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The purpose of this paper is to present a new hybrid block iterative scheme by the generalized f -
projection method for finding a common element of the fixed point set for a countable family of
uniformly quasi-φ-asymptotically nonexpansivemappings and the set of solutions of the system of
generalized mixed equilibrium problems in a strictly convex and uniformly smooth Banach space
with the Kadec-Klee property. Furthermore, we prove that our new iterative scheme converges
strongly to a common element of the aforementioned sets. The results presented in this paper
improve and extend important recent results in the literature.

1. Introduction

Let E be a Banach space with it’s dual space E∗, and letC be a nonempty closed convex subset
of E. It is well known that the metric projection operator PC : E → C plays an important
role in nonlinear functional analysis, optimization theory, fixed point theory, nonlinear
programming problems, game theory, variational inequality, complementarity problems, and
so forth (see, e.g., [1, 2] and the references therein). In 1994, Alber [3] introduced and
studied the generalized projections ΠE : E → C and πC : E∗ → C from Hilbert spaces
to uniformly convex and uniformly smooth Banach spaces. Moreover, Alber [1] presented
some applications of the generalized projections for approximately solving the variational
inequalities and von Neumann’s intersection problem in Banach spaces. In 2005, Li [2]
extended the generalized projection operator from uniformly convex and uniformly smooth
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Banach spaces to reflexive Banach spaces and studied some properties of the generalized
projection operator with applications to solving the variational inequality in Banach spaces.
Later, Wu and Huang [4] introduced a new generalized f-projection operator in Banach
spaces. They extended the definition of the generalized projection operators introduced by
Abler [3] and proved some properties of the generalized f-projection operator. In 2009, Fan
et al. [5] presented some basic results for the generalized f-projection operator and discussed
the existence of solutions and approximation of the solutions for generalized variational
inequalities in noncompact subsets of Banach spaces.

Block iterative method is a method which is often used by many authors to solve
the convex feasibility problem (CFP) (see, [6, 7], etc.). In 2008, Plubtieng and Ungchittrakool
[8] established strong convergence theorems of block iterative methods for a finite family
of relatively nonexpansive mappings in a Banach space by using the hybrid method in
mathematical programming. Later, Saewan and Kumam [9, 10] introduced a new modified
block hybrid projection algorithm for finding a common element of the set of solutions of the
generalized equilibrium problems and the set of common fixed points of an infinite family of
closed and uniformly quasi-φ-asymptotically nonexpansive mappings in a uniformly smooth
and strictly convex Banach space E with the Kadec-Klee property.

On the other hand, let {θi}i∈Γ : C×C → R be a bifunction, let {ϕi}i∈Γ : C → R be a real-
valued function, and let {Ai}i∈Γ : C → E∗ be a monotone mapping, where Γ is an arbitrary
index set. The system of generalized mixed equilibrium problems is to find x ∈ C such that

θi
(
x, y

)
+
〈
Aix, y − x

〉
+ ϕi

(
y
) − ϕi(x) ≥ 0, i ∈ Γ, ∀y ∈ C. (1.1)

If Γ is a singleton, then problem (1.1) reduces into the generalized mixed equilibrium problem,
which is to find x ∈ C such that

θ
(
x, y

)
+
〈
Ax, y − x

〉
+ ϕ

(
y
) − ϕ(x) ≥ 0, ∀y ∈ C. (1.2)

The set of solutions (1.2) is denoted by GMEP(θ,A, ϕ), that is,

GMEP
(
θ,A, ϕ

)
=
{
x ∈ C : θ

(
x, y

)
+
〈
Ax, y − x

〉
+ ϕ

(
y
) − ϕ(x) ≥ 0, ∀y ∈ C

}
. (1.3)

If A ≡ 0, the problem (1.2) reduces into the mixed equilibrium problem for θ, denoted by
MEP(θ, ϕ), which is to find x ∈ C such that

θ
(
x, y

)
+ ϕ

(
y
) − ϕ(x) ≥ 0, ∀y ∈ C. (1.4)

If θ ≡ 0, the problem (1.2) reduces into the mixed variational inequality of Browder type,
denoted by VI(C,A, ϕ), which is to find x ∈ C such that

〈
Ax, y − x

〉
+ ϕ

(
y
) − ϕ(x) ≥ 0, ∀y ∈ C. (1.5)

If A ≡ 0 and ϕ ≡ 0, the problem (1.2) reduces into the equilibrium problem for θ, denoted by
EP(θ), which is to find x ∈ C such that

θ
(
x, y

) ≥ 0, ∀y ∈ C. (1.6)
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If θ ≡ 0, the problem (1.4) reduces into the minimize problem, denoted by arg min(ϕ), which is
to find x ∈ C such that

ϕ
(
y
) − ϕ(x) ≥ 0, ∀y ∈ C. (1.7)

The above formulation (1.5)was shown in [11] to covermonotone inclusion problems, saddle
point problems, variational inequality problems, minimization problems, optimization
problems, variational inequality problems, vector equilibrium problems, and Nash equilibria
in noncooperative games. In other words, the EP(θ) is an unifyingmodel for several problems
arising in physics, engineering, science, optimization, economics, and so forth. Some solution
methods have been proposed to solve the EP(θ); see, for example, [11–24] and references
therein.

