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We consider weighted q-Genocchi numbers and polynomials. We investigated some interesting
properties of the weighted q-Genocchi numbers related to weighted q-Bernstein polynomials by
using fermionic p-adic integrals on Zp.

1. Introduction, Definitions, and Notations

The main motivation of this paper is [1] by Kim, in which he introduced and studied prop-
erties of q-Bernoulli numbers and polynomials with weight α. Recently, many mathemati-
cians have studied weighted special polynomials (see [1–5]).

This numbers and polynomials are used in not only number theory, complex analysis,
and the other branch of mathematics, but also in other parts of the p-adic analysis and mathe-
matical physics. Kurt Hensel (1861–1941) invented the so-called p-adic numbers around the
end of the nineteenth century. In spite of their being already one hundred years old, these
numbers are still today enveloped in an aura of mystery within scientific community [6]
although they have penetrated several mathematical fields such as number theory, algebraic
geometry, algebraic topology, analysis, and mathematical physics (see, for details, [6–8]).

The p-adic q-integral (or q-Volkenborn integral) are originally constructed by Kim
[9]. The q-Volkenborn integral is used in mathematical physics, for example, the functional
equation of the q-zeta function, the q-Stirling numbers, and q-Mahler theory of integration
with respect to the ring Zp together with Iwasawa’s p-adic q-L function.

Let p be a fixed odd prime number. Throughout this paper, we use the following
notations. By Zp, we denote the ring of p-adic rational integers, Q denotes the field of rational
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numbers, Qp denotes the field of p-adic rational numbers, and Cp denotes the completion
of algebraic closure of Qp. Let N be the set of natural numbers and N

∗ = N ∪ {0}. The p-
adic absolute value is defined by |p|p = 1/p. In this paper, we assume |q − 1|p < 1 as an
indeterminate. In [10–12], let UD (Zp) be the space of uniformly differentiable functions on
Zp. For f ∈ UD (Zp), the fermionic p-adic q-integral on Zp is defined by Kim

I−q
(
f
)
=
∫

Zp

f(x)dμ−q(x) = lim
N→∞

1
[
pN
]
−q

pN−1∑

x=0

qxf(x)(−1)x. (1.1)

For α, k, n ∈ N
∗ and x ∈ [0, 1], Kim et al. defined weighted q-Bernstein polynomials as

follows:

B
(α)
k,n

(
x, q
)
=

(
n

k

)

[x]kqα[1 − x]n−kq−α , (1.2)

(see [13, 14]). When we put q → 1 and α = 1 in (1.2), [x]kqα → xk, [1 − x]n−kq−α → (1 − x)n−k,
and we obtain the classical Bernstein polynomials (see [13, 14]), where [x]q is a q-extension
of x which is defined by

[x]q =
1 − qx

1 − q
, (1.3)

(see [1–4, 7, 9–12, 14–26]). Note that limq→ 1[x]q = x.
In [3], For n ∈ N

∗, S. Araci et al. defined weighted q-Genocchi polynomials as follows:

G̃
(α)
n+1,q(x)

n + 1
=
∫

Zp

[
x + y

]n
qαdμ−q

(
y
)
=

[2]q
(
1 − qα

)n
n∑

l=0

(
n

l

)

(−1)lqα�x 1
1 + qα�+1

= [2]q
∞∑

m=0
(−1)mqm[m + x]nqα .

(1.4)

In the special case, x = 0, G̃(α)
n,q(0) = G̃

(α)
n,q are called the q-Genocchi numbers withweight

α.
In [3], For α ∈ N

∗ and n ∈ N, S. Araci et al. defined q-Genocchi numbers with weight α
as follows:

G̃
(α)
0,q = 0, qG̃

(α)
n,q(1) + G̃

(α)
n,q =

⎧
⎨

⎩

[2]q, if n = 0,

0, if n/= 0.
(1.5)

In this paper we obtained some relations between the weighted q-Bernstein polyno-
mials and the q-Genocchi numbers. From these relations, we derive some interesting iden-
tities on the q-Genocchi numbers and polynomials with weight α.
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2. On the Weighted q-Genocchi Numbers and Polynomials

