
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Definition 1.1. Given y0 =
(m0
ρ0

) ∈ L∞(ΩT ) × W1,∞(ΩT ), when θ ∈ L∞((0, T); Lip([0, 1])), a
function pair y =

(m
ρ
) ∈ L∞(ΩT ) ×W1,∞(ΩT) is a weak solution to (1.8) if y satisfies

∫∫

ΩT

[
y∂tψ + y(θ + A)∂xψ − yb(t, x)ψ − f(t, x)ψ]dtdx

= −
∫1

0
y0ψ(0, x)dx +

∫T

0

[
ψ(t, 1)vr(t)yr(t) − ψ(t, 0)vl(t)yl(t)

]
dt.

(1.10)

It is obvious that C1
0(ΩT ) × C1

0(ΩT ) ⊂ adm(ΩT ); therefore, a weak solution to (1.8) is
also a solution to (1.8) in the distribution sense.

Definition 1.2 (see [33]). For (t, x) ∈ ΩT , let ϕ(·, t, x) be the C1 maximal solution to

∂sϕ(s, t, x) = a
(
s, ϕ(s, t, x)

)
,

ϕ(t, t, x) = x,
(1.11)

which is defined on a certain set [e(t, x), h(t, x)] (which is closed because [0, 1] is compact)
and with possibly e(t, x) and/or h(t, x) = t.

We take into account the influence of the boundaries by introducing the sets:

P =
{
(t, x) ∈ ΩT | ∃s ∈ [e(t, x), h(t, x)] such that ϕ(s, t, x) ∈ {0, 1}, a(s, ϕ(s, t, x)) = 0

}
,

∪{(s, ϕ(s, 0, 0)) | ∀s ∈ [0, T]
} ∪ {(

s, ϕ(s, 0, 1)
) | ∀s ∈ [0, T]

}
,

I = {(t, x) ∈ ΩT/P | e(t, x) = 0},
L =

{
(t, x) ∈ ΩT/P | ϕ(e(t, x)t, x) = 0

}
,

R =
{
(t, x) ∈ ΩT/P | ϕ(e(t, x)t, x) = 1

}
,

Γl = {t ∈ [0, T] | a(t, 0) > 0},
Γr = {t ∈ [0, T] | a(t, 1) > 0}.

(1.12)

The following lemma, see [33], will play an important role in proving the local time existence
theorem and of a uniqueness result of the initial boundary value problem.

Lemma 1.3. Let a ∈ C0([0, T];C1([0, 1])), b, f ∈ L∞(ΩT ), y0 ∈ L∞(0, 1), yl ∈ L∞(Γl), and
yr ∈ L∞(Γr). We will also suppose that the sets:

Pl = {t ∈ [0, T] | vl(t) = 0}, Pr = {t ∈ [0, T] | vr(t) = 0} (1.13)



Abstract and Applied Analysis 5

have at most a countable number of connected components. Then the function y, defined by the formula

for (t, x) ∈ P, y(t, x) = 0,

for (t, x) ∈ I, y(t, x) = exp

(∫ t

0
b
(
r, ϕ(r, t, x)

)
dr

)

y0
(
ϕ(0, t, x)

)

+
∫ t

0
exp

(∫ t

s

b
(
r, ϕ(r, t, x)

)
dr

)

f
(
s, ϕ(s, t, x)

)
ds,

for (t, x) ∈ L, y(t, x) = exp

(∫ t

e(t,x)
b
(
r, ϕ(r, t, x)

)
dr

)

yl(e(t, x))

+
∫ t

e(t,x)
exp

(∫ t

s

b
(
r, ϕ(r, t, x)

)
dr

)

f
(
s, ϕ(s, t, x)

)
ds,

for (t, x) ∈ R, y(t, x) = exp

(∫ t

e(t,x)
b
(
r, ϕ(r, t, x)

)
dr

)

yr(e(t, x))

+
∫ t

e(t,x)
exp

(∫ t

s

b
(
r, ϕ(r, t, x)

)
dr

)

f
(
s, ϕ(s, t, x)

)
ds,

(1.14)

is a weak solution of

∂ty + (θ + A)∂xy = b(t, x)y + f(t, x) (1.15)

and satisfies

∥∥y
∥∥
L∞(ΩT )

≤
(
max

{∥∥y0
∥∥
L∞(ΩT )

,
∥∥yl

∥∥
L∞(Γl)

,
∥∥yr

∥∥
L∞(Γr)

}
+ T

∥∥f
∥∥
L∞(ΩT )

)
et‖b‖L∞(ΩT ) . (1.16)

However, if we let ml, ρl ∈ L∞(Γl) × L∞(Γl) and mr, ρr ∈ L∞(Γr) × L∞(Γr), note that f
depends on the unknown ρ which is not a data; therefore Lemma 1.3 does not hold, or rather
Theorem 6 from the Appendix of [33] can not be applied directly to (1.8) (or (1.1)). Indeed if
θ and A are given, one can solve the equation on ρ (the equation on the second component
in (1.8) (or (1.1))), but this result only guarantee that ρ is in L∞. Therefore the source term in
the equation on m is not in L∞ anymore but in L∞((0, T);W−1,∞(0, 1)), and then Lemma 1.3
cannot be used to solve the transport equation on m (the first component equation on (1.8)).
One might try to get more regularity on ρ, but in this case more regularity is also needed on
ρ0, ρl, ρr0 and even on θ and A to get sufficient geometrical assumptions. Then, one might
manage ρ0 ∈ W1,∞(0, 1), ρl ∈ W1,∞(Γl), ρr ∈ W1,∞(Γr) to obtain at least Lipschitz solution of
the scalar transport equation on ρ and then get a weak solution onm.

