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We study the existence of oscillatory periodic solutions for two nonautonomous differential-
difference equations which arise in a variety of applications with the following forms: ẋ(t) =
−f(t, x(t − r)) and ẋ(t) = −f(t, x(t − s)) − f(t, x(t − 2s)), where f ∈ C(� ×�,�) is odd with respect
to x, and r, s > 0 are two given constants. By using a symplectic transformation constructed by
Cheng (2010) and a result in Hamiltonian systems, the existence of oscillatory periodic solutions
of the above-mentioned equations is established.

1. Introduction and Statement of Main Results

Furumochi [1] studied the following equation:

ẋ(t) = a − sin(x(t − r)), (1.1)

with t ≥ 0, a ≥ 0, r > 0, which models phase-locked loop control of high-frequency generators
and is widely applied in communication systems. Obviously, (1.1) is a special case of the
following differential-difference equations:

ẋ(t) = −αf(x(t − r)), (1.2)

where α is a real parameter. In fact, a lot of differential-difference equations occurring widely
in applications and describing many interesting types of phenomena can also be written in
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the form of (1.2) by making an appropriate change of variables. For example, the following
differential-difference equation:

ẋ(t) = −αx(t − 1)(1 + x(t)) (1.3)

arises in several applications and has been studied by many researchers. Equation (1.3) was
first considered by Cunningham [2] as a nonlinear growth model denoting a mathematical
description of a fluctuating population. Subsequently, (1.3) was proposed by Wright [3] as
occurring in the application of probability methods to the theory of asymptotic prime number
density. Jones [4] states that (1.3)may also describe the operation of a control systemworking
with potentially explosive chemical reactions, and quite similar equations arise in economic
studies of business cycles. Moreover, (1.3) and its similar ones were studied in [5] on ecology.

For (1.3), we make the following change of variables:

y = ln(1 + x). (1.4)

Then, (1.3) can be changed to the form of (1.2)

ẏ(t) = −f(y(t − 1)
)
, (1.5)

where f(y) = α(ey − 1).
Although (1.2) looks very simple on surface, Saupe’s results [6] of a careful numerical

study show that (1.2) displays very complex dynamical behaviour. Moreover, little of them
has been proved to the best of the author’s knowledge.

Due to a variety of applications, (1.2) attracts many authors to study it. In 1970s and
1980s of the last century, there has been a great deal of research on problems of the existence of
periodic solutions [1, 4, 7–10], slowly oscillating solutions [11], stability of solutions [12–14],
homoclinic solutions [15], and bifurcations of solutions [6, 16, 17] to (1.2).

Since, generally, the main tool used to conclude the existence of periodic solutions
is various fixed-point theorems, here we want to mention Kaplan and Yorke’s work on the
existence of oscillatory periodic solutions of (1.5) in [7]. In [7], they considered the following
equations:

ẋ(t) = −f(x(t − 1)),

ẋ(t) = −f(x(t − 1)) − f(x(t − 2)),
(1.6)

where f is continuous, xf(x) > 0 for x /= 0, and f satisfies some asymptotically linear
conditions at 0 and∞. The authors introduced a new technique for establishing the existence
of oscillatory periodic solutions of (1.6). They reduced the search for periodic solutions of
(1.6) to the problem of finding periodic solutions for a related systems of ordinary differential
equations. We will give more details about the reduction method in Section 2.

In 1990s of the last century and at the beginning of this century, some authors [18–
21] applied Kaplan and Yorke’s original ideas in [7] to study the existence and multiplicity
of periodic solutions of (1.2) with more than two delays. See also [22, 23] for some other
methods.
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The previous work mainly focuses on the autonomous differential-difference equation
(1.2). However, some papers [13, 24] contain some interesting nonautonomous differential
difference equations arising in economics and population biology where the delay r of (1.2)
depends on time t instead of a positive constant. Motivated by the lack of more results on
periodic solutions for nonautonomous differential-difference equations, in the present paper,
we study the following equations:

ẋ(t) = −f(t, x(t − r)), (1.7)

ẋ(t) = −f(t, x(t − s)) − f(t, x(t − 2s)), (1.8)

where f(t, x) ∈ C(� × �,�) is odd with respect to x and r = π/2, s = π/3. Here, we borrow
the terminology “oscillatory periodic solution” for (1.7) and (1.8) since f(t, x) is odd with
respect to x.