By the definition of q-Genocchi polynomials with weight α, we easily get

G̃
(α)
n+1,q(x)

n + 1
=
∫

Zp

[
x + y

]n
qαdμ−q

(
y
)
=
∫

Zp

(
[x]qα + qαx

[
y
]
qα

)n
dμ−q

(
y
)

=
n∑

k=0

(
n

k

)

[x]n−kqα qαkx
∫

Zp

[
y
]k
qαdμ−q

(
y
)
=

n∑

k=0

(
n

k

)

[x]n−kqα qαkx
G̃

(α)
k+1,q

k + 1
.

(2.1)

Therefore, we obtain the following theorem.

Theorem 2.1. For n, α ∈ N
∗, one has

G̃
(α)
n,q(x) = q−αx

n∑

k=0

(
n

k

)

qαkxG̃
(α)
k,q[x]

n−k
qα , (2.2)

with usual convention about replacing (G̃(α)
q )

n
by G̃(α)

n,q.

By Theorem 2.1, we have

G̃
(α)
n,q(x) = q−αx

(
qαxG̃

(α)
q + [x]qα

)n
. (2.3)

By (1.4), we get

G̃
(α)
n+1,q−1(1 − x)

n + 1
=
∫

Zp

[
1 − x + y

]n
q−αdμ−q

(
y
)

=
[2]q−1

(
1 − q−α

)n
n∑

l=0

(
n

l

)

q−αl(1−x)(−1)l 1
1 + q−αl−1

= (−1)nqαn
[2]q

(
1 − qα

)n
n∑

l=0

(
n

l

)

(−1)lqαlx 1
1 + qαl+1

= (−1)nqαn
G̃

(α)
n+1,q(x)

n + 1
.

(2.4)

Therefore, we obtain the following theorem.

Theorem 2.2. For n, α ∈ N
∗, one has

G̃
(α)
n,q−1(1 − x) = (−1)n−1qα(n−1)G̃(α)

n,q(x). (2.5)

From (1.5) and Theorem 2.1, we have the following theorem.
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Theorem 2.3. For n, α ∈ N
∗, one has

G̃
(α)
0,q = 0, q1−α

(
qαG̃

(α)
q + 1

)n
+ G̃

(α)
n,q =

⎧
⎨

⎩

[2]q, if n = 0,

0, if n/= 0,
(2.6)

with usual convention about replacing (G(α)
q )

n
by G(α)

n,q.

For n, α ∈ N, by Theorem 2.3, we note that

q2αG̃
(α)
n,q(2) =

(
qα
(
qαG̃

(α)
q + 1

)
+ 1
)n

=
n∑

k=0

(
n

k

)

qkα
(
qαG̃q + 1

)k

= nq2α−1
(
[2]q − G̃

(α)
1,q

)
− qα−1

n∑

k=2

(
n

k

)

qkαG̃
(α)
k,q

= qα−1[2]q − qα−1
n∑

k=1

(
n

k

)

qαkG̃
(α)
k,q

= qα−1[2]q + q2α−2G̃(α)
n,q if n > 1.

(2.7)

Therefore, we have the following theorem.

Theorem 2.4. For n ∈ N, one has

G̃
(α)
n,q(2) =

[2]q
qα+1

+
1
q2

G̃
(α)
n,q. (2.8)

From Theorem 2.2 and (2.5), we see that

(n + 1)
∫

Zp

[1 − x]nq−αdμ−q(x) = (n + 1)(−1)nqnα
∫

Zp

[x − 1]nqαdμ−q(x)

= (−1)nqnαG̃(α)
n+1,q(−1) = G̃

(α)
n+1,q−1(2).

(2.9)

Therefore, we get the following theorem.