The rest of this paper is organized as follows. In Section 2, the main results of the
present paper are stated. Section 3 will be devoted to the proofs of a local time existence
theorem and of a uniqueness result of the initial boundary value problem for the system (1.8)
(or (1.1)). The problem of asymptotic stabilization for the system is analyzed, and a feedback
control law will be investigated in Section 4.
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2. Main Results

Theorem 2.1. For T > 0, we consider vl ∈ C0(Γl), vr ∈ C0(Γl) such that the sets Pl and Pr have only
a finite number of connected components. Let y0 ∈ L∞(0, 1) ×W1,∞(0, 1), yl ∈ L∞(Γl) ×W1,∞(Γl),
and yr ∈ L∞(Γr) ×W1,∞(Γr). There exist T > 0 and (θ, y) a weak solution of the system (1.8) (or
(1.1)) with θ ∈ L∞((0, T);C1,1([0, 1])∩Lip((0, T);H1

0(0, 1). Moreover any such solution θ is in fact

in C0([0, T];W2,p(0, 1)) ∩ C1([0, T];W1,p
0 (0, 1)), for all p < +∞. Furthermore the existence time of

a maximal solution is larger than min(T̃ , T ∗), with

T ∗ = max
β>0

(
ln

(
1 + β/C

)

2
[
C1 + (2 + sinh(1))

(
β + C

)]

)

,

C = max
{∥∥y0

∥
∥
L∞×W1,∞ ,

∥
∥yl

∥
∥
L∞×W1,∞ ,

∥
∥yr

∥
∥
L∞×W1,∞

}
,

C1 =
1

tanh(1)

(
‖vl‖L∞(0,T), ‖vr‖L∞(0,T)

)
.

(2.1)

In a second step, we will show a weak-strong uniqueness property.

Theorem 2.2. Let θ ∈ L∞((0, T);C1,1([0, 1]) ∩ Lip((0, T);H1
0(0, 1), and let y ∈ Lip([0, 1]) ×

Lip([0, 1]) be a weak solution of (1.8) (or (1.1)); then it is unique in the function space
[L∞((0, T);C1,1([0, 1]) × L∞(ΩT ))]

2.

Let Al > 2 sinh(1), Ar > Al cosh(1) + sinh(2), T > 0 and M a symmetric matrix, and
assume that ρ0, ρl, and ρr have compact supports in (0, 1)/Γl/Γr , respectively. Our feedback
law for (1.8) (or (1.1)) reads

y ∈ C0([0, 1]) × C0([0, 1]) 
−→

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

vl
(
y
)
= Al

∥∥y
∥∥
C0([0,1])×C0([0,1]),

vr
(
y
)
= Ar

∥∥y
∥∥
C0([0,1])×C0([0,1]),

ẏl(t) =Myl(t).

(2.2)

Theorem 2.3. For any y0 ∈ [C0([0, 1])]2 there exists (y, v) ∈ [C0(ΩT )]
2 × C2([0, 1]) a weak

solution of (1.1) and (2.2) satisfying

∀x ∈ [0, 1], y(0, x) = y0(x). (2.3)

Furthermore any maximal solution of (1.1), (2.2), and (2.3) is global, and if we let

c = min
{
Al − 2 sinh(1),

Ar −Al cosh(1) + sinh(2)
sinh(1)

}
, τ =

1
‖M‖2

ln

(
c
∥∥y

∥∥
C0([0,1])

‖M‖2

)

,

(2.4)
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then we have

∥
∥y

∥
∥
C0([0,1]) ≤

‖M‖2
c[1 + ‖M‖2(t − τ)]

. (2.5)

Remark 2.4. For ρ ≡ 0, the system (1.1) becomes the classical Camassa-Holm equation, and
the above theorems degenerate those of [33] with k = 0.

3. Proofs of the Main Theorems

3.1. Local Existence Theorem

This strategy is borrowed from [33]. We want to solve (1.6) (1.8) (or (1.1)). Equation (1.6)
is a linear elliptic equation, and with θ fixed (1.8) is a linear transport equation in y, with
boundary data.

Given θ ∈ L∞((0, T);C1,1([0, 1])) ∩ Lip((0, T);H1
0(0, 1)), we will define y =

(m
ρ
)
to be

the solution to (1.8), and once we havem in L∞(ΩT ), we introduce θ̃ solution of

(1 − ∂xx)θ̃ = m. (3.1)

Then F is defined as the operator θ̃ = F(θ)

Lemma 3.1. The function A defined by (1.5) satisfies

∀(t, x) ∈ ΩT , A(t, x) ∈ C0([0, T];C∞([0, 1])),

A(t, x) =
1

sinh(1)
(sinh(x)vr(t) + sinh(1 − x)vl(t)),

‖A(t, x)‖L∞((0,T);C1,1([0,1])) ≤
cosh(1)
sinh(1)

(
‖vl‖L∞(0,T) + ‖vr‖L∞(0,T)

)
.

(3.2)

Then for a function θ ∈ L∞((0, T);C1,1([0, 1]))∩Lip((0, T);H1
0(0, 1)), we consider ϕ the

flow of θ + A.

Lemma 3.2. The flow ϕ satisfies the following properties.