Now, we state our main results as follows.

Theorem 1.1. Suppose that f(t, x) ∈ C(�×�,�) is odd with respect to x and r-periodic with respect
to t. Suppose that

lim
x→ 0

f(t, x)
x

= ω0(t), lim
x→∞

f(t, x)
x

= ω∞(t) (1.9)

exist. Write α0 = (1/r)
∫ r
0 ω0(t)dt and α∞ = (1/r)

∫ r
0 ω∞(t)dt. Assume that

(H1) α0 /= ± k, α∞ /= ± k, for all k ∈ �+,

(H2) there exists at least an integer k0 with k0 ∈ �+ such that

min{α0, α∞} < ±k0 < max{α0, α∞}, (1.10)

then (1.7) has at least one nontrivial oscillatory periodic solution x satisfying x(t) = −x(t − π).

Theorem 1.2. Suppose that f(t, x) ∈ C(�×�,�) is odd with respect to x and s-periodic with respect
to t. Let ω0(t) and ω∞(t) be the two functions defined in Theorem 1.1. Write β0 = (1/s)

∫s
0 ω0(t)dt

and β∞ = (1/s)
∫s
0 ω∞(t)dt. Assume that

(H3) β0, 3β0 /= ± k, β∞, 3β∞ /= ± k, for all k ∈ �+,

(H4) there exists at least an integer k0 with k0 ∈ �+ such that

min
{
β0, β∞

}
< ±k0 < max

{
β0, β∞

}
(1.11)

or

min
{
β0, β∞

}
< ±k0

3
< max

{
β0, β∞

}
, (1.12)

then (1.8) has at least one nontrivial oscillatory periodic solution x satisfying x(t) = −x(t − π).
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Remark 1.3. Theorems 1.1 and 1.2 are concerned with the existence of periodic solutions
for nonautonomous differential-difference equations (1.7) and (1.8). Therefore, our results
generalize some results obtained in the references. We will use a symplectic transformation
constructed in [25] and a theorem of [26] to prove our main results.

2. Proof of the Main Results

Consider the following nonautonomous Hamiltonian system:

ż(t) = J∇zH(t, z), (2.1)

where J =
(

0 −IN
IN 0

)
is the standard symplectic matrix, IN is the identity matrix in �

N ,

∇zH(t, z) denotes the gradient of H(t, z) with respect to z, and H ∈ C1(� × �2N ,�) is the
Hamiltonian function. Suppose that there exist two constant symmetric matrices h0 and h∞
such that

∇zH(t, z) − h0z = o(|z|), as |z| −→ 0,

∇zH(t, z) − h∞z = o(|z|), as |z| −→ ∞.
(2.2)

We call the Hamiltonian system (2.1) asymptotically linear both at 0 and ∞ with constant
coefficients h0 and h∞ because of (2.2).

Now, we show that the reduction method in [7] can be used to study oscillatory
periodic solutions of (1.7) and (1.8). More precisely, let x(t) be any solution of (1.7) satisfying
x(t) = −x(t − 2r). Let x1(t) = x(t),x2(t) = x(t − r), then X(t) = (x1(t), x2(t))� satisfies

d

dt
X(t) = A2Φ1(t, X(t)), where A2 =

(
0 −1
1 0

)

, (2.3)

and Φ1(t, X) = (f(t, x1), f(t, x2))
�. What is more, if X(t) is a solution of (2.3) with the follow-

ing symmetric structure

x1(t) = −x2(t − r), x2(t) = x1(t − r), (2.4)

then x(t) = x1(t) gives a solution to (1.7) with the property x(t) = −x(t − 2r). Thus, solving
(1.7) within the class of the solutions with the symmetry x(t) = −x(t − 2r) is equivalent to
finding solutions of (2.3) with the symmetric structure (2.4).

