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We present some monotonicity, convexity, and inequalities for the Agard distortion function ηK(t)
and improve some well-known results.

1. Introduction

For r ∈ [0, 1], Lengedre’s complete elliptic integrals of the first and second kind [1] are
defined by

K = K(r) =
∫π/2

0

(
1 − r2sin2θ

)−1/2
dθ,

K′(r) = K(
r ′
)
, K(0) =

π

2
, K(1) = ∞,

(1.1)

E = E(r) =
∫π/2

0

(
1 − r2sin2θ

)1/2
dθ,

E′(r) = E(r ′), E(0) = π

2
, E(1) = 1,

(1.2)

respectively. Here and in what follows, we set r ′ =
√
1 − r2.
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Let μ(r) be the modulus of the plan Grötzsch ring B2 \ [0, r] for r ∈ (0, 1), where B2 is
the unit disk. Then, it follows from [2] that

μ(r) =
π

2
K′(r)
K(r)

. (1.3)

For K ∈ (0,∞), the Hersch-Pfluger distortion function ϕK(r) is defined as

ϕK(r) = μ−1
(
μ(r)
K

)
for r ∈ (0, 1), ϕK(0) = ϕK(1) − 1 = 0, (1.4)

while the Agard distortion function ηK(t) and the linear distortion function λ(K) are defined
by

ηK(t) =
[

ϕK(r)
ϕ1/K(r ′)

]
, λ(K) = ηK(1), r =

√
t

1 + t
t ∈ (0,∞), (1.5)

respectively.
It is well known that the functions ηK(t) and λ(K) play a very important role in

quasiconformal theory, quasiregular theory, and some other related fields [3–8]. For example,
Martin [8] found that the sharp upper bound in Schottky’s theorem can be expressed by
ηK(t), and in [9–15] the authors established a number of remarkable properties for the Agard
distortion function ηK(t).

In [14], the authors proved that

eπ(K−1) < λ(K) < ea(K−1), (1.6)

eb(K−1/K) < λ(K) < eπ(K−1/K) (1.7)

for all K ∈ (1,∞), where a = (4/π)K(1/
√
2)2 = 4.3768 . . ., b = a/2. Recently, Anderson et al.

[15] established that

λ(K) < e(π+b/K)(K−1), (1.8)

e[log 2+(a−log 2)/K](K−1) < λ(K) < e[π+(a−log 2)/K](K−1) (1.9)

for all K ∈ (1,∞), where a and b are defined as in inequalities (1.6) and (1.7), respectively.
The purpose of this paper is to present the new monotonicity, convexity, and

inequalities for the Agard distortion function ηK(t) and improve inequalities (1.6)–(1.9).
Our main results are Theorems 1.1 and 1.2 as follows.

Theorem 1.1. Let K ∈ (1,∞), a = (4/π)K(1/
√
2)2 = 4.3768 . . ., b = a/2, and c ∈ R. Then, the

following statements are true.

(1) f(K) = λ(K)/Kc is strictly increasing from (1,∞) onto (1,∞) for c ≤ a; if c > a, then
there existsK0 ∈ (1,∞), such that f is strictly decreasing in (1, K0) and strictly increasing
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in (K0,∞). In particular, the inequality λ(K) ≥ Kc holds for all K ∈ (1,∞) with the best
possible constant c = a.

(2) g(K) = [logηK(t) − log t]/(K − 1) is convex in (1,∞) for fixed t ∈ (0,∞).

(3) If t ≥ 1 and r =
√
t/(1 + t), then h(K) = [logηK(t) − log t]/(K − 1/K) is strictly

increasing from (1,∞) onto (2K(r)K′(r)/π,πK(r)/K′(r)).

Theorem 1.2. Let t ∈ (0,∞), r =
√
t/(1 + t), a = (4/π)K(1/

√
2)2, b = a/2,A(r) = π2/(2μ(r)),

B(r) = 8K(r)K′(r)2[E(r) − r ′2K(r)]/π2, and Fc(K) = K[(logηK(t) − log t)/(K − 1) − c]. Then,
the following statements are true.