(1) ϕ is C1 with the following partial derivatives:

∂1ϕ(s, t, x) = (θ + A)
(
s, ϕ(s, t, x)

)
,

∂2ϕ(s, t, x) = −(θ + A) exp
(∫ s

t

∂x(θ + A)
(
r, ϕ(r, t, x)

)
dr

)
,

∂3ϕ(s, t, x) = exp
(∫ s

t

∂x(θ + A)
(
r, ϕ(r, t, x)

)
dr

)
.

(3.3)
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(2) For all j = 1, 2, 3,

∥
∥∂jϕ

∥
∥
C0 ≤

(
1 + ‖θ + A‖C0(ΩT )

)
eT‖θ+A‖C0(ΩT ) . (3.4)

For (t, x) ∈ ΩT , ϕ(·, t, x) is defined on a set [e(t, x), h(t, x)], here e(t, x) is basically the entrance time
in ΩT of the characteristic curve going through (t, x).

(3) If e(t, x) > 0, then ϕ(e(t, x), t, x) ∈ {0, 1}.

(4) If h(t, x) < T , then ϕ(h(t, x), t, x) ∈ {0, 1}.

For θ ∈ L∞((0, T);C1,1([0, 1])) ∩ Lip((0, T);H1
0(0, 1)), we define the solution to (1.8)

y ∈ L∞(ΩT ) ×W1,∞(ΩT ) by

for (t, x) ∈ I, y(t, x) =

⎛

⎜⎜
⎝

exp
∫ t

0
E1dr 0

0 exp
∫ t

0
E2dr

⎞

⎟⎟
⎠y0

(
ϕ(0, t, x)

)

+
∫ t

0

⎛

⎜⎜
⎝

exp
∫ t

s

E1dr 0

0 exp
∫ t

s

E2dr

⎞

⎟⎟
⎠

( −ρρx − ρx
−∂x(θ + A)

)

ds,

for (t, x) ∈ L, y(t, x) =

⎛

⎜⎜⎜
⎝

exp
∫ t

e(t,x)
E1dr 0

0 exp
∫ t

e(t,x)
E2dr

⎞

⎟⎟⎟
⎠
yl(e(t, x))

+
∫ t

e(t,x)

⎛

⎜⎜
⎝

exp
∫ t

s

E1dr 0

0 exp
∫ t

s

E2dr

⎞

⎟⎟
⎠

( −ρρx − ρx
−∂x(θ + A)

)

ds,

for (t, x) ∈ R, y(t, x) =

⎛

⎜⎜⎜
⎝

exp
∫ t

e(t,x)
E1dr 0

0 exp
∫ t

e(t,x)
E2dr

⎞

⎟⎟⎟
⎠
yr(e(t, x))

+
∫ t

e(t,x)

⎛

⎜⎜
⎝

exp
∫ t

s

E1dr 0

0 exp
∫ t

s

E2dr

⎞

⎟⎟
⎠

( −ρρx − ρx
−∂x(θ + A)

)

ds

(3.5)
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with

E1 = −2∂x(θ + A)
(
r, ϕ(r, t, x)

)
, E2 = −∂x(θ + A)

(
r, ϕ(r, t, x)

)
. (3.6)

And we have

(1) the function y is the unique weak solution of (1.8) in the sense of Definition 4.1;
thanks to Lemma 1.3. y is in L∞ ∩W1,∞.

Remark 3.3. y is the only weak solution of (1.8), and also y is in L∞ ∩W1,∞ which is crucial
for the stabilization problem because of the coupling between the two components of y.
However, rather thanks to the regularity on the boundary data ρ is indeed Lipschitz inside
the zones L, R, and I; it ensures that the transition between those zones should be continuous
under the kind of compatibility conditions between ρ0, ρl, and ρr ; for example, all three have
a compact support in (0, 1)/Γl/Γr .

(2) Since y ∈ L∞(ΩT ) × W1,∞(ΩT ), we immediately get y ∈ W1,∞(0, T ;H−1(0, 1)) ×
W2,∞(0, T ;H−1(0, 1)) and satisfies (1.8). Also we can get the estimates:

∥∥y(t, x)
∥∥
L∞(ΩT )×L∞(ΩT )

≤ C0 exp
[
2T

(
‖∂xθ‖L∞(ΩT ) + ‖∂xA‖L∞(ΩT )

)]
,

∥∥∂ty(t, x)
∥∥
L∞(0,T ;H−1)×L∞(0,T ;H−1) ≤ 3C0 exp

[
2T

(
‖∂xθ‖L∞(ΩT ) + ‖∂xA‖L∞(ΩT )

)]
,

×
(
‖θ‖L∞((0,T);Lip([0,1])) + ‖A‖L∞((0,T);Lip([0,1]))

)
,

(3.7)

where

C0 = max
{∥∥y0

∥∥
L∞×W1,∞ ,

∥∥yl
∥∥
L∞×W1,∞ ,

∥∥yr
∥∥
L∞×W1,∞

}

+ T
[(∥∥ρ

∥∥
L∞ + 1

)∥∥ρx
∥∥
L∞((0,T);Lip([0,1])) + ‖∂xθ‖L∞(ΩT ) + ‖∂xA‖L∞(ΩT )

]
.

