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The boundedness and compactness of the integral-type operator I
(n)
ϕ,gf(z) =

∫z
0 f

(n)(ϕ(ζ))g(ζ)dζ,
where n ∈ N0, ϕ is a holomorphic self-map of the unit disk D, and g is a holomorphic function on
D, from α-Bloch spaces to QK spaces are characterized.

1. Introduction

Let D be the open unit disk in the complex plane, ∂D be its boundary,D(w, r) be disk centered
at w of radius r, and let H(D) be the class of all holomorphic functions on D. Let

ηa(z) =
a − z

1 − az
, a ∈ D, (1.1)

be the involutive Möbius transformation which interchanges points 0 and a. If X is a Banach
space, then by BX we will denote the closed unit ball in X.

The α-Bloch space, Bα(D) = Bα, α > 0, consists of all f ∈ H(D) such that

sup
z∈D

(
1 − |z|2

)α∣∣f ′(z)
∣∣ < ∞. (1.2)
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The little α-Bloch space Bα
0(D) = Bα

0 consists of all functions f holomorphic on D such that
lim|z|→ 1(1 − |z|2)α|f ′(z)| = 0. The norm on Bα is defined by

∥
∥f
∥
∥
Bα =

∣
∣f(0)

∣
∣ + sup

z∈D

(
1 − |z|2

)α∣
∣f ′(z)

∣
∣. (1.3)

With this norm, Bα is a Banach space, and the little α-Bloch space Bα
0 is a closed subspace of

the α-Bloch space. Note that B1 = B is the usual Bloch space.
Given a nonnegative Lebesgue measurable function K on (0, 1] the space QK consists

of those f ∈ H(D) for which

b2QK

(
f
)
= sup

a∈D

∫

D

∣
∣f ′(z)

∣
∣2K
(
1 − ∣∣ηa(z)

∣
∣2
)
dm(z) < ∞, (1.4)

where dm(z) = (1/π)dx dy = (1/π)r dr dθ is the normalized area measure on D [1]. It is
known that bQK is a seminorm on QK which is Möbius invariant, that is,

bQK

(
f ◦ η) = bQK

(
f
)
, η ∈ Aut(D), (1.5)

where Aut(D) is the group of all automorphisms of the unit disk D. It is a Banach space with
the norm defined by

∥∥f
∥∥
QK

=
∣∣f(0)

∣∣ + bQK

(
f
)
. (1.6)

The space QK,0 consists of all f ∈ H(D) such that

lim
|a|→ 1

∫

D

∣∣f ′(z)
∣∣2K
(
1 − ∣∣ηa(z)

∣∣2
)
dm(z) = 0. (1.7)

It is known that QK,0 is a closed subspace of QK. For classical Q spaces, see [2].
It is clear that each QK contains all constant functions. If QK consists of just constant

functions, we say that it is trivial. QK is nontrivial if and only if

sup
t∈(0, 1)

∫1

0
K(1 − r)

(1 − t)2

(1 − tr2)3
r dr < ∞. (1.8)

Throughout this paper, we assume that condition (1.8) is satisfied, so that the space QK is
nontrivial. An important tool in the study of QK spaces is the auxiliary function λK defined
by

λK(s) = sup
0<t≤1

K(st)
K(t)

, 0 < s < ∞, (1.9)

where the domain ofK is extended to (0,∞) by settingK(t) = K(1)when t > 1. The next two
conditions play important role in the study of QK spaces.
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(a) There is a constant C > 0 such that for all t > 0

K(2t) ≤ CK(t). (1.10)

(b) The auxiliary function λK satisfies the following condition:

∫1

0

λK(s)
s

ds < ∞. (1.11)

Let Ω(0,∞) denote the class of all nondecreasing continuous functions on (0,∞)
satisfying conditions (1.8), (1.10), and (1.11).

A positive Borel measure μ on D is called a K-Carleson measure [3] if

sup
I

∫

S(I)
K

(
1 − |z|
|I|

)
dμ(z) < ∞, (1.12)

where the supermum is taken over all subarcs I ⊂ ∂D, |I| is the length of I, and S(I) is the
Carleson box defined by

S(I) =
{
z : 1 − |I| < |z| < 1,

z

|z| ∈ I

}
. (1.13)

A positive Borel measure μ is called a vanishing K-Carleson measure if

lim
|I|→ 0

∫

S(I)
K

(
1 − |z|
|I|

)
dμ(z) = 0. (1.14)

We also need the following results of Wulan and Zhu in [3], in which QK spaces are
characterized in terms of K-Carleson measures.