(1) Fc(K) is strictly decreasing from (1,∞) onto (−∞, 4K(r)K′(r)/π − c) for c > A(r).
If c = A(r), then Fc(K) is strictly decreasing from (1,∞) onto (A(r) − 4 log 2 −
log t, 4K(r)K′(r)/π −A(r)). Moreover,

te(K−1)(A(r)+((A(r)−4 log 2−log t)/K)) < ηK(t) < te(K−1)(A(r)+((4K(r)K′(r)/π−A(r))/K)) (1.10)

for all t ∈ (0,∞) and K ∈ (1,∞). In particular, if t = 1, then (1.10) becomes

e(K−1)(π+((π−4 log 2)/K)) < λ(K) < e(K−1)(π+((a−π)/K)). (1.11)

(2) If c ≤ B(r), then Fc(K) is strictly increasing from (1,∞) onto (4K(r)K′(r)/π − c,∞).
Moreover,

ηK(t) > te(K−1)(B(r)+((4K(r)K′(r)/π−B(r))/K)) (1.12)

for all t ∈ (0,∞) and K ∈ (1,∞). In particular, if t = 1, then (1.12) becomes

λ(K) > e(K−1)(b+(b/K)) = eb(K−(1/K)). (1.13)

(3) If B(r) < c < A(r), then there existsK1 ∈ (1,∞) such that Fc(K) is strictly decreasing on
(1, K1) and strictly increasing on (K1,∞).

(4) Fc(K) is convex in (1,∞).

2. Lemmas

In order to prove our main results, we need several formulas and lemmas, which we present
in this section.
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The following formulas were presented in [14, Appendix E, pp. 474-475]. Let t ∈
(0,∞), K ∈ (0,∞), r =

√
t/(1 + t) ∈ (0, 1), and s = ϕK(r). Then,

dK(r)
dr

=
E(r) − r ′2K(r)

rr ′2
,

dE(r)
dr

=
E(r) −K(r)

r
,

K(r)E′(r) +K′(r)E(r) −K(r)K′(r) =
π

2
,

dμ(r)
dr

= − π2

4rr ′2K(r)2
,

∂s

∂r
=

ss′2K(s)K′(s)
rr ′2K(r)K′(r)

,
∂s

∂K
=

2
πK

ss′2K(s)K′(s),

ϕK(r)2 + ϕ1/K
(
r ′
)2 = 1,

ηK(t) =
(
s

s′

)2

,
∂ηK(t)
∂K

=
4

πK
ηK(t)K(s)K′(s) =

2
μ(r)

K′(s)2ηK(t).

(2.1)

Lemma 2.1 (see [14, Theorem 1.25]). For −∞ < a < b < ∞, let f, g : [a, b] → R be continuous
on [a, b] and differentiable on (a, b), and let g ′(x)/= 0 on (a, b). If f ′(x)/g ′(x) is increasing
(decreasing) on (a, b), then so are

f(x) − f(a)
g(x) − g(a)

,
f(x) − f(b)
g(x) − g(b)

. (2.2)

If f ′(x)/g ′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

The following lemma can be found in [14, Theorem 3.21(1) and (7), Lemma 3.32(1)
and Theorem 5.13(2)].

Lemma 2.2. (1) [E(r) − r ′2K(r)]/r2 is strictly increasing from (0, 1) onto (π/4, 1);
(2) r ′cK(r) is strictly decreasing from (0, 1) onto (0, π/2) if and only if c ≥ 1/2;
(3) K(r)K′(r) is strictly decreasing in (0,

√
2/2) and strictly increasing in (

√
2/2, 1);

(4) μ(r) + log r is strictly decreasing from (0, 1) onto (0, log 4).

Lemma 2.3. Let r ∈ [1/
√
2, 1), K ∈ (1,∞), and s = ϕK(r). Then, G(K) ≡ {π/[2K(s)]}2 +

[μ(r)/K′(s)]2 is strictly decreasing from (1,∞) onto (K′(r)2/K(r)2, π2/[2K(r)2]).