(3.8)

(3) If (t, x) ∈ I ∪ L ∪ R and if (s, s′) ∈ [e(t, x), h(t, x)]2, one has the following property:

y
(
s, ϕ(s, t, x)

)
=

⎛

⎜⎜
⎝

exp
∫ t

0
E1dr 0

0 exp
∫ t

0
E2dr

⎞

⎟⎟
⎠y

(
s′, ϕ

(
s′, t, x

))
. (3.9)

From the elliptic equation we can get

Lemma 3.4. There exists a unique θ̃ ∈ L∞((0, T);H1
0(0, 1)) such that

(1 − ∂xx)θ̃ = m (3.10)
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holds inD′(0, 1) for all (t, x) ∈ ΩT . Furthermore θ̃ ∈ L∞((0, T);C1,1([0, 1]))∩Lip([0, T];H1
0(0, 1)),

sincem ∈ L∞(ΩT) ∩ Lip([0, T];H−1(0, 1)). Moreover we have the bounds:

∥
∥
∥θ̃

∥
∥
∥
L∞((0,T);C1,1([0,1]))

≤ [1 + sinh(1)]‖m‖L∞(ΩT ) ≤ [1 + sinh(1)]
∥
∥y

∥
∥
L∞(ΩT )×W1,∞(ΩT )

,

∥
∥
∥∂tθ̃

∥
∥
∥
L∞((0,T);H1

0 (0,1))
≤ ‖∂tm‖L∞((0,T);H−1) ≤

∥
∥∂ty

∥
∥
L∞((0,T);H−1)×W1,∞((0,T);H−1).

(3.11)

The proof can be found in [33] and omitted.
Thus, for θ ∈ L∞((0, T);C1,1(0, 1))∩Lip([0, T];H1

0(0, 1)), the operator F can be defined
as θ̃ = F(θ) ∈ L∞((0, T);C1,1(0, 1)) ∩ Lip([0, T];H1

0(0, 1)).
Let B0 and B1 be positive numbers, then we set

CB0,B1,T =
{
θ ∈ L∞

(
(0, T);C1,1(0, 1)

)
∩ Lip

(
[0, T];H1

0(0, 1)
)
| both ‖θ‖L∞((0,T);C1,1(0,1)) ≤ B0,

‖θ‖Lip([0,T];H−1(0,1)) ≤ B1

}
.

(3.12)

Obviously CB0,B1,T is convex. We will endow CB0,B1,T with the norm ‖θ‖L∞([0,T];Lip(0,1)).

Lemma 3.5. There exist positive numbers B0, B1 and T , such that F maps CB0,B1,T into itself.

Proof. The proceeding of proof is similar to that of [33, Lemma 3], but the constant C0 differs
slightly from that of [33, Lemma 3]. Let us first introduce the two following constants:

C0 = max
{∥∥y0

∥∥
L∞×W1,∞ ,

∥∥yl
∥∥
L∞×W1,∞ ,

∥∥yr
∥∥
L∞×W1,∞

}

+ T
[(∥∥ρ

∥∥
L∞ + 1

)∥∥ρx
∥∥
L∞((0,T);Lip([0,1])) + ‖∂xθ‖L∞(ΩT ) + ‖∂xA‖L∞(ΩT )

]
,

C1 =
1

tanh(1)

(
‖vl‖L∞(0,T), ‖vr‖L∞(0,T)

)
.

(3.13)

Estimates (3.7), and (3.11) on y and θ now read,

∥∥y(t, x)
∥∥
L∞(ΩT )×W1,∞(ΩT )

≤ C0 exp
[
2T

(
‖∂xθ‖L∞(ΩT ) + C1

)]
,

∥∥∂ty(t, x)
∥∥
L∞((0,T);H−1)×L∞((0,T);H−1) ≤ 3C0 exp

[
2T

(
‖∂xθ‖L∞(ΩT ) + C1

)]

×
(
‖θ‖L∞((0,T);Lip([0,1])) + C1

)
,

∥∥∥θ̃
∥∥∥
L∞((0,T);C1,1([0,1]))

≤ [1 + sinh(1)]
∥∥y(t, x)

∥∥
L∞(ΩT )×W1,∞(ΩT )

,

∥∥∥∂tθ̃
∥∥∥
L∞((0,T);H1

0 (0,1))
≤ ∥∥∂ty(t, x)

∥∥
L∞((0,T);H−1)×L∞((0,T);H−1).

(3.14)
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Combining those estimates we get for all θ ∈ CB0,B1,T :

∥
∥
∥θ̃

∥
∥
∥
L∞((0,T);C1,1([0,1]))

≤ C0[1 + sinh(1)] exp
[
2T

(
‖∂xθ‖L∞(ΩT ) + C1

)]

≤ C0[1 + sinh(1)] exp[2T(B0 + C1)],
∥
∥
∥∂tθ̃

∥
∥
∥
L∞((0,T);H1

0 (0,1))
≤ 3C0 exp

[
2T

(
‖∂xθ‖L∞(ΩT ) + C1

)](
‖θ‖L∞((0,T);Lip([0,1])) + C1

)

≤ 3C0 exp[2T(B0 + C1)](B0 + C1).

(3.15)

To obtain θ̃ ∈ CB0,B1,T , it is sufficient that

C0[1 + sinh(1)] exp[2T(B0 + C1)] ≤ B0,

B0 + 3C0 exp[2T(B0 + C1)](B0 + C1) ≤ B1.
(3.16)

Once we have chosen T and B0, it is easy to choose B1 to satisfy the second inequality.
For the first one we just choose B0 sufficiently large and then T close to 0. More precisely,

C = max
{∥∥y0

∥∥
L∞×W1,∞ ,

∥∥yl
∥∥
L∞×W1,∞ ,

∥∥yr
∥∥
L∞×W1,∞

}
,

B0 > C[1 + sinh(1)], T ≤ lnB0/(C[1 + sinh(1)])
2(B0 + C1)

,
(3.17)

we complete the proof by taking B0/(C[1 + sinh(1)]) = C + β, β > 0.