Theorem 1.1. Let K ∈ Ω(0,∞). Then a positive Borel measure μ on D is a K-Carleson measure if
and only if

sup
a∈D

∫

D

K
(
1 − ∣∣ηa(z)

∣∣2
)
dμ(z) < ∞. (1.15)

Also, μ is a vanishing K-Carleson measure if and only if

lim
|a|→ 1

∫

D

K
(
1 − ∣∣ηa(z)

∣∣2
)
dμ(z) = 0. (1.16)

From Theorem 1.1 and the definition of the spaces QK and QK,0, we see that when
K ∈ Ω(0,∞), then f ∈ QK if and only if the measure dμf = |f ′(z)|2dm(z) is a K-Carleson
measure, while f ∈ QK,0 if and only if this measure is a vanishing K-Carleson measure.
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Let ϕ ∈ S(D) be the family of all holomorphic self-maps of D, g ∈ H(D), and n ∈ N0.
We define an integral-type operator as follows:

I
(n)
ϕ,gf(z) =

∫z

0
f (n)(ϕ(ζ)

)
g(ζ)dζ, z ∈ D. (1.17)

Operator (1.17) extends several operators which has been introduced and studied recently
(see, e.g., [4–9]). For related operators in n-dimensional case, see, for example, [10–19]. For
some classical operators see, for example, [20, 21] and the related references therein. For other
product-type operators, see [22] and the references therein.

Motivated by [23, 24] (see also [25–29]), we characterize when ϕ and g induce
bounded and/or compact operators in (1.17) from α-Bloch to QK spaces.

Throughout this paper, constants are denoted by C; they are positive and not
necessarily the same at each occurrence. The notation A 	 B means that there is a positive
constant C such that B/C ≤ A ≤ CB.

2. Auxiliary Results

Here, we quote several lemmas which will be used in the proofs of the main results in this
paper. The following lemma is folklore (see, e.g., [30]).

Lemma 2.1. For any f ∈ H(D) and z ∈ D, the following inequalities hold

∣∣f(z)
∣∣ ≤ C

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∥∥f
∥∥
Bα , if 0 < α < 1,

∥∥f
∥∥
Bα ln

e

1 − |z|2
, if α = 1,

∥∥f
∥∥
Bα

(
1 − |z|2

)α−1 , if α > 1,

(2.1)

∣∣f (n)(z)
∣∣ ≤ C

supw∈D(z,(1−|z|)/2)
(
1 − |w|2

)α∣∣f ′(w)
∣
∣

(
1 − |z|2

)α+n−1

≤ C

∥∥f
∥∥
Bα

(
1 − |z|2

)α+n−1 , if n ∈ N.

(2.2)

The next lemma is obtained in [31, 32].

Lemma 2.2. Let α > 0. Then there are two functions f1, f2 ∈ Bα such that

∣∣f ′
1(z)
∣∣ +
∣∣f ′

2(z)
∣∣ ≥ C
(
1 − |z|2

)α , z ∈ D. (2.3)



Abstract and Applied Analysis 5

Also, if α/= 1, then there are two functions f3, f4 ∈ Bα and C > 0, such that

∣
∣f3(z)

∣
∣ +
∣
∣f4(z)

∣
∣ ≥ C
(
1 − |z|2

)α−1 , z ∈ D. (2.4)

The next Schwartz-type lemma [33] is proved in a standard way, so we omit the proof.

Lemma 2.3. Let α > 0, K ∈ Ω(0,∞), ϕ ∈ S(D), g ∈ H(D), and n ∈ N0. Then I
(n)
ϕ,g :

Bα (or Bα
0) → QK is compact if and only if for any bounded sequence (fm)m∈N

in Bα converging
to zero on compacts of D, we have limm→∞‖I(n)ϕ,gfm‖QK

= 0.

Lemma 2.4. Let α > 0, K ∈ Ω(0,∞), ϕ ∈ S(D), g ∈ H(D), and n ∈ N0. Then I
(n)
ϕ,g : Bα

0 →
QK (or QK,0) is weakly compact if and only if it is compact.

Proof. By a known theorem I
(n)
ϕ,g : Bα

0 → QK (or QK,0) is weakly compact if and only if (I(n)ϕ,g)
∗
:

Q∗
K (or Q∗

K,0) → (Bα
0)

∗ is weakly compact. Since (Bα
0)

∗ ∼= A1 (the Bergman space) and A1

has the Schur property, it follows that it is equivalent to (I(n)ϕ,g)
∗
: Q∗

K (or Q∗
K,0) → (Bα

0)
∗, is

compact, which is equivalent to I
(n)
ϕ,g : Bα

0 → QK (or QK,0), is compact, as claimed.

Lemma 2.5. Let α > 0, K ∈ Ω(0,∞), ϕ ∈ S(D), g ∈ H(D), and n ∈ N0. Then I
(n)
ϕ,g : Bα

0 → QK,0

is compact if and only if I(n)ϕ,g : Bα → QK,0 is bounded.

Proof. By Lemma 2.4, I(n)ϕ,g : Bα
0 → QK,0 is compact if and only if it is weakly compact, which,

by Gantmacher’s theorem ([34]), is equivalent to (I(n)ϕ,g)
∗∗
((Bα

0)
∗∗) ⊆ QK,0. Since (Bα

0)
∗∗ = Bα

and by a standard duality argument (I(n)ϕ,g)
∗∗
= I

(n)
ϕ,g onBα, this can bewritten as I(n)ϕ,g(Bα) ⊆ QK,0,

which by the closed graph theorem is equivalent to I
(n)
ϕ,g : Bα → QK,0 is bounded.

For a ∈ D, set

Φϕ,g,K(a) =
∫

D

K
(
1 − ∣∣ηa(z)

∣∣2
)∣∣g(z)

∣∣2
(
1 − ∣∣ϕ(z)∣∣2

)2(1−α−n)
dm(z). (2.5)

Lemma 2.6. Let α > 0, K ∈ Ω(0,∞), ϕ ∈ S(D), g ∈ H(D), and n ∈ N0. If Φϕ,g,K is finite at some
point a ∈ D, then it is continuous on D.