SinceA2 is indeed the standard symplectic matrix in the plane �2 , the system (2.3) can
be written as the following Hamiltonian system:

ẏ(t) = A2∇yH
∗(t, y

)
, (2.5)

where H∗(t, y) =
∫y1

0 f(t, x)dx +
∫y2

0 f(t, x)dx for each y = (y1, y2)
� ∈ �2 .
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From the assumptions of Theorem 1.1, we have

f(t, x) = ω0(t)x + o(|x|) as |x| −→ 0,

f(t, x) = ω∞(t)x + o(|x|) as |x| −→ ∞.
(2.6)

Hence, the gradient of the Hamiltonian function H∗(t, y) satisfies

∇yH
∗(t, y

)
= ω0(t)y + o

(∣∣y
∣
∣) as

∣
∣y
∣
∣ −→ 0,

∇yH
∗(t, y

)
= ω∞(t)y + o

(∣∣y
∣∣) as

∣∣y
∣∣ −→ ∞.

(2.7)

By (2.7), according to [25], there is a symplectic transformation y = Ψ1(t, z) under
which the Hamiltonian system (2.5) can be transformed to the following Hamiltonian system:

ż(t) = A2∇zH̃(t, z), (2.8)

satisfying

∇zH̃(t, z) = α0I2z + o(|z|) as |z| −→ 0,

∇zH̃(t, z) = α∞I2z + o(|z|) as |z| −→ ∞,
(2.9)

where α0 and α∞ are two constants defined in Theorem 1.1.
By (2.9), we have the following.

Lemma 2.1. The Hamiltonian system (2.8) is asymptotically linear both at 0 and ∞ with constant
coefficients α0I2 and α∞I2.

Let x(t) be any solution of (1.8) satisfying x(t) = −x(t − 3s). Let x1(t) = x(t), x2(t) =
x(t − s), and x3(t) = x(t − 2s), then Y(t) = (x1(t), x2(t), x3(t))� satisfies

d

dt
Y(t) = A3Φ2(t, Y(t)), where A3 =

⎛

⎜⎜
⎝

0 −1 −1
1 0 −1
1 1 0

⎞

⎟⎟
⎠, (2.10)

and Φ2(t, Y) = (f(t, x1), f(t, x2), f(t, x3))�.
Following the ideas in [18], (2.10) can be reduced to a two-dimensional Hamiltonian

system

ẏ(t) = A2∇yH
∗∗(t, y

)
, (2.11)

where H∗∗(t, y) =
∫y1

0 f(t, x)dx +
∫y2

0 f(t, x)dx +
∫y2−y1

0 f(t, x)dx for each y = (y1, y2)
� ∈ �2 .
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From the assumptions of Theorem 1.1, (2.6), the gradient of the Hamiltonian function
H∗∗(t, y) satisfies

∇yH
∗∗(t, y

)
= ω0(t)My + o

(∣∣y
∣∣) as

∣∣y
∣∣ −→ 0,

∇yH
∗∗(t, y

)
= ω∞(t)My + o

(∣∣y
∣
∣) as

∣
∣y
∣
∣ −→ ∞,

(2.12)

where M =
( 2 −1
−1 2

)
is a symmetric positive definite matrix.

It follows from (2.12) and [25] that there exists a symplectic transformation y = Ψ2(t, z)
under which the Hamiltonian system (2.11) can be changed to the following Hamiltonian
system:

ż(t) = A2∇zĤ(t, z), (2.13)

satisfying

∇zĤ(t, z) = β0Mz + o(|z|) as |z| −→ 0,

∇zĤ(t, z) = β∞Mz + o(|z|) as |z| −→ ∞,
(2.14)

where β0 and β∞ are two constants defined in Theorem 1.2.
Then, (2.14) yields the following.

Lemma 2.2. The Hamiltonian system (2.13) is asymptotically linear both at 0 and ∞ with constant
coefficients β0M and β∞M.

Remark 2.3. In order to find periodic solutions of (1.7) and (1.8), we only need to seek periodic
solutions of the Hamiltonian systems (2.8) and (2.13) with the symmetric structure (2.4),
respectively.