A point x ∈ C is a fixed point of a mapping S : C → C if Sx = x, by F(S) denote the set
of fixed points of S; that is, F(S) = {x ∈ C : Sx = x}. Recall that S is said to be nonexpansive if

∥∥Sx − Sy
∥∥ ≤ ∥∥x − y

∥∥, ∀x, y ∈ C. (1.8)

S is said to be quasi-nonexpansive if F(S)/= ∅ and
∥∥x − Sy

∥∥≤ ∥∥x − y
∥∥, ∀x ∈ F(S), y ∈ C. (1.9)

S is said to be asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,∞)with kn → 1
as n → ∞ such that

∥∥Snx − Sny
∥∥ ≤ kn

∥∥x − y
∥∥, ∀x, y ∈ C, ∀n ≥ 1. (1.10)

S is said to be asymptotically quasi-nonexpansive if F(S)/= ∅ and there exists a sequence {kn} ⊂
[1,∞)with kn → 1 as n → ∞ such that

∥∥x − Sny
∥∥≤ kn

∥∥x − y
∥∥, ∀x ∈ F(S), y ∈ C, ∀n ≥ 1. (1.11)

Recall that a point p in C is said to be an asymptotic fixed point of S [25] if C contains
a sequence {xn} which converges weakly to p such that limn→∞‖xn − Sxn‖ = 0. The set of
asymptotic fixed points of S will be denoted by F̃(S).

Let E be a real Banach space with norm ‖ · ‖, let C be a nonempty closed convex subset
of E, and let E∗ denote the dual of E. Let 〈·, ·〉 denote the duality pairing of E∗ and E. If E is a
Hilbert space, 〈·, ·〉 denotes an inner product on E. Consider the functional defined by

φ
(
x, y

)
= ‖x‖2 − 2

〈
x, Jy

〉
+
∥∥y

∥∥2
, for x, y ∈ E, (1.12)

where J : E → 2E
∗
is the normalized duality mapping.

A mapping S from C into itself is said to be relatively nonexpansive [26–28] if F̃(S) =
F(S)/= ∅ and

φ
(
p, Sx

) ≤ φ
(
p, x

)
, ∀x ∈ C, p ∈ F(S). (1.13)
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S is said to be relatively asymptotic nonexpansive [29] if F̃(S) = F(S)/= ∅ and there exists a
sequence {kn} ⊂ [1,∞)with kn → 1 as n → ∞ such that

φ
(
p, Snx

) ≤ knφ
(
p, x

)
, ∀x ∈ C, p ∈ F(S), n ≥ 1. (1.14)

The asymptotic behavior of a relatively nonexpansive mapping was studied in [30–32].
S is said to be φ-nonexpansive if

φ
(
Sx, Sy

) ≤ φ
(
x, y

)
, ∀x, y ∈ C. (1.15)

S is said to be quasi φ-nonexpansive [17, 33, 34] if F(S)/= ∅ and

φ
(
p, Sx

) ≤ φ
(
p, x

)
, ∀x ∈ C, p ∈ F(S). (1.16)

S is said to be φ-asymptotically nonexpansive if there exists a real sequence {kn} ⊂ [1,∞) with
kn → 1 as n → ∞ such that

φ
(
Snx, Sny

) ≤ knφ
(
x, y

)
, ∀x, y ∈ C. (1.17)

S is said to be quasi φ-asymptotically nonexpansive [34, 35] if F(S)/= ∅ and there exists a real
sequence {kn} ⊂ [1,∞)with kn → 1 as n → ∞ such that

φ
(
p, Snx

) ≤ knφ
(
p, x

)
, ∀x ∈ C, p ∈ F(S), n ≥ 1. (1.18)

A mapping S is said to be closed if for any sequence {xn} ⊂ C with xn → x and Sxn → y,
then Sx = y.