Proof. We follow the lines of Lemma 2.3 in [24]. From the elementary inequality

(1 − |a|)(1 − |a1|)
4

≤ 1 − ∣∣ηa(z)
∣∣2

1 − ∣∣ηa1(z)
∣∣2

≤ 4
(1 − |a|)(1 − |a1|) , a, a1, z ∈ D, (2.6)

and since K is nondecreasing and satisfies (1.10), we easily get

K
(
1 − ∣∣ηa1(z)

∣∣2
)
≤ C[log2(4/(1−|a|)(1−|a1|))]+1K

(
1 − ∣∣ηa(z)

∣∣2
)
. (2.7)
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From (2.7) and since Φϕ,g,K(a) is finite, it follows that Φϕ,g,K is finite at each point a1 ∈ D. Let
a ∈ D be fixed, and let (al)l∈N

⊂ D be a sequence converging to a.
We have

∣
∣Φϕ,g,K(a) −Φϕ,g,K(al)

∣
∣ ≤
∫

D

∣
∣g(z)

∣
∣2
∣
∣
∣K
(
1 − ∣∣ηa(z)

∣
∣2
)
−K
(
1 − ∣∣ηal(z)

∣
∣2
)∣∣
∣

(
1 − ∣∣ϕ(z)∣∣2

)2(α+n−1) dm(z). (2.8)

From (2.6), we have that for l such that 1 − |al| ≥ (1 − |a|)/2, say l ≥ l0, holds

1 − ∣∣ηal(z)
∣
∣2 ≤ 8

(1 − |a|)2
(
1 − ∣∣ηa(z)

∣
∣2
)
, (2.9)

and consequently for l ≥ l0, it holds

∣∣∣K
(
1 − ∣∣ηa(z)

∣∣2
)
−K
(
1 − ∣∣ηal(z)

∣∣2
)∣∣∣≤

(
1 + C[log2(8/(1−|a|)2)]+1

)
K
(
1 − ∣∣ηa(z)

∣∣2
)
. (2.10)

From this and since Φϕ,g,K is finite at a, by the Lebesgue dominated convergence
theorem, we get that the integral in (2.8) converges to zero as l → ∞ which implies that
Φϕ,g,K(al) → Φϕ,g,K(a) as l → ∞, from which the lemma follows.

3. Boundedness and Compactness of I(n)ϕ,g : Bα(or Bα
0) → QK(or QK,0)

In this section, we characterize the boundedness and compactness of the operators I
(n)
ϕ,g :

Bα(or Bα
0) → QK(or QK,0). Let

dμϕ,g,n,α(z) =
∣∣g(z)

∣∣2
(
1 − ∣∣ϕ(z)∣∣2

)2(1−α−n)
dm(z). (3.1)

Theorem 3.1. Let α > 0, K ∈ Ω(0,∞), ϕ ∈ S(D), g ∈ H(D), and n ∈ N, or n = 0 and α > 1.
Then the following statements are equivalent.

(a) I(n)ϕ,g : Bα → QK is bounded.

(b) I(n)ϕ,g : Bα
0 → QK is bounded.

(c) M := supa∈D

∫
D
K(1 − |ηa(z)|2)|g(z)|2(1 − |ϕ(z)|2)2(1−α−n)dm(z) < ∞.

(d) dμϕ,g,n,α(z) is a K-Carleson measure.

Moreover, if I(n)ϕ,g : Bα → QK is bounded, then the next asymptotic relations hold

∥∥∥I(n)ϕ,g

∥∥∥
Bα →QK

	
∥∥∥I(n)ϕ,g

∥∥∥
Bα
0 →QK

	 M1/2. (3.2)
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Proof. By Theorem 1.1, it is clear that (c) and (d) are equivalent.
(c) ⇒ (a). Let f ∈ BBα . First note that I(n)ϕ,gf(0) = 0 for each f ∈ H(B) and n ∈ N0. From

this and by Lemma 2.1, we have

∥
∥
∥I(n)ϕ,gf

∥
∥
∥
2

QK

= sup
a∈D

∫

D

∣
∣
∣
(
I
(n)
ϕ,gf
)
′(z)
∣
∣
∣
2
K
(
1 − ∣∣ηa(z)

∣
∣2
)
dm(z)

= sup
a∈D

∫

D

∣
∣
∣f (n)(ϕ(z)

)∣∣
∣
2∣
∣g(z)

∣
∣2K
(
1 − ∣∣ηa(z)

∣
∣2
)
dm(z)

≤ C
∥
∥f
∥
∥2
Bαsup

a∈D

∫

D

K
(
1 − ∣∣ηa(z)

∣
∣2
)∣
∣g(z)

∣
∣2
(
1 − ∣∣ϕ(z)∣∣2

)2(1−α−n)
dm(z),

(3.3)

from which the boundedness of I(n)ϕ,g : Bα → QK follows, and moreover

∥∥∥I(n)ϕ,g

∥∥∥
Bα →QK

≤ CM1/2. (3.4)