In the rest of this paper, we will work in the Hilbert space E = W1/2,2(S1,�2), which
consists of all z(t) in L2(S1,�2)whose Fourier series

z(t) = a0 +
+∞∑

k=1

(ak cos kt + bk sinkt) (2.15)

satisfies

|a0|2 + 1
2

+∞∑

k=1

k
(
|ak|2 + |bk|2

)
< +∞. (2.16)

The inner product on E is defined by

〈z1, z2〉 =
(
a
(1)
0 , a

(2)
0

)
+
1
2

∞∑

k=1

k
[(

a
(1)
k
, a

(2)
k

)
+
(
b
(1)
k
, b

(2)
k

)]
, (2.17)
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where zi = a
(i)
0 +
∑+∞

k=1(a
(i)
k
cos kt+b(i)

k
sin kt) (i = 1, 2), the norm ‖z‖2 = 〈z, z〉, and (·, ·) denotes

the inner product in �2 .
In order to obtain solutions of (2.8) with the symmetric structure (2.4), we define a

matrix T2 with the following form:

T2 =

(
0 −1
1 0

)

. (2.18)

Then, by T2, for any z(t) ∈ E, define an action δ1 on z by

δ1z(t) = T2z(t − r). (2.19)

Then by a direct computation, we have that δ2
1z(t) = −z(t − 2r) = −z(t −π), δ4

1z(t) = z(t), and
G = {δ1, δ2

1, δ
3
1, δ

4
1} is a compact group action over E. If δ1z(t) = z(t) holds, then through a

straightforward check, we have that z(t) has the symmetric structure (2.4).

Lemma 2.4. Write SE = {z ∈ E : δ1z(t) = z(t)}, then SE is a subspace of E with the following form:

SE =

{

z(t) =
∞∑

k=1

(a2k−1 cos(2k − 1)t + b2k−1 sin(2k − 1)t) :

a2k−1,1 = (−1)k+1b2k−1,2, b2k−1,1 = (−1)ka2k−1,2

}

,

(2.20)

where a2k−1 = (a2k−1,1, a2k−1,2)� and b2k−1 = (b2k−1,1, b2k−1,2)�.

Proof. Write z(t) = (z1(t), z2(t))�, where z1(t) = a0,1 +
∑+∞

k=1(ak,1 cos kt + bk,1 sin kt), z2(t) =
a0,2 +

∑+∞
k=1(ak,2 cos kt + bk,2 sinkt). By δ1z = z and the definition of the action δ1, we have

(z1(t), z2(t))� =
(
−z2
(
t − π

2

)
, z1
(
t − π

2

))�
, (2.21)

which yields

a0,1 +
+∞∑

k=1

(ak,1 cos kt + bk,1 sin kt)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−a0,2 −
+∞∑

n=1

(−1)n[a2n,2 cos 2nt + b2n,2 sin 2nt], for k = 2n is even,

−a0,2 −
+∞∑

n=1

(−1)n−1[a2n−1,2 sin(2n − 1)t − b2n−1,2 cos(2n − 1)t], for k = 2n − 1 is odd.

(2.22)



8 Abstract and Applied Analysis

Then, we have

a0,1 = −a0,2, a2n,1 = (−1)n+1a2n,2, b2n,1 = (−1)n+1b2n,2,

a2n−1,1 = (−1)n+1b2n−1,2, b2n−1,1 = (−1)na2n−1,2.
(2.23)

Similarly, by z2(t) = z1(t − (π/2)), one has

a0,2 = a0,1, a2n,2 = (−1)na2n,1, b2n,2 = (−1)nb2n,1,

a2n−1,2 = (−1)nb2n−1,1, b2n−1,2 = (−1)n−1a2n−1,1.
(2.24)

Therefore, a0,2 = a0,1 = 0, a2n,1 = (−1)n+1a2n,2 = (−1)n+1(−1)na2n,1, that is, a2n,1 = 0. Similarly,
a2n,2 = b2n,1 = b2n,2 = 0. Thus, for z(t) ∈ SE,

z(t) =
∞∑

k=1

[a2k−1 cos(2k − 1)t + b2k−1 sin(2k − 1)t], (2.25)

where a2k−1,1 = (−1)k+1b2k−1,2, b2k−1,1 = (−1)ka2k−1,2.
Moreover, for any z1(t), z2(t) ∈ SE,

δ1(z1 + z2) = T2(z1(t − r) + z2(t − r))

= T2(z1(t − r)) + T2(z2(t − r))

= δ1z1 + δ1z2.

(2.26)

And for any c ∈ �, δ1(cz(t)) = T2cz(t − r) = cT2z(t − r) = cδ1z(t). Thus, SE is a subspace of E.
This completes the proof of Lemma 2.4.

