
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2011, Article ID 679201, 9 pages
doi:10.1155/2011/679201

Research Article
Sharp Bounds for Power Mean in Terms of
Generalized Heronian Mean

Hongya Gao, Jianling Guo, and Wanguo Yu

College of Mathematics and Computer Science, Hebei University, Baoding 071002, China

Correspondence should be addressed to Gao Hongya, hongya-gao@sohu.com

Received 2 March 2011; Accepted 7 April 2011

Academic Editor: Marcia Federson

Copyright q 2011 Gao Hongya et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

For 1 < r < +∞, we find the least value α and the greatest value β such that the inequalityHα(a, b) <
Ar(a, b) < Hβ(a, b) holds for all a, b > 0 with a/= b. Here,Hω(a, b) and Ar(a, b) are the generalized
Heronian and the power means of two positive numbers a and b, respectively.

1. Introduction and Statement of Result

For a, b > 0 with a/= b, the generalized Heronian mean of a and b is defined by Janous [1] as

Hω(a, b) =

⎧
⎪⎨

⎪⎩

a +ω
√
ab + b

ω + 2
, 0 ≤ ω < +∞,

√
ab, ω = +∞.

(1.1)

If we take ω = 1 in (1.1), then we arrive at the classical Heronian mean

He(a, b) =
a +

√
ab + b

3
. (1.2)

The domain of definition for the function ω �→ Hω(a, b) can be extended to all ω with ω ∈
(−2,+∞), that is,

Hω(a, b) =

⎧
⎪⎨

⎪⎩

a +ω
√
ab + b

ω + 2
, −2 < ω < +∞,

√
ab, ω = +∞.

(1.3)
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For all fixed a, b > 0, it is easy to derive that ω �→ Hω(a, b), −2 < ω < +∞ is monotonically
decreasing, and

lim
ω→−2+

Hω(a, b) = +∞. (1.4)

Let

Ar(a, b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ar + br

2

)1/r

, r /= 0,

√
ab, r = 0,

max{a, b}, r = +∞,

min{a, b}, r = −∞,

(1.5)

denote the power mean of order r. In particular, the harmonic, geometric, square-root,
arithmetic, and root-square means of a and b are

H(a, b) = A−1(a, b) =
2a

a + b
,

G(a, b) = A0(a, b) =
√
ab,

N1(a, b) = A1/2(a, b) =

(√
a +

√
b

2

)2

,

A(a, b) = A1(a, b) =
a + b

2
,

S(a, b) = A2(a, b) =

√

a2 + b2

2
.

(1.6)

It is well known that the power mean of order r given in (1.5) is monotonically increasing in
r, then we can write

min{a, b} < H(a, b) < G(a, b) < N1(a, b) < A(a, b) < S(a, b) < max{a, b}. (1.7)

Recently, the inequalities for means have been the subject of intensive research [1–15].
In particular, many remarkable inequalities for the generalized Heronian and power means
can be found in the literature [4–9].

In [4], the authors established two sharp inequalities

2
3
G(a, b) +

1
3
H(a, b) ≥ A−1/3(a, b),

1
3
G(a, b) +

2
3
H(a, b) ≥ A−2/3(a, b).

(1.8)
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In [5], Long and Chu found the greatest value p and the least value q such that the
double inequality

Ap(a, b) ≤ A(a, b)αG(a, b)βH(a, b)1−α−β ≤ Aq(a, b) (1.9)

holds for all a, b > 0 and α, β > 0 with α + β < 1.
In [6], Shi et al. gave two optimal inequalities

Aα(a, b)L1−α(a, b) ≤ A(1+2α)/3(a, b),

Gα(a, b)L1−α(a, b) ≤ A(1−α)/3(a, b),
(1.10)

for 0 < α < 1, where

L(a, b) =
a − b

log a − log b
, a /= b, (1.11)

is the logarithmic mean for a, b > 0.
In [7], Guan and Zhu obtained sharp bounds for the generalized Heronian mean in

terms of the power mean with ω > 0. The optimal values α and β such that

Aα(a, b) ≤ Hω(a, b) ≤ Aβ(a, b) (1.12)

holds in general are

(1) in case of ω ∈ (0, 2], αmax = log 2/ log(ω + 2) and βmin = 2/(ω + 2),

(2) in case of ω ∈ [2,+∞), αmax = 2/(ω + 2) and βmin = log 2/ log(ω + 2).