(a) ⇒ (b). This implication is obvious.
(b) ⇒ (c). By Lemma 2.2, if n ∈ N, there are two functions f1, f2 ∈ Bα such that (2.3)

holds, and if n = 0 and α > 1 such that (2.4) holds. Let

h1(z) = f1(z) −
n−1∑

k=1

f
(k)
1 (0)
k!

zk, h2(z) = f2(z) −
n−1∑

k=1

f
(k)
2 (0)
k!

zk. (3.5)

It is known (see [30]) that for each f ∈ H(D) and n ∈ N, we have

(
1 − |z|2

)α+n−1∣∣∣f (n)(z)
∣∣∣ +

n−1∑

k=1

∣∣∣f (k)(0)
∣∣∣ 	
(
1 − |z|2

)α∣∣f ′(z)
∣∣. (3.6)

From this, Lemma 2.2, and since h
(k)
1 (0) = h

(k)
2 (0) = 0, k = 0, 1, . . . , n − 1, we have that

there is a δ > 0 such that

C
(
1 − |z|2

)−(α+n−1) ≤
∣∣∣h(n)

1 (z)
∣∣∣ +
∣∣∣h(n)

2 (z)
∣∣∣, for |z| > δ. (3.7)

Now note that for any f ∈ Bα, the functions fr(z) = f(rz), r ∈ (0, 1) belong to Bα, and
moreover, sup0<r<1‖fr‖Bα ≤ ‖f‖Bα .
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Applying (3.7), using an elementary inequality, the boundedness of I(n)ϕ,g : Bα
0 → QK,

and the last inequality, we obtain

∫

|rϕ(z)|>δ
r2nK

(
1 − ∣∣ηa(z)

∣
∣2
)∣
∣g(z)

∣
∣2
(
1 − (r∣∣ϕ(z)∣∣)2

)2(1−α−n)
dm(z)

≤ C

∫

D

r2nK
(
1 − ∣∣ηa(z)

∣
∣2
)∣
∣g(z)

∣
∣2
(∣
∣
∣h(n)

1

(
rϕ(z)

)∣∣
∣
2
+
∣
∣
∣h(n)

2

(
rϕ(z)

)∣∣
∣
2
)
dm(z)

= C

∫

D

K
(
1 − ∣∣ηa(z)

∣
∣2
)∣∣
∣
∣
(
I
(n)
ϕ,g(h1)r

)′
(z)
∣
∣
∣
∣

2

dm(z)

+ C

∫

D

K
(
1 − ∣∣ηa(z)

∣
∣2
)∣∣
∣
∣
(
I
(n)
ϕ,g(h2)r

)′
(z)
∣
∣
∣
∣

2

dm(z)

≤
∥
∥∥I(n)ϕ,g

∥
∥∥
2

Bα
0 →QK

(
‖h1‖2Bα + ‖h2‖2Bα

)
.

(3.8)

Letting r → 1 in (3.8) and using the monotone convergence theorem, we get

∫

|ϕ(z)|>δ
K
(
1 − ∣∣ηa(z)

∣∣2
)∣∣g(z)

∣∣2
(
1 − ∣∣ϕ(z)∣∣2

)2(1−α−n)
dm(z) ≤ C

∥∥∥I(n)ϕ,g

∥∥∥
2

Bα
0 →QK

. (3.9)

On the other hand, for f0(z) = zn/n! ∈ Bα
0 , we get I(n)ϕ,gf0 ∈ QK which implies

sup
α∈D

∫

|ϕ(z)|≤δ
K
(
1 − ∣∣ηa(z)

∣∣2
)∣∣g(z)

∣∣2
(
1 − ∣∣ϕ(z)∣∣2

)2(1−α−n)
dm(z) ≤

∥∥∥I(n)ϕ,g

∥∥∥
2

Bα
0 →QK

∥∥f0
∥∥2
Bα

(1 − δ2)2(α+n−1)
.

(3.10)

From (3.9) and (3.10), (c) follows. Moreover we get M1/2 ≤ C‖I(n)ϕ,g‖Bα
0 →QK

. From this, (3.4)

and since ‖I(n)ϕ,g‖Bα
0 →QK

≤ ‖I(n)ϕ,g‖Bα →QK
the asymptotic relations in (3.2) follow, finishing the

proof of the theorem.

Theorem 3.2. Let α > 0, K ∈ Ω(0,∞), ϕ ∈ S(D), g ∈ H(D), and n ∈ N, or n = 0 and α > 1. Let
I
(n)
ϕ,g : Bα → QK be bounded. Then the following statements are equivalent.

(a) I(n)ϕ,g : Bα → QK is compact.

(b) I(n)ϕ,g : Bα
0 → QK is compact.

(c) I(n)ϕ,g : Bα
0 → QK is weakly compact.

(d) supa∈D

∫
D
K(1 − |ηa(z)|2)|g(z)|2dm(z) < ∞, and

lim
r→ 1

sup
a∈D

∫

|ϕ(z)|>r
K
(
1 − ∣∣ηa(z)

∣∣2
)∣∣g(z)

∣∣2
(
1 − ∣∣ϕ(z)∣∣2

)2(1−α−n)
dm(z) = 0. (3.11)
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Proof. By Lemma 2.4, we have that (b) is equivalent to (c).
(d) ⇒ (a). Let (fl)l∈N

be a bounded sequence in Bα, say by L, converging to zero
uniformly on compacts of D. Then f

(n)
l also converges to zero uniformly on compacts of D.