Lemma 3.6. CB0,B1,T is compact with respect to the norm ‖ · ‖L∞([0,T];Lip(0,1)).

The proof is very similar to that appeared in [33] and omitted.

Lemma 3.7. For y ∈ Hs ×Hs−1, s > 2, f(y) is bounded on bounded sets inHs ×Hs−1. Therefore,
f(y) is bounded on bounded sets in L∞ × L∞ by the embedding theorem.

The proof is very similar to that appeared in [33] and omitted.

Lemma 3.8. The operator F : CB0,B1,T → CB0,B1,T is continuous with respect to the norm
‖θ‖L∞([0,T];Lip(0,1)).

Proof. Take a sequence {θn} which tends to θ with respect to ‖ · ‖L∞([0,T];Lip(0,1)), set θ̃n = Fθn
and θ̃ = Fθ, denote by ϕn the flow of θn +A and ϕ the flow of θ+A, and we have that ϕn → ϕ
locally in C1 as n → ∞, thanks to Proposition A.4 in [33]. What we will need to do is to show
thatmn → m in L1(0, 1) as n → ∞ and ρn → ρ in L1(0, 1) as n → ∞.

Let t ∈ [0, T], having supposed that Pl and Pr have only a finite number of connected
components, we can assume, reducing t if necessary that vl and vr do not change sign on [0, t].
Since the characteristics of ϕn and ϕmay or may not cross before time t, we only consider the
case that ϕ(t, 0, 0) ≤ ϕn(t, 0, 0) ≤ ϕ(t, 0, 1) ≤ ϕn(t, 0, 1), without loss of generality. The other
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cases are proved in the same way. We first point out that since θn ∈ CB0,B1,T we have a bound
for {yn} in L∞(ΩT ). Now

∫1

0

∣
∣y(t, x) − yn(t, x)

∣
∣dx

=

(∫ϕ(t,0,0)

0
+
∫ϕn(t,0,0)

ϕ(t,0,0)
+
∫ϕ(t,0,1)

ϕn(t,0,0)
+
∫ϕn(t,0,1)

ϕ(t,0,1)
+
∫1

ϕn(t,0,1)

)
∣
∣y(t, x) − yn(t, x)

∣
∣dx

= I1 + I2 + I3 + I4 + I5.

(3.18)

Since ϕn(t, 0, 0) → ϕ(t, 0, 0) as n → ∞ and ϕn(t, 0, 1) → ϕ(t, 0, 1) as n → ∞ and thanks to
the uniform bound on ‖yn‖L∞ , we see that both I2 and I4 tend to 0 when n goes to infinity.

For I1 we have

I1 =
∫ϕ(t,0,0)

0

∣∣y(t, x) − yn(t, x)
∣∣dx

=
∫ϕ(t,0,0)

0

∣∣∣∣∣∣∣∣∣

⎛

⎜⎜⎜
⎝

exp
∫ t

e(t,x)
E1dr 0

0 exp
∫ t

e(t,x)
E2dr

⎞

⎟⎟⎟
⎠
yl(e(t, x))

+
∫ t

e(t,x)

⎛

⎜⎜
⎝

exp
∫ t

s

E1dr 0

0 exp
∫ t

s

E2dr

⎞

⎟⎟
⎠

( −ρρx − ρx
−∂x(θ + A)

)

ds

−

⎛

⎜⎜⎜
⎝

exp
∫ t

en(t,x)
E1ndr 0

0 exp
∫ t

en(t,x)
E2ndr

⎞

⎟⎟⎟
⎠
yl(en(t, x))

−
∫ t

en(t,x)

⎛

⎜⎜
⎝

exp
∫ t

s

E1ndr 0

0 exp
∫ t

s

E2ndr

⎞

⎟⎟
⎠

( −ρρx − ρx
−∂x(θn + A)

)

ds

∣∣∣∣∣∣∣∣

dx,

(3.19)

where

E1n = −2∂x(θn + A)
(
r, ϕn(r, t, x)

)
, E2 = −∂x(θn + A)

(
r, ϕn(r, t, x)

)
. (3.20)

Thanks to the boundedness on the ‖f‖L∞×L∞ (Lemma 3.7) and Proposition A.2 of [33], if
(t, x)∈P we have ϕn(t, 0, 0) → ϕ(t, 0, 0) as n → ∞. This implies that if yl was continuous,
since we have a uniform bound on ‖θn‖L∞((0,T);C1,1(0,1)) the dominated convergence theorem
would provide: I1 → 0. I3 → 0 and I5 → 0 which can be obtained by using the same
method. Therefore, for y0, yl and yr continuous we have ‖y(t, ·) − yn(t, ·)‖L1 → 0.
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From the inequality (56) in [33], we obtain

∥
∥y(t, ·)∥∥L1(0,1)×L1(0,1) ≤

[∥
∥y0

∥
∥
L1(0,1)×L1(0,1) +

∥
∥yl

∥
∥
L1(0,t)∩Γl×L1(0,t)∩Γl

+
∥
∥yr

∥
∥
L1(0,t)∩Γr×L1(0,t)∩Γr +

(∥
∥ρ

∥
∥
L1(0,1)×L1(0,1) + 1

)∥
∥ρx

∥
∥
L1(0,1)×L1(0,1)

+‖∂x(θ + A)‖L1(0,1)

]
‖∂x(θ + A)‖L∞(ΩT ) exp

(
3t‖∂x(θ + A)‖L∞(ΩT )

)
,

∥∥yn(t, ·)
∥∥
L1(0,1)×L1(0,1) ≤

[∥∥y0
∥∥
L1(0,1)×L1(0,1) +

∥∥yl
∥∥
L1(0,t)∩Γl×L1(0,t)∩Γl

+
∥
∥yr

∥
∥
L1(0,t)∩Γr×L1(0,t)∩Γr +

(∥
∥ρn

∥
∥
L1(0,1)×L1(0,1) + 1

)∥
∥ρn,x

∥
∥
L1(0,1)×L1(0,1)

+‖∂x(θn + A)‖L1(0,1)

]
‖∂x(θn + A)‖L∞(ΩT ) exp

(
3t‖∂x(θn + A)‖L∞(ΩT )

)
.