In this paper, we find the least value α and the greatest value β, such that for any fixed
1 < r < +∞, the inequality

Hα(a, b) < Ar(a, b) < Hβ(a, b) (1.13)

holds for all a, b > 0 with a/= b.

Theorem 1.1. For 1 < r < +∞, the optimal numbers α and β such that

Hα(a, b) < Ar(a, b) < Hβ(a, b) (1.14)

is valid for all a, b > 0 with a/= b, are αmin = 21/r − 2 and βmax = 2(1 − r)/r.

Notice that in our case r > 1; the two numbers αmin and βmax are all negative see
Corollary 2.2 below. Thus, the result in this paper is different from [7, Theorem A].
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2. Preliminary Lemmas

The following lemma will be repeatedly used in the proof of Theorem 1.1.

Lemma 2.1. For 1 < r < +∞, one has

r21/r−1 > 1. (2.1)

Proof. We show that

m(r) = (1 − r) log 2 + r log r > 0, (2.2)

which is clearly equivalent to the claim. Equation (2.2) follows from the facts

lim
r→ 1+

m(r) = 0, m′(r) = − log 2 + log r + 1 > 0. (2.3)

Corollary 2.2. If 1 < r < +∞, then

−2 <
2(1 − r)

r
< 21/r − 2 < 0. (2.4)

Proof. Since for 1 < r < +∞, the two functions

ϕ1(r) =
2(1 − r)

r
, ϕ2(r) = 21/r − 2 (2.5)

are strictly decreasing, then one has

−2 = lim
r→+∞

ϕ1(r) < ϕ1(r), ϕ2(r) < lim
r→ 1+

ϕ2(r) = 0. (2.6)

It suffices to show that

2 − 2r < r21/r − 2r, (2.7)

which is equivalent to (2.1).

Lemma 2.3. For x > 1 and r > 1, let

�(x) =
(
x2r + 1

)1/r−2
x2(r−1)

(
x2r + 2r − 1

)
. (2.8)

Then, �(x) is strictly decreasing for x > 1, and

lim
x→ 1+

�(x) = r21/r−1, lim
x→+∞

�(x) = 1. (2.9)
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Proof. The fact �(x) > 0 for x > 1 and r > 1 is obvious, which allows us to take the logarithmic
function of �(x),

log �(x) =
(
1
r
− 2
)

log
(
x2r + 1

)
+ 2(r − 1) log x + log

(
x2r + 2r − 1

)
. (2.10)

Some tedious, but not difficult calculations lead to

[
log �(x)

]′ =
(
1
r
− 2
)
2rx2r−1

x2r + 1
+
2(r − 1)

x
+

2rx2r−1

x2r + 2r − 1

=
m(x)

x(x2r + 1)(x2r + 2r − 1)
,

(2.11)

where

m(x) = 2(1 − 2r)x2r
(
x2r + 2r − 1

)
+ (2r − 1)

(
x2r + 1

)(
x2r + 2r − 1

)
+ 2rx2r

(
x2r + 1

)

= 2(r − 1)(2r − 1)
(
1 − x2r

)
.