For the Hamiltonian system (2.13), we define another action matrix T∗
2 with the

following form:

T∗
2 =

(
1 −1
1 0

)

. (2.27)

Then, by T∗
2 , for any z(t) ∈ E, define an action δ2 on z by

δ2z(t) = T∗
2z(t − s). (2.28)

Then, by a direct computation, we have that δ3
2z(t) = −z(t − 3s) = −z(t − π), δ6

2z(t) = z(t)
and G = {δ2, δ2

2, δ
3
2, δ

4
2, δ

5
2, δ

6
2} is a compact group action over E. If δ2z(t) = z(t) holds, then

through a direct check, we have that z(t) has the symmetric structure (2.4).
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Remark 2.5. By δ3
2z(t) = −z(t−3s) = −z(t−π) and the definition of δ2, the set {z ∈ E : δ2z(t) =

z(t)} has the same structure (2.20), where the relation between the Fourier coefficients of the
first component z1 and the second component z2 is slightly different with the elements in
{z ∈ E : δ1z(t) = z(t)}. We denote it also by SE which is a subspace of E.

Denote by M−(h), M+(h), and M0(h) the number of the negative, the positive, and
the zero eigenvalues of a symmetric matrix h, respectively. For a constant symmetric matrix
h, we define our index as

i−(h) =
∞∑

k=1

(
M−(Tk(h) − 2)

)
,

i0(h) =
∞∑

k=1

M0(Tk(h)),

(2.29)

where

Tk(h) =

(−h −kJ
kJ −h

)

. (2.30)

Observe that for k large enough, M−(Tk(h)) = 2 andM0(Tk(h)) = 0. In fact, write

Tk(h) =

(−h −kJ
kJ −h

)

= k

(
0 J�

J 0

)

−
(
h 0

0 h

)

. (2.31)

Notice that −J = J�. If k > 0 is sufficiently large, then M− = M+ = 2, which are
the indices of the first matrix in (2.31). Furthermore, if k decreases, these indices can change
only at those values of k, for which the matrix Tk(h) is singular, that is, M0(Tk(h))/= 0. This
happens exactly for those values of k ∈ � for which ik is a pure imaginary eigenvalue of Jh.
Indeed assume (ξ1, ξ2) ∈ �2 ×�2 is an eigenvector of Tk(h)with eigenvalue 0, then by J� = −J ,
one has hξ1 + kJξ2 = 0 and hξ2 − kJξ1 = 0. Thus, h(ξ1 + iξ2) = kJ(iξ1 − ξ2) = ikJ(ξ1 + iξ2);
therefore, Jh(ξ1 + iξ2) = −ik(ξ1 + iξ2). Therefore, ±ik ∈ σ(Jh), as claimed. Hence, i−(h) and
i0(h) are well defined.

The following theorem of [26] on the existence of periodic solutions for the
Hamiltonian system (2.1) will be used in our discussion.

Theorem A. Let H ∈ C1(� × �2N ,�) be 2π-periodic in t and satisfy (2.2). If i0(h0) = i0(h∞) = 0
and i−(h0)/= i−(h∞), then the Hamiltonian system (2.1) has at least one nontrivial periodic solution.

Now, we claim the following.

Lemma 2.6. If z is a solution of the Hamiltonian system (2.8) ((2.13)) in SE, then y = Ψ1(t, z) (y =
Ψ2(t, z)) is the solution of the Hamiltonian system (2.5) ((2.11)) with the symmetric structure (2.4),
respectively.
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Proof. By Lemma 2.4, any z ∈ SE has the structure (2.4). We only need to show δ1y = y
or δ2y = y, that is, T2Ψ1(t, z) = Ψ1(t, T2z) or T∗

2Ψ2(t, z) = Ψ2(t, T∗
2z), which can be

verified directly by the constructions of the symplectic transformations Ψ1(t, z) and Ψ2(t, z),
respectively. Please see [25] for details.

We denote the matrix αI2 by α for convenience. We prove the following lemma.