(3.21)

So the general case of convergence ‖y(t, ·) − yn(t, ·)‖L1 → 0 follows from the density of C0 in
L1 and the uniform bound on ‖θn‖L∞((0,T);Lip(0,1)).

Now only the restriction on t remains; we recall that until now we supposed that vl
and vr did not change sign on [0, t]. If vl and vr do not change sign on [0, t1] and then on
[t1, t], we have

∥∥y(t1, ·) − yn(t1, ·)
∥∥
L1 −→ 0. (3.22)

Let ỹn the solution of

∂tỹn + (θn + A)∂xỹn = bn(t, x)ỹn + fn(t, x),

ỹn(t1, ·) = yt1 , ỹn(·, 0)|Γl = yl, ỹn(·, 1)|Γr = yr.
(3.23)

We can conclude that as n → ∞,

∥∥y(t, ·) − yn(t, ·)
∥∥
L1(0,1)×L1(0,1)

≤ ∥∥y(t, ·) − ỹn(t, ·)
∥∥
L1(0,1)×L1(0,1) +

∥∥ỹn(t, ·) − yn(t, ·)
∥∥
L1(0,1)×L1(0,1)

≤ ∥∥y(t1, ·) − ỹn(t1, ·)
∥∥
L1(0,1)×L1(0,1) exp

(
3(t − t1)‖∂x(θn + A)‖L∞(ΩT )

)

+
∥∥y(t, ·) − ỹn(t, ·)

∥∥
L1(0,1)×L1(0,1)

≤ ∥∥y(t1, ·) − yn(t1, ·)
∥∥
L1(0,1)×L1(0,1) exp

(
3(t − t1)‖∂x(θn + A)‖L∞(ΩT )

)

+
∥∥y(t, ·) − ỹn(t, ·)

∥∥
L1(0,1)×L1(0,1) −→ 0.

(3.24)
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Thus the convergence in L1(0, 1) propagates on each interval where vl and vr do not
change sign; thanks to the hypothesis on Pr and Pl we have that for all t ∈ [0, T],
‖y(t, ·) − yn(t, ·)‖L1(0,1) → 0, as n → ∞. Combining this first convergence result with the
uniform bound and using the dominated convergence theorem in the time variable, we obtain
‖y − yn‖L1(ΩT ) → 0 which implies that

∥
∥
∥θ̃ − θ̃n

∥
∥
∥
L1(0,T ;W2,1(0,1))

−→ 0. (3.25)

From the compactness of CB0,B1,T , we get that θ̃n → θ̃ holds in CB0,B1,T .

All the above lemmas result in the application of Schauders fixed point theorem to F
and we get a solution

θ ∈ L∞
(
(0, T);C1,1(0, 1)

)
∩ Lip

(
[0, T];H1

0(0, 1)
)
. (3.26)

From the construction of F and from Proposition A.8 in [33] the additional regularity
properties of any solution θ,

θ ∈ C0
(
[0, T];W2,p(0, 1)

)
∩ C1

(
[0, T];W1,p

0 (0, 1)
)
, ∀p < +∞. (3.27)

3.2. Uniqueness

In this subsection, we will show that the solution to the system (1.6) and (1.8) is unique;
that to say, given (y, θ) and (ỹ, θ̃) be two solutions of (1.6) and (1.8) for the same initial and
boundary data, we will get y = ỹ and θ = θ̃.

Let Y = y − ỹ, Θ = θ − θ̃, B(t, x) = b(t, x) − b̃(t, x), F(t, x) = f(t, x) − f̃(t, x), then
Θ ∈ Lip([0, T];H1

0(0, 1)). And we have M = m − m̃ ∈ L∞(ΩT ) and Y ∈ L∞(ΩT) × L∞(ΩT ) is
the solution to

∂tY + (θ + A)∂xY = bY + B(t, x)ỹ −Θ∂xỹ + F(t, x),

Y (0, ·) = 0, Y (·, 0)|Γl = 0, Y (·, 1)|Γr = 0.
(3.28)

Using the lemma again with b(t, x) =
( −2∂x(θ+A) 0

0 −∂x(θ+A)

)
and f = B(t, x)ỹ − U∂xỹ + F(t, x),

we get

for (t, x) ∈ P, Y (t, x) = 0,

for (t, x) ∈ I, Y (t, x) =
∫ t

0
exp

(∫ t

s

b
(
r, ϕ(r, t, x)

)
dr

)

f
(
s, ϕ(s, t, x)

)
ds,
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for (t, x) ∈ L, Y (t, x) =
∫ t

e(t,x)
exp

(∫ t

s

b
(
r, ϕ(r, t, x)

)
dr

)

f
(
s, ϕ(s, t, x)

)
ds,

for (t, x) ∈ R, Y (t, x) =
∫ t

e(t,x)
exp

(∫ t

s

b
(
r, ϕ(r, t, x)

)
dr

)

f
(
s, ϕ(s, t, x)

)
ds.