Theorem 2.5. For n, α ∈ N
∗, one has

(n + 1)
∫

Zp

[1 − x]nq−αdμ−q(x) = G̃
(α)
n+1,q−1(2). (2.10)
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Let n, α ∈ N. By Theorems 2.4 and 2.5, we get

(n + 1)
∫

Zp

[1 − x]nq−αdμ−q(x) = qα[2]q + q2G̃
(α)
n+1,q−1 . (2.11)

From (2.11), we get the following corollary.

Corollary 2.6. For n, α ∈ N
∗, one has

∫

Zp

[1 − x]nq−αdμ−q(x) =
qα

n + 1
[2]q + q2

G̃
(α)
n+1,q−1

n + 1
. (2.12)

3. Novel Identities on the Weighted q-Genocchi Numbers

In this section, we derive concerning the some interesting properties of q-Genocchi numbers
via the p-adic q-integral on Zp, in the sense of fermionic and weighted q-Bernstein polynomi-
als.

B
(α)
k,n

(
x, q
)
=

(
n

k

)

[x]kqα[1 − x]n−kq−α , where n, k, α ∈ N
∗. (3.1)

By (3.1), Kim et al. get the symmetry of q-Bernstein polynomials weighted α as follows:

B
(α)
k,n

(
x, q
)
= B

(α)
n−k,n

(
1 − x, q−1

)
, (3.2)

(see [4]). Thus, from Corollary 2.6, (3.1), and (3.2), we see that

∫

Zp

B
(α)
k,n

(
x, q
)
dμ−q(x) =

∫

Zp

B
(α)
n−k,n

(
1 − x, q−1

)
dμ−q(x)

=

(
n

k

)
k∑

l=0

(
k

l

)

(−1)k+l
∫

Zp

[1 − x]n−lq−α dμ−q(x)

=

(
n

k

)
k∑

l=0

(
k

l

)

(−1)k+l
⎛

⎝
qα[2]q
n − l + 1

+ q2
G̃

(α)
n−l+1,q−1

n − l + 1

⎞

⎠.

(3.3)
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For n, k ∈ N
∗ and α ∈ N with n > k, we obtain

∫

Zp

Bk,n(x)dμ−q(x)

=

(
n

k

)
k∑

l=0

(
k

l

)

(−1)k+l
⎛

⎝
qα[2]q
n − l + 1

+ q2
G̃

(α)
n−l+1,q−1

n − l + 1

⎞

⎠

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

qα[2]q
n + 1

+ q2
G̃

(α)
n+1,q−1

n + 1
, if k = 0,

k∑

l=0

⎛

⎝
k

l

⎞

⎠(−1)k+l
⎛

⎝
qα[2]q
n − l + 1

+ q2
G̃

(α)
n−l+1,q−1

n − l + 1

⎞

⎠, if k /= 0.

(3.4)

Let us take the fermionic p-adic q-integral on Zp for the weighted q-Bernstein polyno-
mials of degree n as follows:

∫

Zp

B
(α)
k,n

(
x, q
)
dμ−q(x) =

(
n

k

)∫

Zp

[x]kqα[1 − x]n−kq−α dμ−q(x)

=

(
n

k

)
n−k∑

l=0

(
n − k

l

)

(−1)l
G̃

(α)
l+k+1,q

l + k + 1
.

(3.5)

Therefore, by (3.4) and (3.5), we obtain the following theorem.

Theorem 3.1. For n, k ∈ N
∗ and α ∈ N with n > k, one has

n−k∑

l=0

(
n − k

l

)

(−1)l
G̃

(α)
l+k+1,q

l + k + 1
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

q2[2]q
n + 1

+ q2
G̃

(α)
n+1,q−1

n + 1
, if k = 0,

k∑

l=0

⎛

⎝
k

l

⎞

⎠(−1)k+l
⎛

⎝
qα[2]q
n − l + 1

+ q2
G̃

(α)
n−l+1,q−1

n − l + 1

⎞

⎠, if k /= 0.