From (3.11) we have that for every ε > 0 there is an r1 ∈ (0, 1) such that for r ∈ (r1, 1)

sup
a∈D

∫

|ϕ(z)|>r
K
(
1 − ∣∣ηa(z)

∣
∣2
)∣
∣g(z)

∣
∣2
(
1 − ∣∣ϕ(z)∣∣2

)2(1−α−n)
dm(z) < ε. (3.12)

Therefore, by Lemma 2.1 and (3.12), we have that for r ∈ (r1, 1)

∥
∥
∥I(n)ϕ,gfl

∥
∥
∥
2

QK

=

(∫

|ϕ(z)|≤r
+
∫

|ϕ(z)|>r

)∣
∣
∣f (n)

l

(
ϕ(z)

)∣∣
∣
2
K
(
1 − ∣∣ηa(z)

∣
∣2
)∣
∣g(z)

∣
∣2dm(z)

< sup
|ϕ(z)|≤r

∣∣∣f (n)
l

(
ϕ(z)

)∣∣∣
2
∫

D

K
(
1 − ∣∣ηa(z)

∣∣2
)∣∣g(z)

∣∣2dm(z) + CL2ε.

(3.13)

Letting l → ∞ in (3.13), using the first condition in (d) and sup|w|≤r |f
(n)
l (w)| → 0 as l → ∞,

it follows that liml→∞‖I(n)ϕ,gfl‖QK
= 0. Thus, by Lemma 2.3, I(n)ϕ,g : Bα → QK is compact.

(a)⇒ (b). The implication is trivial since Bα
0 ⊂ Bα.

(b) ⇒ (d). By choosing f(z) = zn/n! ∈ Bα
0 , n ∈ N0, we have that the first condition

in (d) holds. Let fl(z) = zl/l, l ∈ N. It is easy to see that (fl)l∈N
is a bounded sequence in

Bα
0 converging to zero uniformly on compacts of D. Hence, by Lemma 2.3, it follows that

‖I(n)ϕ,g(fl)‖QK → 0 as l → ∞. Thus, for every ε > 0, there is an l0 ∈ N, l0 > n such that for l ≥ l0

⎛

⎝
n−1∏

j=1

(
l − j
)
⎞

⎠

2

sup
a∈D

∫

D

∣∣ϕ(z)
∣∣2(l−n)K

(
1 − ∣∣ηa(z)

∣∣2
)∣∣g(z)

∣∣2dm(z) < ε. (3.14)

From (3.14) we have that for each r ∈ (0, 1) and l ≥ l0

r2(l−n)

⎛

⎝
n−1∏

j=1

(
l − j
)
⎞

⎠

2

sup
a∈D

∫

|ϕ(z)|>r
K
(
1 − ∣∣ηa(z)

∣∣2
)∣∣g(z)

∣∣2dm(z) < ε. (3.15)

Hence, for r ∈ [(
∏n−1

j=1 (l0 − j))
−1/(l0−n)

, 1), we have that

sup
a∈D

∫

|ϕ(z)|>r
K
(
1 − ∣∣ηa(z)

∣∣2
)∣∣g(z)

∣∣2dm(z) < ε. (3.16)



10 Abstract and Applied Analysis

Let f ∈ BBα
0
, and let ft(z) = f(tz), 0 < t < 1. Then sup0<t<1‖ft‖Bα ≤ ‖f‖Bα , ft ∈ Bα

0 ,
t ∈ (0, 1), and ft → f uniformly on compact subsets of D as t → 1. The compactness of
I
(n)
ϕ,g : Bα

0 → QK implies

lim
t→ 1

∥
∥
∥I(n)ϕ,gft − I

(n)
ϕ,gf
∥
∥
∥
QK

= 0. (3.17)

Hence, for every ε > 0, there is a t ∈ (0, 1) such that

sup
a∈D

∫

D

∣
∣
∣f (n)

t

(
ϕ(z)

) − f (n)(ϕ(z)
)∣∣
∣
2
K
(
1 − ∣∣ηa(z)

∣
∣2
) ∣
∣g(z)

∣
∣2dm(z) < ε. (3.18)

From this and (3.16), we have that for such t and each r ∈ [(
∏n−1

j=1 (l0 − j))
−1/(l0−n)

, 1)

sup
a∈D

∫

|ϕ(z)|>r
∣∣∣f (n)(ϕ(z)

)∣∣∣
2
K
(
1 − ∣∣ηa(z)

∣∣2
)∣∣g(z)

∣∣2dm(z)

≤ 2 sup
a∈D

∫

|ϕ(z)|>r

∣∣∣f (n)
t

(
ϕ(z)

) − f (n)(ϕ(z)
)∣∣∣

2
K
(
1 − ∣∣ηa(z)

∣∣2
)∣∣g(z)

∣∣2dm(z)

+ 2 sup
a∈D

∫

|ϕ(z)|>r

∣∣∣f (n)
t

(
ϕ(z)

)∣∣∣
2
K
(
1 − ∣∣ηa(z)

∣∣2
)∣∣g(z)

∣∣2dm(z)

< 2ε
(
1 +
∥∥∥f (n)

t

∥∥∥
2

∞

)
.