(3.29)

Since ‖U(t, ·)‖L∞(0,1) ≤ C′‖Y (t, ·)‖L∞×L∞ for some positive constant C′, and y, ∂xy
bounded, we see that for some C′′ > 0,

∥
∥
∥f(t, ·)

∥
∥
∥
L∞×L∞

≤ C′′‖Y (t, ·)‖L∞×L∞ . (3.30)

And since b(t, x) is bounded, we get that

‖Y (t, ·)‖L∞×L∞ ≤ C′′
∫ s

0
‖Y (s, ·)‖L∞×L∞ds. (3.31)

Then we complete the proof of the uniqueness by using Gronwall’s lemma.

4. Stabilization

4.1. Preliminary Results

The equilibrium state that we want to stabilize is y = 0, θ = A = 0. A natural idea is
using Lyapunov indirection method to investigate whether the linearized system around the
equilibrium state is stabilizable or not. Its stabilization would provide a local stabilization
result on the nonlinear system. Unfortunately, the linearized system is not stabilizable, for
the state of the linearized system around the equilibrium state is constant. We see that the
sign of θ + A controls the geometry of the characteristics, and the sign of ∂x(θ + A) controls
the ingredient information of y along the characteristics. We will use the return method that
Coron introduced in [34]. We would like our feedback law, vl(y) = Al‖y‖C0([0,1])×C0([0,1]),
vr(y) = Ar‖y‖C0([0,1])×C0([0,1]), to provide θ + A ≥ 0 and ∂x(θ + A) ≥ 0. However, there is
a difficulty in the stabilization problem. It needs not to be true that the transition between
those zones is continuous rather thanks to the regularity on the boundary data ρ is indeed
Lipschitz inside the zones L, R, and I. To achieve this target, we have to prescribe yl, and we
just need to make a continuous transition at (t, x) = (0, 0) and let yl asymptotically converge
in time; we assume that compatibility conditions hold; precisely, ρ0, ρl and ρr have compact
supports in (0, 1)/Γl/Γr , respectively. To achieve this target, we have to prescribe yl, and we
just need to make a continuous transition at (t, x) = (0, 0) and let yl asymptotically converge
in time. This is guaranteed by

∂tyl =Myl, (4.1)

whereM, symmetric matrix, is the unique matrix solution to the matrix function:

PM +MTP = −Q, (4.2)
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for some symmetric positive-definite matrices, P and Q. Indeed, let V (t, yl) = yTl Pyl be the
Lyapunov candidate, and that yl asymptotically converges in time is equivalent to that the
time derivative of the V , V̇ = yT

l
(PM +MTP)yl is strictly negative. A fixed-point strategy

will be used again to prove the existence of a solution to the closed-loop system. We begin by
defining the domain of the operator.

Definition 4.1. Let X be the space of (g,N) ∈ C0([0, T]; [0, 1])2 × C0([0, T]) satisfying

(1) g(0, x) = y0(x), g(t, 0) = y0(0)eMt,

(2) ‖g(t, ·)‖C0([0,1]) ≤N(t),

(3) N(t) is nonincreasing andN(0) ≤ ‖y0‖C0([0,1])×C0([0,1]).

Lemma 4.2. The domain X is nonempty, convex, bounded, and closed with respect to the uniform
topology.

Taking M =
(
λ,0
0,λ

)
, λ < 0, satisfying (4.1) and (4.2), and (y0(x)eMt, ‖y0‖C0([0,1])2e

Mt) ∈
X, so X is nonempty.

Now for (y,N(t)) ∈ X we define θ̆ and Ă as the solutions of

m(t, x) = (1 − ∂xx)θ̆(t, x),

ŭ(t, 0) = θ̆(t, 1) = 0, ∀(t, x) ∈ ΩT ,

(1 − ∂xx)Ă(t, x) = 0,

Ă(t, 0) = AlN(t), Ă(t, 1) = ArN(t), ∀(t, x) ∈ ΩT .

(4.3)

That is,

∀(t, x) ∈ ΩT , ŭ(t, x) = −
∫x

0
sinh(x − ξ)m(t, ξ)dξ,

Ă(t, x) =
N(t)

sinh(1)
[sinh(x)Ar + sinh(1 − x)Al].

(4.4)

Thus, we have the estimates:

∣∣∣θ̆(t, x)
∣∣∣ ≤ 2 sinh(1)

∥∥y
∥∥
C0([0,1])×C0([0,1]),

∣∣∣∂xθ̆(t, x)
∣∣∣ ≤ 2 cosh(1)

∥∥y
∥∥
C0([0,1])×C0([0,1]),

∣∣∣∂xxθ̆(t, x)
∣∣∣ ≤ [1 + 2 sinh(1)]

∥∥y
∥∥
C0([0,1])×C0([0,1]),

∣∣∂xĂ(t, x)
∣∣ ≥ Ar − 2 cosh(1)

sinh(1)
N(t),

∣∣Ă(t, x)
∣∣ ≥ AlN(t).

(4.5)
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And in turn,

(
θ̆ + Ă

)
(t, x) ≥ [Al − 2 sinh(1)]

∥
∥y

∥
∥
C0([0,1])×C0([0,1]), (4.6)

∂x
(
θ̆ + Ă

)
(t, x) ≥ Ar − 2 cosh(1)Al − sinh(2)

sinh(1)

∥
∥y

∥
∥
C0([0,1])×C0([0,1]). (4.7)

Now, if ϕ is the flow of θ̆ + Ă, e is C1 and since ŭ + Ă ≥ 0, ϕ(·, t, x) is nondecreasing. Thus we
can define the entrance time and then the operator S as follows.