Lemma 2.7. (1) Suppose that (H1) and (H3) hold, then i0(α0) = i0(α∞) = i0(β0M) = i0(β∞M) = 0.
(2) Suppose that (H1) and (H2) hold, then i−(α0)/= i−(α∞).
(3) Suppose that (H3) and (H4) hold, then i−(β0M)/= i−(β∞M).

Proof. For any α, β ∈ �, let σ(Tk(α)) and σ(Tk(βM)) denote the spectra of Tk(α) and Tk(βM),
respectively. Denote by λ and γ the elements of σ(Tk(α)) and σ(Tk(βM)), respectively, then

det(λI4 − Tk(α)) = det
(
(λ + α)2I2 − k2I2

)

= det((λ + α)I2 − kI2)det((λ + α)I2 + kI2),

det
(
γI4 − Tk

(
βM
))

= det
((

γI2 + βM
)2 − k2I2

)

= det
((
γI2 + βM

) − kI2
)
det
((
γI2 + βM

)
+ kI2

)

= det
((

γ + 2β − k
)2 − β2

)
det
((

γ + 2β + k
)2 − β2

)
.

(2.32)

The above computation of determinant shows that

σ(Tk(α)) = {λ = ±k − α : k ∈ �+}, (2.33)

σ
(
Tk
(
βM
))

=
{
γ = ±k − β,±k − 3β : k ∈ �+}. (2.34)

Case 1. From (2.33), if α0 /= ± k, for all k ∈ �+, then λ/= 0, where λ is the eigenvalue of Tk(α0).
That means M0(Tk(α0)) = 0 for k ≥ 1. Thus, i0(α0) =

∑∞
k=1 M

0(Tk(α0)) = 0. Similarly, we have
i0(α∞) = i0(β0M) = i0(β∞M) = 0.

Case 2. Without loss of generality, we suppose that α0 < α∞. By the conditions (H1) and (H2),

α0 < k0 < α∞. (2.35)

Since α0 < k0, by (2.33), M−(Tk0(α0)) ≤ 2. By −k0 < k0 < α∞ and (2.33),M−(Tk0(α∞)) = 4, that
is,

M−(Tk0(α0)) + 2 ≤ M−(Tk0(α∞)). (2.36)

For each k /=k0 and from (2.33), one can check easily that M−(Tk(α0)) ≤ M−(Tk(α∞)). Hence,
one has

∑∞
k=1(M

−(Tk(α0)) − 2) <
∑∞

k=1(M
−(Tk(α∞)) − 2), since M−(Tk(α)) = 2 for k large

enough. This yields that i−(α0) < i−(α∞). Then, property (2) holds.
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Case 3. By the conditions (H3) and (H4), without loss of generality, we suppose that β0 < β∞
and

β0 < k0 < β∞. (2.37)

Since β0 < k0, by (2.34), M−(Tk0(β0M)) ≤ 3. By −k0 < k0 < β∞ < 3β∞ and (2.34), one
has M−(Tk0(β∞M)) = 4, that is,

M−(Tk0
(
β0M

))
+ 1 ≤ M−(Tk0

(
β∞M

))
. (2.38)

For each k /=k0 and from (2.34), it is easy to see that k − β∞ < k − β0 and k − 3β∞ < k − 3β0.
Then, by the definition of M−(Tk(βM)), we haveM−(Tk(β0M)) ≤ M−(Tk(β∞M)). Therefore,
we have

∞∑

k=1

(
M−(Tk

(
β0M

)) − 2
)
<

∞∑

k=1

(
M−(Tk

(
β∞M

)) − 2
)
, (2.39)

since M−(Tk(βM)) = 2 for k large enough. This implies that i−(β0M) < i−(β∞M). Then,
property (3) holds.

Now, we are ready to prove the main results. We first give the proof of Theorem 1.1.

Proof of Theorem 1.1. Solutions of (2.8) in SE are indeed nonconstant classic 2π-periodic
solutions with the symmetric structure (2.4), and hence they give solutions of (1.7) with the
property x(t − π) = −x(t). Therefore, we will seek solutions of (2.8) in SE.

Now, Theorem 1.1 follows from Lemmas 2.1, 2.6, and 2.7 and Theorem A.

Proof of Theorem 1.2. Obviously, Theorem 1.2 follows from Lemmas 2.2, 2.6, and 2.7 and
Theorem A.
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