(2.12)

It is easy to see that

lim
x→ 1+

m(x) = 0, (2.13)

m′(x) = −4r(r − 1)(2r − 1)x2r−1 < 0. (2.14)

Equation (2.14) implies that m(x) is strictly decreasing for x > 1, which together with (2.13)
implies m(x) < 0 for x > 1. Thus, by (2.11),

[
log �(x)

]′
< 0, (2.15)

which implies

�′(x) =
[
log �(x)

]′
�(x) < 0. (2.16)

Hence, �(x) is strictly decreasing.
It remains to show (2.9). The first equality in (2.9) is obvious. The second one follows

from

lim
x→+∞

�(x) = lim
x→+∞

(
x2r + 1

)1/r−2
x2(r−1)

(
x2r + 2r − 1

)

= lim
t→ 0+

(2r − 1)t2r + 1

(1 + t2r)(2r−1)/r

= 1.

(2.17)

This ends the proof of Lemma 2.3.
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Lemma 2.4. For x > 1, r > 1, and ω = 21/r − 2, let

fr(x) = 21/r
(
x2 +ωx + 1

)
− (ω + 2)

(
x2r + 1

)1/r
. (2.18)

Then,

lim
x→+∞

fr(x) = −∞,

lim
x→+∞

f ′
r(x) = 21/r

(
21/r − 2

)
.

(2.19)

Proof. Simple calculations lead to

lim
x→+∞

fr(x) = lim
x→+∞

21/r
(
x2 +ωx + 1

)
− (ω + 2)

(
x2r + 1

)1/r

= lim
t→ 0+

21/r
(
t2 +ωt + 1

) − (ω + 2)
(
t2r + 1

)1/r

t2

= −∞,

lim
x→+∞

f ′
r(x) = lim

x→+∞
21/r(2x +ω) − 2(ω + 2)

(
x2r + 1

)1/r

= lim
t→ 0+

21/r(2 +ωt) − 2(ω + 2)
(
1 + t2r

)(1−r)/r

t

= lim
t→ 0+

21/r(2 +ωt)
(
1 + t2r

)(r−1)/r − 2(ω + 2)

t(1 + t2r)(r−1)/r

= lim
t→ 0+

21/rω
(
1 + t2r

)(r−1)/r + 2(1/r)+1(r − 1)(2 +ωt)
(
1 + t2r

)−1/r
t2r−1

(1 + t2r)(r−1)/r + 2(r − 1)(1 + t2r)−1/r t2r

= 21/rω = 21/r
(
ω1/r − 2

)
< 0,

(2.20)

where we have used L’Hospital’s law. This ends the proof of Lemma 2.4.

3. Proof of Theorem 1.1

Proof. Firstly, we prove that for 1 < r < +∞,

H2(1−r)/r(a, b) > Ar(a, b), (3.1)

H21/r−2(a, b) < Ar(a, b) (3.2)
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hold true for all a, b > 0 with a/= b. It is no loss of generality to assume that a > b > 0. Let
x =

√
b/a > 1 and ω ∈ {2(1 − r)/r, 21/r − 2}. In view of Corollary 2.2, −2 < ω < 0. Equations

(1.3) and (1.5) lead to

1
a
[Hω(a, b) −Ar(a, b)] = Hω

(
x2, 1

)
−Ar

(
x2, 1

)

=
x2 +ωx + 1

ω + 2
−
(

x2r + 1
2

)1/r

=
21/r
(
x2 +ωx + 1

) − (ω + 2)
(
x2r + 1

)1/r

21/r(ω + 2)

=
fr(x)

21/r(ω + 2)
,

(3.3)

where fr(x) is defined by (2.18). It is easy to see that

lim
x→ 1+

fr(x) = 0, (3.4)

f ′
r(x) = 21/r(2x +ω) − 2(ω + 2)

(
x2r + 1

)1/r−1
x2r−1, (3.5)

lim
x→ 1+

f ′
r(x) = 0. (3.6)

By Lemma 2.3,

f ′′
r (x) = 2

{

21/r − (ω + 2)
[

2(1 − r)
(
x2r + 1

)1/r−2
x4r−2 + (2r − 1)

(
x2r + 1

)1/r−1
x2(r−1)

]}

= 2
[
21/r − (ω + 2)�(x)

]
> 2
[
21/r − (ω + 2)r21/r−1

]
= 21/r[2 − (ω + 2)r],

(3.7)

lim
x→ 1+

f ′′
r (x) = 2

{
21/r − (ω + 2)

[
2(1 − r)21/r−2 + (2r − 1)21/r−1

]}
= 21/r[2 − (ω + 2)r]. (3.8)

We now distinguish between two cases.