(3.6)

Let n1, n2, k ∈ N
∗ and α ∈ N with n1 + n2 > 2k. Then, we get

∫

Zp

B
(α)
k,n1

(
x, q
)
B
(α)
k,n2

(
x, q
)
dμ−q(x)

=

(
n1

k

)(
n2

k

)
2k∑

l=0

(
2k

l

)

(−1)2k+l
∫

Zp

[1 − x]n1+n2−l
q−α dμ−q(x)
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=

⎛

⎝
(
n1

k

)(
n2

k

)
2k∑

l=0

(
2k

l

)

(−1)2k+l
⎛

⎝
qα[2]q

n1 + n2 − l + 1
+ q2

G̃
(α)
n1+n2−l+1,q−1

n1 + n2 − l + 1

⎞

⎠

⎞

⎠

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

qα[2]q
n1 + n2 + 1

+ q2
G̃

(α)
n1+n2+1,q−1

n1 + n2 + 1
, if k = 0,

⎛

⎝
n1

k

⎞

⎠

⎛

⎝
n2

k

⎞

⎠
2k∑

l=0

⎛

⎝
2k

l

⎞

⎠(−1)2k+l
⎛

⎝
qα[2]q

n1 + n2 − l + 1
+ q2

G̃
(α)
n1+n2−l+1,q−1

n1 + n2 − l + 1

⎞

⎠, if k /= 0.

(3.7)

Therefore, we obtain the following theorem.

Theorem 3.2. For n1, n2, k ∈ N
∗ and α ∈ N with n1 + n2 > 2k, one has

∫

Zp

B
(α)
k,n1

(
x, q
)
B
(α)
k,n2

(
x, q
)
dμ−q(x)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

qα[2]q
n1 + n2 + 1

+ q2
G̃

(α)
n1+n2+1,q−1

n1 + n2 + 1
, if k = 0,

⎛

⎝
n1

k

⎞

⎠

⎛

⎝
n2

k

⎞

⎠
2k∑

l=0

⎛

⎝
2k

l

⎞

⎠(−1)2k+l
⎛

⎝
qα[2]q

n1 + n2 − l + 1
+ q2

G̃
(α)
n1+n2−l+1,q−1

n1 + n2 − l + 1

⎞

⎠, if k /= 0.

(3.8)

From the binomial theorem, we can derive

∫

Zp

B
(α)
k,n1

(
x, q
)
B
(α)
k,n2

(
x, q
)
dμ−q(x)

=
2∏

i=1

(
ni

k

)
n1+n2−2k∑

l=0

(
n1 + n2 − 2k

l

)

(−1)l
∫

Zp

[x]2k+lqα dμ−q(x)

=
2∏

i=1

(
ni

k

)
n1+n2−2k∑

l=0

(
n1 + n2 − 2k

l

)

(−1)l
G̃

(α)
l+2k+1,q

l + 2k + 1
.

(3.9)

Thus, for Theorem 3.4 and (3.13), we can obtain the following corollary.
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Corollary 3.3. For n1, n2, k ∈ N
∗ and α ∈ N with n1 + n2 > 2k, one has

n1+n2−2k∑

l=0

(
n1 + n2 − 2k

l

)

(−1)l
G̃

(α)
l+2k+1,q

l + 2k + 1

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

qα[2]q
n1 + n2 + 1

+ q2
G̃

(α)
n1+n2+1,q−1

n1 + n2 + 1
, if k = 0,

2k∑

l=0

⎛

⎝
2k

l

⎞

⎠(−1)2k+l
⎛

⎝
qα[2]q

n1 + n2 − l + 1
+ q2

G̃
(α)
n1+n2−l+1,q−1

n1 + n2 − l + 1

⎞

⎠, if k /= 0.

(3.10)

For x ∈ Zp and s ∈ N with s ≥ 2, let n1, n2, . . . , ns, k ∈ N
∗ and α ∈ N with

∑s
l=1nl > sk.