Let e(t, x) = min{s ∈ [0, T] | ϕ(s, t, x) = 0}, for (t, x) ∈ [0, T] × [0, 1], S(y,N) = (ỹ, Ñ)
with

(1) if x ≥ ϕ(t, 0, 0),

ỹ(t, x) =

⎛

⎜⎜
⎝

exp
∫ t

0
E1dr 0

0 exp
∫ t

0
E2dr

⎞

⎟⎟
⎠y0

(
ϕ(0, t, x)

)

+
∫ t

0

⎛

⎜⎜
⎝

exp
∫ t

s

E1dr 0

0 exp
∫ t

s

E2dr

⎞

⎟⎟
⎠

( −ρρx − ρx
−∂x(θ + A)

)

ds,

(4.8)

(2) if x ≤ ϕ(t, 0, 0),

ỹ(t, x) =

⎛

⎜⎜
⎝

exp
∫ t

0
E1dr 0

0 exp
∫ t

0
E2dr

⎞

⎟⎟
⎠eMe(t,x)y0(0)

+
∫ t

e(t,x)

⎛

⎜⎜
⎝

exp
∫ t

s

E1dr 0

0 exp
∫ t

s

E2dr

⎞

⎟⎟
⎠

( −ρρx − ρx
−∂x(θ + A)

)

ds,

(4.9)

(3) N(t) = ‖y(t, ·)‖C0([0,1])×C0([0,1]).

From Lemma 1.3 we know that ỹ is the weak solution of

∂tỹ + (θ + A)∂xỹ = b(t, x)ỹ + f(t, x),

ỹ(0, ·) = 0, ỹ(t, 0) = eMty0(0).
(4.10)
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Lemma 4.3. (1) The operator S maps X to X.

(2) The family S(X) is uniformly bounded and equicontinuous.

(3) S is continuous with respect to the uniform topology.

The proof is very similar to [33] except for here the state y is a two-component vector
and the proof is omitted.

We can apply Schauder’s fixed-point theorem to S and get (y,N) fixed point of S.

4.2. Stabilization and Global Existence

From (4.6) and (4.7), for all (t, x) ∈ ΩT ,

(
θ̆ + Ă

)
(t, x) ≥ c∥∥y(r, ·)∥∥C0([0,1])×C0([0,1]),

∂x
(
θ̆ + Ă

)
(t, x) ≥ c∥∥y(r, ·)∥∥C0([0,1])×C0([0,1]),

(4.11)

y is the solution of the transport equation (1.8) and it satisfies

y(t, x) =

⎛

⎜⎜
⎝

exp
∫ t

s

E1dr ′ 0

0 exp
∫ t

s

E2dr

⎞

⎟⎟
⎠y

(
s, ϕ(s, t, x)

)

+
∫ t

s

⎛

⎜⎜
⎝

exp
∫ t

r

E1dr 0

0 exp
∫ t

r

E2dr ′

⎞

⎟⎟
⎠f(r, x)dr.

(4.12)

We get for t ≥ s

∣∣y(t, x)
∣∣ ≤ exp

(

−
∫ t

s

c
∥∥y(r, ·)∥∥C0([0,1])×C0([0,1])dr

)

y
∣∣s, ϕ(s, t, x)

∣∣. (4.13)

This implies that |y(t, x)| =
√
|m(t, x)|2 + |ρ(t, x)|2 decreases along the characteristics

(strictly for the times where y(t, ·)/= 0). But we have also imposed y(t, 0) = y(s, 0)eM(t−s);
therefore |y(t, x)| also decreases along x = 0. This already shows, thanks to the existence
theorem, that a maximal solution of the closed loop system is global. To get a more precise
statement, we consider all the characteristics between time t and s, and we obtain

∥∥y(t, ·)∥∥C0([0,1])×C0([0,1]) ≤ max
r∈[s,t]

{

e‖M‖2(s−r) exp

(

−
∫ t

s

c
∥∥y(r, ·)∥∥C0([0,1])×C0([0,1])dr

)}

× ∥∥y(t, ·)∥∥C0([0,1])×C0([0,1]).

(4.14)
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Now we define

g(r) = e‖M‖2(s−r) exp

(

−
∫ t

s

c
∥
∥y(r, ·)∥∥C0([0,1])×C0([0,1])dr

)

. (4.15)

Then

g ′(r) =
[
c
∥
∥y(t, ·)∥∥C0([0,1])×C0([0,1]) − ‖M‖2

]
g(r), (4.16)

and we know that as long as the quantity ‖y(t, ·)‖C0([0,1])×C0([0,1]) is not equal to zero, it strictly
decreases. So if ‖y0‖C0([0,1])×C0([0,1]) > ‖M‖2/c, for t small enough ‖y(t, ·)‖C0([0,1])×C0([0,1]) ≥
‖M‖2/c, and we have

∥∥y(t, ·)∥∥C0([0,1])×C0([0,1]) ≤ e−‖M‖2t∥∥y0
∥∥
C0([0,1])×C0([0,1]), (4.17)

which implies ‖y(τ, ·)‖C0([0,1])×C0([0,1]) ≤ ‖M‖2/c. This provides for τ ≤ s ≤ t, the inequality

∥∥y(t, ·)∥∥C0([0,1])×C0([0,1]) ≤ e−
∫ t
s c‖y(r,·)‖C0([0,1])×C0([0,1])dr

∥∥y(s, ·)∥∥C0([0,1])×C0([0,1]). (4.18)

And we conclude with a classical comparison principle for ODES.
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