Case 1 (ω = 2(1 − r)/r). Since 2 − (ω + 2)r = 0, then by (3.7), f ′′
r (x) > 0. Thus, f ′

r(x) is strictly
increasing for x > 1, which together with (3.6) implies f ′

r(x) > 0. Hence, fr(x) is strictly
increasing for x > 1. Since (3.4), then fr(x) > 0. Equation (3.1) follows from (3.3).
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Case 2 (ω = 21/r − 2). By (3.5) and (2.11),

f ′′′
r (x) = −2(ω + 2)�′(x) = −2(ω + 2)

[
log �(x)

]′
�(x)

= −2(ω + 2)
m(x)�(x)

x(x2r + 1)(xr + 2r − 1)

> 0.

(3.9)

Thus, f ′′
r (x) is strictly increasing. Equations (3.8) and (2.1) imply

lim
x→ 1+

f ′′
r (x) = 21/r[2 − (ω + 2)r] = 21/r+1

(
1 − r21/r−1

)
< 0. (3.10)

Equations (3.7) and (2.9) imply

lim
x→+∞

f ′′
r (x) = lim

x→+∞
2
[
21/r − (ω + 2)�(x)

]
= 2
(
21/r − 1

)
> 0. (3.11)

Combining (3.10) with (3.11), we obviously know that there exists λ1 > 1 such that f ′′
r (x) < 0

for x ∈ (1, λ1) and f ′′
r (x) > 0 for x ∈ (λ1,+∞). This implies that f ′

r(x) is strictly decreasing
for x ∈ (1, λ1) and strictly increasing for x ∈ (λ1,+∞). By (3.6) and Lemma 2.4, we know that
f ′
r(x) < 0 for x > 1. Therefore, fr(x) is strictly decreasing. By (3.4) and Lemma 2.4 again, we

derive that fr(x) < 0 for x > 1. Equation (3.2) follows from (3.3).

Secondly, we prove that H21/r−2(a, b) is the best lower bound for the power mean
Ar(a, b) for 1 < r < +∞. For any α < 21/r − 2,

lim
x→+∞

Hα(x, 1)
Ar(x, 1)

= lim
x→+∞

21/r
(
x + α

√
x + 1

)

(α + 2)(xr + 1)r
=

21/r

α + 2
> 1. (3.12)

Hence, there exists X = X(α) > 1 such thatHα(x, 1) > Ar(x, 1) for x ∈ (X,+∞).
Finally, we prove that H2(1−r)/r(a, b) is the best upper bound for the power mean

Ar(a, b) for 1 < r < +∞. For any β > 2(1 − r)/r, by (3.7) (with β in place of ω), we have

lim
x→ 1+

f ′′
r (x) = 21/r

[
2 − (β + 2

)
r
]
< 0. (3.13)

Hence, by the continuity of f ′′
r (x), there exists δ = δ(β) > 0 such that f ′′

r (x) < 0 for x ∈ (1, 1+δ).
Thus fr(x) is strictly decreasing for x ∈ (1, 1 + δ). From (3.6), f ′

r(x) < 0 for x ∈ (1, 1 + δ). This
result together with (3.4) implies that fr(x) < 0 for x ∈ (1, 1 + δ). Hence, by (3.3),

Hβ

(
x2, 1

)
< Ar

(
x2, 1

)
, (3.14)

for x ∈ (1, 1 + δ).
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