Then, we take the fermionic p-adic q-integral on Zp for the weighted q-Bernstein polynomials
of degree n as follows:

∫

Zp

B
(α)
k,n1

(
x, q
)
B
(α)
k,n2

(
x, q
) · · ·B(α)

k,ns

(
x, q
)

︸ ︷︷ ︸
s-times

dμ−q(x)

=
s∏

i=1

(
ni

k

)∫

Zp

[x]skqα [1 − x]n1+n2+···+ns−sk
q−α dμ−q(x)

=
s∏

i=1

(
ni

k

)
sk∑

l=0

(
sk

l

)

(−1)l+sk
∫

Zp

[1 − x]n1+n2+···+ns−sk
q−α dμ−q(x)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qα[2]q
n1 + n2 + · · · + ns + 1

+ q2
G̃

(α)
n1+n2+···+ns+1,q−1

n1 + n2 + · · · + ns + 1
, if k = 0,

s∏

i=1

⎛

⎝
ni

k

⎞

⎠
sk∑

l=0

⎛

⎝
sk

l

⎞

⎠(−1)sk+l

×
⎛

⎝
qα[2]q

n1 + n2 + · · · + ns − l + 1
+q2

G̃
(α)
n1+n2+···+ns−l+1,q−1

n1 + n2 + · · · + ns − l + 1

⎞

⎠, if k /= 0.

(3.11)

Therefore, we obtain the following theorem.

Theorem 3.4. For s ∈ N with s ≥ 2, let n1, n2, . . . , ns, k ∈ N
∗ and α ∈ N with

∑s
l=1nl > sk. Then,

one has

∫

Zp

s∏

i=1

B
(α)
k,ni

(x)dμ−q(x)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

qα[2]q
n1 + n2 + · · · + ns + 1

q2
G̃

(α)
n1+n2+···+ns+1,q−1

n1 + n2 + · · · + ns − l + 1
, if k = 0,

s∏

i=1

⎛

⎝
ni

k

⎞

⎠
sk∑

l=0

⎛

⎝
sk

l

⎞

⎠(−1)sk+l
⎛

⎝
qα[2]q

n1 + n2 − l + 1
+ q2

G̃
(α)
n1+n2−l+1,q−1

n1 + n2 − l + 1

⎞

⎠, if k /= 0.

(3.12)
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From the definition of weighted q-Bernstein polynomials and the binomial theorem,
we easily get

∫

Zp

B
(α)
k,n1

(
x, q
)
B
(α)
k,n2

(
x, q
) · · ·B(α)

k,ns

(
x, q
)

︸ ︷︷ ︸
s-times

dμ−q(x)

=
s∏

i=1

(
ni

k

)
n1+···+ns−sk∑

l=0

⎛

⎜
⎝

s∑

d=1

(nd − k)

l

⎞

⎟
⎠(−1)l

∫

Zp

[x]sk+lqα dμ−q(x)

=
s∏

i=1

(
ni

k

)
n1+···+ns−sk∑

l=1

⎛

⎜
⎝

s∑

d=1

(nd − k)

l

⎞

⎟
⎠(−1)l

G̃
(α)
l+sk+1,q

l + sk + 1
.

(3.13)

Therefore, from (3.13) and Theorem 3.4, we have the following corollary.

Corollary 3.5. For s ∈ N with s ≥ 2, let n1, n2, . . . , ns, k ∈ N
∗ and α ∈ N with

∑s
l=1nl > sk. One has

n1+···+ns−sk∑

l=0

⎛

⎜
⎝

s∑

d=1

(nd − k)

l

⎞

⎟
⎠(−1)l

G̃
(α)
l+sk+1,q

l + sk + 1

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

qα[2]q
n1 + n2 + · · · + ns + 1

+ q2
G̃

(α)
n1+n2+···+ns+1,q−1

n1 + n2 + · · · + ns + 1
, if k = 0,

sk∑

l=0

⎛

⎝
sk

l

⎞

⎠(−1)sk+l
⎛

⎝
qα[2]q

n1 + n2 + · · · + ns − l + 1
+ q2

G̃
(α)
n1+n2+···+ns−l+1,q−1

n1 + n2 + · · · + ns − l + 1

⎞

⎠, if k /= 0.

(3.14)
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