Remark 1.1. It is easy to know that each relatively nonexpansive mapping is closed. The
class of quasi-φ-asymptotically nonexpansive mappings contains properly the class of quasi-
φ-nonexpansive mappings as a subclass, and the class of quasi-φ-nonexpansive mappings
contains properly the class of relatively nonexpansive mappings as a subclass, but the
converse is not true (see for more detail [30–32, 36]).

As well known if C is a nonempty closed convex subset of a Hilbert space H and
PC : H → C is the metric projection of H onto C, then PC is nonexpansive. This fact actually
characterizes Hilbert spaces, and consequently, it is not available in more general Banach
spaces. In this connection, Alber [1] recently introduced the generalized projectionΠC : E → C
is a map that assigns to an arbitrary point x ∈ E the minimum point of the functional φ(x, y);
that is, ΠCx = x, where x is the solution to the minimization problem

φ(x, x) = inf
y∈C

φ
(
y, x

)
. (1.19)
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The existence and uniqueness of the operatorΠC follows from the properties of the functional
φ(y, x) and the strict monotonicity of the mapping J (see, e.g., [1, 37–40]). It is obvious from
the definition of function φ that

(∥∥y
∥
∥ − ‖x‖)2 ≤ φ

(
y, x

) ≤ (∥∥y
∥
∥ − ‖x‖)2, ∀x, y ∈ E. (1.20)

If E is a Hilbert space, then φ(y, x) = ‖y − x‖2 andΠC becomes the metric projection of E onto
C.

Next we recall the concept of the generalized f-projection operator. Let G : C × E∗ →
R ∪ {+∞} be a functional defined as follows:

G(ξ,�) = ‖ξ‖2 − 2〈ξ,�〉 + ‖�‖2 + 2ρf(ξ), (1.21)

where ξ ∈ C,� ∈ E∗, ρ is positive number, and f : C → R ∪ {+∞} is proper, convex, and
lower semicontinuous. From definitions of G and f , it is easy to see the following properties:

(1) G(ξ,�) is convex and continuous with respect to� when ξ is fixed;

(2) G(ξ,�) is convex and lower semicontinuous with respect to ξ when � is fixed.

Let E be a real Banach space with its dual E∗. Let C be a nonempty closed convex
subset of E. We say that πf

C : E∗ → 2C is generalized f-projection operator if

π
f

C� =
{
u ∈ C : G(u,�) = inf

ξ∈C
G(ξ,�), ∀� ∈ E∗

}
. (1.22)

In 2005, Matsushita and Takahashi [36] proposed the following hybrid iteration
method (it is also called the CQ method) with generalized projection for relatively
nonexpansive mapping S in a Banach space E:

x0 ∈ C, chosen arbitrarily,

yn = J−1(αnJxn + (1 − αn)JSxn),

Cn =
{
z ∈ C : φ

(
z, yn

) ≤ φ(z, xn)
}
,

Qn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx0.

(1.23)

They proved that {xn} converges strongly to ΠF(S)x0, where ΠF(S) is the generalized
projection from C onto F(S).

Motivated by the results of Takahashi and Zembayashi [41], Cholamjiak and Suantai
[12] proved the following strong convergence theorem by the hybrid iterative scheme for



6 Abstract and Applied Analysis

approximation of common fixed point of countable families of relatively quasi-nonexpansive
mappings in a uniformly convex and uniformly smooth Banach space: x0 ∈ E, x1 =
ΠC1x0, C1 = C,

yn,i = J−1(αnJxn + (1 − αn)JSxn),

un,i = Tθm
rm,n

Tθm−1
rm−1,n · · · Tθ1

r1,nyn,i,

Cn+1 =
{
z ∈ Cn : supi>1φ(z, Jun,i) ≤ φ(z, Jxn)

}
,

xn+1 = ΠCn+1x0, n ≥ 1.

(1.24)

Then, they proved that under certain appropriate conditions imposed on {αn} and {rn,i}, the
sequence {xn} converges strongly to ΠCn+1x0.

In 2010, Li et al. [42] introduced the following hybrid iterative scheme for the
approximation of fixed point of relatively nonexpansive mapping using the properties of
generalized f-projection operator in a uniformly smooth real Banach space which is also
uniformly convex: x0 ∈ C,

yn = J−1(αnJxn + (1 − αn)JSxn),

Cn+1 =
{
w ∈ Cn : G

(
w, Jyn

) ≤ G(w, Jxn)
}
,

xn+1 = Πf

Cn+1
x0, n ≥ 0,

(1.25)

whereΠf

C : E → 2C is generalized f-projection operator. They proved the strong convergence
theorem for finding an element in the fixed point set of S. We remark here that the results of
Li et al. [42] extended and improved on the results of Matsushita and Takahashi [36].