(3.19)

From (3.19) we conclude that for every f ∈ BBα
0
, there is a δ0 ∈ (0, 1) and δ0 = δ0(f, ε) such

that for r ∈ (δ0, 1)

sup
a∈D

∫

|ϕ(z)|>r
∣∣∣f (n)(ϕ(z)

)∣∣∣
2
K
(
1 − ∣∣ηa(z)

∣∣2
)∣∣g(z)

∣∣2dm(z) < ε. (3.20)

Since I(n)ϕ,g : Bα
0 → QK is compact, we have that for every ε > 0 there is a finite collection

of functions f1, f2, . . . , fk ∈ BBα
0
such that, for each f ∈ BBα

0
, there is a j ∈ {1, . . . , k}, such that

sup
a∈D

∫

D

∣∣∣f (n)(ϕ(z)
) − f

(n)
j

(
ϕ(z)

)∣∣∣
2
K
(
1 − ∣∣ηa(z)

∣∣2
)∣∣g(z)

∣∣2dm(z) < ε. (3.21)

On the other hand, from (3.20), it follows that if δ̂ := max1≤j≤kδj(fj , ε), then for r ∈ (δ̂, 1) and
all j ∈ {1, . . . , k}, we have

sup
a∈D

∫

|ϕ(z)|>r

∣∣∣f (n)
j

(
ϕ(z)

)∣∣∣
2
K
(
1 − ∣∣ηa(z)

∣∣2
)∣∣g(z)

∣∣2dm(z) < ε. (3.22)
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From (3.21) and (3.22), we have that for r ∈ (δ̂, 1) and every f ∈ BBα
0

sup
a∈D

∫

|ϕ(z)|>r

∣
∣
∣f (n)(ϕ(z)

)∣∣
∣
2
K
(
1 − ∣∣ηa(z)

∣
∣2
)∣
∣g(z)

∣
∣2dm(z) < 4ε. (3.23)

If we apply (3.23) to the delays of the functions in (3.5) which are normalized so that they
belong to BBα and then use the monotone convergence theorem, we easily get that for r >

max{δ, δ̂}where δ is chosen as in (3.7)

sup
a∈D

∫

|ϕ(z)|>r
K
(
1 − ∣∣ηa(z)

∣
∣2
)∣
∣g(z)

∣
∣2
(
1 − ∣∣ϕ(z)∣∣2

)2(1−α−n)
dm(z) < Cε, (3.24)

from which (3.11) follows, as desired.

Theorem 3.3. Let α > 0, K ∈ Ω(0,∞), ϕ ∈ S(D), g ∈ H(D) and n ∈ N, or n = 0 and α > 1. Then
the next statements are equivalent.

(a) I(n)ϕ,g : Bα → QK,0 is bounded.

(b) I(n)ϕ,g : Bα → QK,0 is compact.

(c) I(n)ϕ,g : Bα
0 → QK,0 is compact.

(d) I(n)ϕ,g : Bα
0 → QK,0 is weakly compact.

(e) lim|a|→ 1
∫
D
K(1 − |ηa(z)|2)|g(z)|2(1 − |ϕ(z)|2)2(1−α−n)dm(z) = 0.

(f) dμϕ,g,n,α(z) is a vanishing K-Carleson measure.

Proof. By Theorem 1.1, (e) and (f) are equivalent; by Lemma 2.4, (c) is equivalent to (d),
while, by Lemma 2.5, (a) is equivalent to (c). Also (b) obviously implies (a).

(a) ⇒ (e) Let h1 and h2 be as in (3.5). Then from (3.7) and an elementary inequality,
we get

∫

|ϕ(z)|>δ
K
(
1 − ∣∣ηa(z)

∣∣2
)(

1 − ∣∣ϕ(z)∣∣2
)2(1−α−n)∣∣g(z)

∣∣2dm(z)

≤ C

∫

D

K
(
1 − ∣∣ηa(z)

∣∣2
)∣∣∣∣
(
I
(n)
ϕ,gh1

)′
(z)
∣∣∣∣

2

dm(z)

+ C

∫

D

K
(
1 − ∣∣ηa(z)

∣∣2
)∣∣∣∣
(
I
(n)
ϕ,gh2

)′
(z)
∣∣∣∣

2

dm(z).

(3.25)

For f0(z) = zn/n! ∈ Bα, we get I(n)ϕ,gf0 ∈ QK,0. From this and since I
(n)
ϕ,g(hj) ∈ QK,0, j = 1, 2, by

letting |a| → 1, we get that (e) holds.
(e)⇒ (b). We have that for every ε > 0 there is a δ ∈ (0, 1) so that for |a| > δ

Φϕ,g,K(a) < ε. (3.26)
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On the other hand, by Lemma 2.6, Φϕ,g,K is continuous on |a| ≤ δ, so uniformly
bounded therein, which along with (3.26) gives the boundedness of Φϕ,g,K on D. Hence, by
Theorem 3.1, I(n)ϕ,g : Bα → QK is bounded. By Lemma 2.1, we have

lim
|a|→ 1

sup
‖f‖Bα≤1

∫

D

∣
∣
∣∣
(
I
(n)
ϕ,gf
)′
(z)
∣
∣
∣∣

2

K
(
1 − ∣∣ηa(z)

∣
∣2
)
dm(z)

≤ C sup
‖f‖Bα≤1

∥
∥f
∥
∥2
Bα lim|a|→ 1

Φϕ,g,K(a) = C lim
|a|→ 1

Φϕ,g,K(a) = 0,

(3.27)

so I
(n)
ϕ,g : Bα → QK,0 is bounded.