Proof. Clearly G(1+) = π2/(2K(r)2), G(+∞) = K′(r)2/K(r)2. Differentiating G(K), one has

G′(K) =
4

πK
μ(r)2K(s)K′(s)−2

[
E′(s) − s2K′(s)

]

− π

K
K(s)−2K′(s)

[
E(s) − s′2K(s)

]

=
4

πK
K(s)−2K′(s)−2G1(K),

(2.3)

where G1(K) = [E′(s) − s2K′(s)]K(s)3μ(r)2 − π2[E(s) − s′2K(s)]K′(s)3/4.
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From Lemma 2.2(1) and (2), we clearly see that G1(K) is strictly decreasing in (1,∞).
Moreover,

lim
K→ 1+

G1(K) =
[
E′(r) − r2K′(r)

]
K(r)3μ(r)2 − π2

4

[
E(r) − r ′2K(r)

]
K′(r)3

=
π2

4
K′(r)2G2(r),

(2.4)

whereG2(r) = K(r)[E′(r)−r2K′(r)]−K′(r)[E(r)−r ′2K(r)] is also strictly decreasing in (0, 1).
Thus, G2(r) ≤ G2(

√
2/2) = 0 for r ∈ [1/

√
2, 1), and G1(K) < G1(1+) ≤ 0 for K ∈ (1,∞).

Therefore, the monotonicity ofG(K) follows from (2.3) and (2.4) together with the fact
that G1(K) < 0 for K ∈ (1,∞).

3. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. For part (1), clearly f(1+) = 1. Let r = μ−1[π/(2K)] for K ∈ (1,∞), then
λ(K) = (r/r ′)2, r ∈ (1/

√
2, 1),

dr

dK
=

2
π
rr ′2K′(r)2,

dλ(K)
dK

=
4
π
λ(K)K′(r)2, (3.1)

lim
K→+∞

f(K) = lim
r→ 1

r2K′(r)
r ′2K(r)

= +∞. (3.2)

Making use of (3.1), we have

Kc+1f ′(K)
λ(K)

= f1(K) ≡ 4
π
K′(r)K(r) − c. (3.3)

It follows from Lemma 2.2(3) that f1(K) is strictly increasing from (1,∞) onto (a −
c,∞). Then, from (3.2) and (3.3), we know that f is strictly increasing from (1,∞) onto (1,∞)
for c ≤ a. If c > a, then there existsK0 ∈ (1,∞) such that f is strictly decreasing in (1, K0) and
strictly increasing in (K0,∞). Moreover, the inequality λ(K) ≥ Kc holds for all K ∈ (1,∞)
with the best possible constant c = a.

For part (2), denote r =
√
t/(1 + t). Differentiating g(K), we get

g ′(K) =
2K′(s)2(K − 1)/μ(r) − (

logηK(t) − log t
)

(K − 1)2
. (3.4)

Let g1(K) = 2K′(s)2(K − 1)/μ(r) − (logηK(t) − log t) and g2(K) = (K − 1)2, then
g1(1) = g2(1) = 0, g ′(K) = g1(K)/g2(K) and

g1
′(K)

g2′(K)
= g3(K) ≡ − 2

μ(r)2
[
E′(s) − s2K′(s)

]
K′(s)3. (3.5)
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Clearly, g3(K) is strictly increasing in (1,∞). Then, (3.5) and Lemma 2.1 lead to the conclusion
that g ′(K) is strictly increasing in (1,∞). Therefore, g(K) is convex in (1,∞).

For part (3), if t ≥ 1, then r ≥ √
2/2. Let h1(K) = logηK(t)− log t and h2(K) = K − 1/K,

then h1(1) = h2(1) = 0, h(K) = h1(K)/h2(K), and

h1
′(K)

h2
′(K)

=
2K′(s)2/μ(r)

1 +K−2 =
2μ(r)
G(K)

, (3.6)

where G(K) is defined as in Lemma 2.2.
Therefore, h(K) is strictly increasing in (1,∞) for t ≥ 1 follows from Lemmas 2.1

and 2.2 together with (3.6). Moreover, making use of l’Hôpital’s rule, we have h(1+) =
2K(r)K′(r)/π , h(∞) = πK(r)/K′(r).