Recently, Shehu [43] introduced a new iterative scheme by hybrid methods and
proved strong convergence theorem for the approximation of a common fixed point of two
countable families of weak relatively nonexpansive mappings which is also a solution to a
system of generalized mixed equilibrium problems in a uniformly convex and uniformly
smooth Banach space by using the properties of the generalized f-projection operator.
Chang et al. [44] used the modified block iterative method to propose an iterative algorithm
for solving the convex feasibility problems for an infinite family of quasi-φ-asymptotically
nonexpansive mappings. Very recently, Kim [45] and Saewan and Kumam [46] considered
the shrinking projection methods for asymptotically quasi-φ-nonexpansive mappings in a
uniformly smooth and strictly convex Banach space which has the Kadec-Klee property.

In this paper, we introduce a new hybrid block iterative scheme of the generalized f-
projection operator for finding a common element of the fixed point set of uniformly quasi-φ-
asymptotically nonexpansive mappings and the set of solutions of the system of generalized
mixed equilibrium problems in a uniformly smooth and strictly convex Banach spacewith the
Kadec-Klee property. Then, we prove that our new iterative scheme converges strongly to a
common element of the aforementioned sets. The results presented in this paper improve and
extend the results of Shehu [43], Chang et al. [44], Li et al. [42], Takahashi and Zembayashi
[41], Cholamjiak and Suantai [12], and many authors.



Abstract and Applied Analysis 7

2. Preliminaries

A Banach space E is said to be strictly convex if ‖(x + y)/2‖ < 1 for all x, y ∈ E with ‖x‖ =
‖y‖ = 1 and x /=y. Let U = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. Then a Banach
space E is said to be smooth if the limit limt→ 0(‖x + ty‖ − ‖x‖)/t exists for each x, y ∈ U.
It is also said to be uniformly smooth if the limit exists uniformly in x, y ∈ U. Let E be a
Banach space. The modulus of smoothness of E is the function ρE : [0,∞) → [0,∞) defined
by ρE(t) = sup{((‖x + y‖ + ‖x − y‖)/2) − 1 : ‖x‖ = 1, ‖y‖ ≤ t}. The modulus of convexity
of E is the function δE : [0, 2] → [0, 1] defined by δE(ε) = inf{1 − ‖(x + y)/2‖ : x, y ∈
E, ‖x‖ = ‖y‖ = 1, ‖x − y‖ ≥ ε}. The normalized duality mapping J : E → 2E

∗
is defined by

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2, ‖x∗‖ = ‖x‖}. If E is a Hilbert space, then J = I, where I is the
identity mapping.

Remark 2.1. If E is a reflexive, strictly convex and smooth Banach space, then for x, y ∈ E,
φ(x, y) = 0 if and only if x = y. It is sufficient to show that if φ(x, y) = 0, then x = y. From
(1.12), we have ‖x‖ = ‖y‖. This implies that 〈x, Jy〉 = ‖x‖2 = ‖Jy‖2. From the definition of J ,
one has Jx = Jy. Therefore, we have x = y; see [38, 40] for more details.

Recall that a Banach space E has the Kadec-Klee property [38, 40, 47], if for any
sequence {xn} ⊂ E and x ∈ E with xn ⇀ x and ‖xn‖ → ‖x‖, then ‖xn − x‖ → 0 as n → ∞.
It is well known that if E is a uniformly convex Banach space, then E has the Kadec-Klee
property.

Remark 2.2. Let E be a Banach space. Then we know that

(1) if E is an arbitrary Banach space, then J is monotone and bounded;

(2) if E is strictly convex, then J is strictly monotone;

(3) if E is smooth, then J is single valued and semicontinuous;

(4) if E is uniformly smooth, then J is uniformly norm-to-norm continuous on each
bounded subset of E;

(5) E is reflexive, smooth, and strictly convex, then the normalized duality mapping
J = J2 is single valued, one-to-one, and onto;

(6) if E is uniformly smooth, then E is smooth and reflexive;

(7) E is uniformly smooth if and only if E∗ is uniformly convex;

see [38] for more details.

We also need the following lemmas for the proof of our main results.
For solving the equilibrium problem for a bifunction θ : C×C → R, let us assume that

θ satisfies the following conditions.

(A1) θ(x, x) = 0, for all x ∈ C.

(A2) θ is monotone; that is, θ(x, y) + θ(y, x) ≤ 0, for all x, y ∈ C.
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(A3) for each x, y, z ∈ C,

lim
t↓0

θ
(
tz + (1 − t)x, y

) ≤ θ
(
x, y

)
. (2.1)

(A4) for each x ∈ C, y �→ θ(x, y) is convex and lower semicontinuous.