Now assume that (fl)l∈N
is a bounded sequence in Bα, say by L, converging to zero

uniformly on compacta of D as l → ∞. To show that the operator I
(n)
ϕ,g : Bα → QK,0 is

compact, it is enough to prove that there is a subsequence (flk)k∈N
of (fl)l∈N

such that I(n)ϕ,gflk
converges in QK,0 as k → ∞. By Lemma 2.1 and Montel’s theorem, it follows that there is a
subsequence, which we may denote again by (fl)l∈N

converging uniformly on compacta of D

to an f ∈ Bα, such that ‖f‖Bα ≤ L. Since I
(n)
ϕ,g(Bα) ⊆ QK,0, then clearly I

(n)
ϕ,gf ∈ QK,0. We show

that

lim
l→∞

∥∥∥I(n)ϕ,gfl − I
(n)
ϕ,g f

∥∥∥
QK

= 0. (3.28)

From (3.26), Lemma 2.1, and some simple calculation, we obtain

sup
δ<|a|<1

∫

D

∣∣∣∣
(
I
(n)
ϕ,gfl(z) − I

(n)
ϕ,gf(z)

)′∣∣∣∣
2

K
(
1 − ∣∣ηa(z)

∣∣2
)
dm(z) < 4CL2ε. (3.29)

For a ∈ D and t ∈ (0, 1), let

Ψt(a) =
∫

D\tD
K
(
1 − ∣∣ηa(z)

∣∣2
)∣∣g(z)

∣∣2
(
1 − ∣∣ϕ(z)∣∣2

)2(1−α−n)
dm(z). (3.30)

Lemma 2.6 essentially shows that Ψt is continuous on D. Hence, for each a ∈ D, there is a
t(a) ∈ (r, 1) such that Ψt(a)(a) < ε/2. Moreover, there is a neighborhood O(a) of a such that,
for every b ∈ O(a), Ψt(a)(b) < ε. From this and since the set |a| ≤ δ is compact, it follows that
there is a t0 ∈ (0, 1) such thatΨt0(a) < εwhen |a| ≤ δ. This along with Lemma 2.1 implies that

sup
|a|≤δ

∫

D\t0D

∣∣∣∣
(
I
(n)
ϕ,gfl(z) − I

(n)
ϕ,gf(z)

)′∣∣∣∣
2

K
(
1 − ∣∣ηa(z)

∣∣2
)
dm(z)

≤ C
∥∥fl − f

∥∥2
Bαsup

|a|≤δ
Ψt0(a) < 4CL2ε.

(3.31)
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By theWeierstrass theorem f
(n)
l → f (n) uniformly on compacta as l → ∞, fromwhich

along with (2.2) and since ϕ(t0D) is compact, for r = supw∈ϕ(t0D)|w|, it follows that

sup
|a|≤δ

∫

t0D

∣
∣
∣
∣
(
I
(n)
ϕ,gfl(z) − I

(n)
ϕ,gf(z)

)′∣∣
∣
∣

2

K
(
1 − ∣∣ηa(z)

∣
∣2
)
dm(z)

≤ C sup
|z|≤r

∣
∣
∣
(
fl − f

)(n)(z)
∣
∣
∣
2
sup
|a|≤δ

Φϕ,g,K(a) −→ 0, as l −→ ∞.

(3.32)

From (3.29)–(3.32) and since I(n)ϕ,gf(0) = 0 for each f ∈ H(D), we easily get (3.28), from
which (b) follows, finishing the proof of this theorem.

Theorem 3.4. Let α > 0, K ∈ Ω(0,∞), ϕ ∈ S(D), g ∈ H(D), and n ∈ N, or n = 0 and α > 1.
Then the following statements are equivalent.

(a) I(n)ϕ,g : Bα
0 → QK,0 is bounded,

(b) supa∈D

∫
D
|g(z)|2K(1 − |ηa(z)|2)(1 − |ϕ(z)|2)2(1−α−n)dm(z) < ∞, and

lim
|a|→ 1

∫

D

∣∣g(z)
∣∣2K
(
1 − ∣∣ηa(z)

∣∣2
)
dm(z) = 0. (3.33)

Proof. Suppose (b) holds and f ∈ Bα
0 . Then by Theorem 3.1, I(n)ϕ,g : Bα

0 → QK is bounded. We

show I
(n)
ϕ,gf ∈ QK,0, for every f ∈ Bα

0 . Since f ∈ Bα
0 , we have that, for every ε > 0, there is an

r ∈ (0, 1) such that (see, e.g., the idea in [35, Lemma 2.4])

∣∣∣f (n)(ϕ(z)
)∣∣∣

2(
1 − ∣∣ϕ(z)∣∣2

)2(α+n−1)
< ε for

∣∣ϕ(z)
∣∣ > r. (3.34)

Thus,

sup
a∈D

∫

|ϕ(z)|>r

∣∣∣∣
(
I
(n)
ϕ,gf(z)

)′∣∣∣∣
2

K
(
1 − ∣∣ηa(z)

∣∣2
)
dm(z)

< ε sup
a∈D

∫

D

K
(
1 − ∣∣ηa(z)

∣∣2
)(

1 − ∣∣ϕ(z)∣∣2
)2(1−α−n)∣∣g(z)

∣∣2dm(z).