Proof of Theorem 1.2. Differentiating Fc(K) gives

F ′
c(K) =

logηK(t) − log t
K − 1

− c +K

⎡
⎢⎣
(
2K′(s)2(K − 1)

)
/μ(r) − (

logηK(t) − log t
)

(K − 1)2

⎤
⎥⎦

=
2K′(s)2K(K − 1)/μ(r) − (

logηK(t) − log t
)

(K − 1)2
− c.

(3.7)

Let

H(K) =

[
2K′(s)2K(K − 1)/μ(r)

]
− [

logηK(t) − log t
]

(K − 1)2
, (3.8)

H1(K) = 2K′(s)2K(K − 1)/μ(r) − (logηK(t) − log t), and H2(K) = (K − 1)2, then H(K) =
H1(K)/H2(K), H1(1) = H2(1) = 0, and

H1
′(K)

H2
′(K)

= H3(K) ≡ 4
πμ(r)

[
E(s) − s′2K(s)

]
K′(s)3. (3.9)

Clearly, that H3(K) is strictly increasing in (1,∞) follows from Lemma 2.2(1) and (2).
Then, from (3.8) and (3.9) together with Lemma 2.1, we know thatH(K) is strictly increasing
in (1,∞). Moreover, l’Hôpital’s rule leads to

lim
K→ 1

H(K) = B(r), lim
K→∞

H(K) = A(r). (3.10)

For part (1), if c > A(r), then from (3.7) and (3.8), we know that F ′
c(K) < 0 for K ∈

(1,∞) and Fc(K) is strictly decreasing in (1,∞). Moreover,

lim
K→ 1

Fc(K) =
[
4K(r)K′(r)/π

] − c, lim
K→∞

Fc(K) = −∞. (3.11)
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If c = A(r), then Fc(K) is also strictly decreasing in (1,∞) and Fc(1+) = [4K(r)K′(r)/π] −
A(r), and from Lemma 2.2(4) we get

lim
K→∞

Fc(K) = lim
K→∞

K

K − 1
[−2 log(s′) − 2μ

(
s′
)
+A(r) − log t

]

= A(r) − 4 log 2 − log t.

(3.12)

Therefore, inequalities (1.10) and (1.11) follows from (3.12) and the monotonicity of
Fc(K) when c = A(r).

For part (2), if c ≤ B(r), then that Fc(K) is strictly increasing in (1,∞) follows from
(3.7) and (3.8). Note that

lim
K→ 1

Fc(K) =
[
4K(r)K′(r)/π

] − c, lim
K→∞

Fc(K) = +∞. (3.13)

Therefore, inequalities (1.12) and (1.13) follow from (3.13) and the monotonicity of
Fc(K) when c = B(r).

For part (3), if B(r) < c < A(r), then from (3.7) and (3.8) together with the
monotonicity of H(K) we clearly see that there exists K1 ∈ (1,∞), such that F ′

c(K) < 0 for
K ∈ (1, K1) and F ′

c(K) > 0 for K ∈ (K1,∞). Hence, Fc(K) is strictly decreasing in (1, K1) and
strictly increasing in (K1,∞).

Part (4) follows from (3.7) and (3.8) together with the monotonicity of H(K).

Taking t = 1 in Theorem 1.2, we get the following corollary.

Corollary 3.1. Let a and b be defined as in Theorem 1.2, c ∈ R, and fc(K) = K{[logλ(K)]/(K −
1) − c}. Then,

(1) if c > π , then fc(K) is strictly decreasing from (1,∞) onto (−∞, a − c); if c = π , then
fc(K) is strictly decreasing from (1,∞) onto (π − 4 log 2, a − π);

(2) if c ≤ b, then fc(K) is strictly increasing from (1,∞) onto (a − c,∞);

(3) if b < c < π , then there existsK2 ∈ (1,∞), such that fc(K) is strictly decreasing in (1, K2)
and strictly increasing in (K2,∞);

(4) fc(K) is convex in (1,∞).

Inequalities (1.11) and (1.13) lead to the following corollary, which improve inequali-
ties (1.6)–(1.9).

Corollary 3.2. Let a and b be defined as in Theorem 1.2, then the following inequality

max
{
e(K−1)(π+((π−4 log 2)/K)), eb(K−(1/K))

}
< λ(K) < e(K−1)(π+((a−π)/K)). (3.14)

holds for all K ∈ (1,∞).
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