(3.35)

We also have

lim
|a|→ 1

∫

|ϕ(z)|≤r

∣∣∣∣
(
I
(n)
ϕ,gf(z)

)′∣∣∣∣
2

K
(
1 − ∣∣ηa(z)

∣∣2
)
dm(z)

≤ C

∥∥f
∥∥2
Bα

(1 − r2)2(α+n−1)
lim
|a|→ 1

∫

|ϕ(z)|≤r
K
(
1 − ∣∣ηa(z)

∣∣2
)∣∣g(z)

∣∣2dm(z)

≤ C

∥∥f
∥∥2
Bα

(1 − r2)2(α+n−1)
lim
|a|→ 1

∫

D

K
(
1 − ∣∣ηa(z)

∣∣2
)∣∣g(z)

∣∣2dm(z) = 0.

(3.36)
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Combining (3.35) and (3.36), we get I(n)ϕ,gf ∈ QK,0. Hence, I(n)ϕ,g : Bα
0 → QK,0 is bounded.

Conversely, if I(n)ϕ,g : Bα
0 → QK,0 is bounded, then I

(n)
ϕ,g : Bα

0 → QK is bounded too. Thus,

by Theorem 3.1, we get the first condition in (b). For f0(z) = zn/n! ∈ Bα
0 , we get I(n)ϕ,gf0 ∈ QK,0,

which is equivalent to (3.33), finishing the proof of the theorem.

If n = 0, we simply denote the operator I(0)ϕ,g by Iϕ,g .

Theorem 3.5. Let α ∈ (0, 1), K ∈ Ω(0,∞), ϕ ∈ S(D), and g ∈ H(D). Then the following
statements are equivalent.

(a) Iϕ,g : Bα → QK is bounded.

(b) Iϕ,g : Bα
0 → QK is bounded.

(c) M1 := supa∈D

∫
D
K(1 − |ηa(z)|2)|g(z)|2dm(z) < ∞.

(d) dμ1(z) = |g(z)|2dm(z) is a K-Carleson measure.

(e) Iϕ,g : Bα → QK is compact.

(f) Iϕ,g : Bα
0 → QK is compact.

(g) Iϕ,g : Bα
0 → QK is weakly compact.

Moreover, if Iϕ,g : Bα → QK is bounded, then the next asymptotic relations hold

∥∥Iϕ,g
∥∥
Bα →QK

	 ∥∥Iϕ,g
∥∥
Bα
0 →QK

	 M1/2
1 . (3.37)

Proof. The proof of the equivalence of statements (a)–(d) of this theorem is similar to the
proof of Theorem 3.1; moreover, the implication (b)⇒ (c) is much simpler since it follows by
using the test function f0(z) ≡ 1. That (c) is equivalent to (e)–(g) is proved similarly as in
Theorem 3.2, by using the well-known fact that if a bounded sequence (fl)l∈N

in Bα, α ∈ (0, 1)
converges to zero uniformly on compacts of D, then it converges to zero uniformly on the
whole D. The details are omitted.

The proof of the next theorem is similar to the proofs of Theorems 3.3 and 3.4 and will
be omitted.

Theorem 3.6. Let α ∈ (0, 1), K ∈ Ω(0,∞), ϕ ∈ S(D), and g ∈ H(D). Then the following
statements are equivalent.

(a) Iϕ,g : Bα
0 → QK,0 is bounded.

(b) Iϕ,g : Bα → QK,0 is bounded.

(c) Iϕ,g : Bα → QK,0 is compact.

(d) Iϕ,g : Bα
0 → QK,0 is compact.

(e) Iϕ,g : Bα
0 → QK,0 is weakly compact.

(f) lim|a|→ 1
∫
D
K(1 − |ηa(z)|2)|g(z)|2dm(z) = 0.

(g) dμ1(z) = |g(z)|2dm(z) is a vanishing K-Carleson measure.



Abstract and Applied Analysis 15

Acknowledgment

This work is partially supported by the National Board of Higher Mathematics
(NBHM)/DAE, India (Grant no. 48/4/2009/R&D-II/426) and by the Serbian Ministry of
Science (Projects III41025 and III44006).

References

[1] H. Wulan and K. Zhu, “QK spaces via higher order derivatives,” The Rocky Mountain Journal of
Mathematics, vol. 38, no. 1, pp. 329–350, 2008.

[2] J. Xiao, Holomorphic Q Classes, vol. 1767 of Lecture Notes in Mathematics, Springer, Berlin, Germany,
2001.

[3] H. Wulan and K. Zhu, “Derivative-free characterizations of QK spaces,” Journal of the Australian
Mathematical Society, vol. 82, no. 2, pp. 283–295, 2007.
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