For example, let A be a continuous and monotone operator of C into E∗ and define

θ
(
x, y

)
=
〈
Ax, y − x

〉
, ∀x, y ∈ C. (2.2)

Then, θ satisfies (A1)–(A4). The following result is in Blum and Oettli [11].
Motivated by Combettes and Hirstoaga [13] in a Hilbert space and Takahashi and

Zembayashi [48] in a Banach space, Zhang [49] obtained the following lemma.

Lemma 2.3 (Liu et al. [50], Zhang [49, Lemma 1.5]). Let C be a closed convex subset of a smooth,
strictly convex, and reflexive Banach space E. Let θ be a bifunction from C × C to R satisfying (A1)–
(A4), let A : C → E∗ be a continuous and monotone mapping, let ϕ : C → R be a semicontinuous
and convex functional, for r > 0, and let x ∈ E. Then, there exists z ∈ C such that

Q
(
z, y

)
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C, (2.3)

where Q(z, y) = θ(z, y) + 〈Az, y − z〉 + ϕ(y) − ϕ(z). Furthermore, define a mapping Tr : E → C
as follows:

Trx =
{
z ∈ C : Q

(
z, y

)
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C

}
. (2.4)

Then the following holds.

(1) Tr is single-valued.

(2) Tr is firmly nonexpansive; that is, for all x, y ∈ E, 〈Trx − Try, JTrx − JTry〉 ≤ 〈Trx −
Try, Jx − Jy〉.

(3) F(Tr) = F̃(Tr) = GMEP(θ,A, ϕ).

(4) GMEP(θ,A, ϕ) is closed and convex.

(5) φ(p, Trz) + φ(Trz, z) ≤ φ(p, z), for all p ∈ F(Tr) and z ∈ E.

For the generalized f-projection operator, Wu and Huang [4] proved the following
basic properties.

Lemma 2.4 (Wu and Huang [4]). Let E be a reflexive Banach space with its dual E∗ and let C be a
nonempty closed convex subset of E. The following statements hold.

(1) πf

C� is nonempty closed convex subset of C for all � ∈ E∗.
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(2) If E is smooth, then for all � ∈ E∗, x ∈ π
f

C� if and only if

〈
x − y,� − Jx

〉
+ ρf

(
y
) − ρf(x) ≥ 0, ∀y ∈ C. (2.5)

(3) If E is strictly convex and f : C → R∪{+∞} is positive homogeneous (i.e., f(tx) = tf(x)
for all t > 0 such that tx ∈ C where x ∈ C), then π

f

C is single-valued mapping.

Recently, Fan et al. [5] have shown that the condition f which is positive homogeneous
and appeared in [5, Lemma 2.1(iii)] can be removed.

Lemma 2.5 (Fan et al. [5]). Let E be a reflexive Banach space with its dual E∗, and let C be a
nonempty closed convex subset of E. If E is strictly convex, then π

f

C� is single valued.

Recall that J is single value mapping when E is a smooth Banach space. There exists a
unique element � ∈ E∗ such that � = Jx where x ∈ E. This substitution for (1.21) gives

G(ξ, Jx) = ‖ξ‖2 − 2〈ξ, Jx〉 + ‖x‖2 + 2ρf(ξ). (2.6)

Now we consider the second generalized f-projection operator in Banach spaces (see
[42]).

Definition 2.6. Let E be a real smooth Banach space, and let C be a nonempty closed convex
subset of E. We say that Πf

C : E → 2C is generalized f-projection operator if

Πf

Cx =
{
u ∈ C : G(u, Jx) = inf

ξ∈C
G(ξ, Jx), ∀x ∈ E

}
. (2.7)

Lemma 2.7 (Deimling [51]). Let E be a Banach space, and let f : E → R ∪ {+∞} be a lower
semicontinuous convex functional. Then there exist x∗ ∈ E∗ and α ∈ R such that

f(x) ≥ 〈x, x∗〉 + α, ∀x ∈ E. (2.8)

Lemma 2.8 (Li et al. [42]). Let E be a reflexive smooth Banach space, and C let be a nonempty closed
convex subset of E. The following statements hold.

(1) Πf

Cx is nonempty closed convex subset of C for all x ∈ E.

(2) For all x ∈ E, x̂ ∈ Πf

Cx if and only if

〈
x̂ − y, Jx − Jx̂

〉
+ ρf

(
y
) − ρf(x̂) ≥ 0, ∀y ∈ C. (2.9)

(3) If E is strictly convex, thenΠf

C is single-valued mapping.
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Lemma 2.9 (Li et al. [42]). Let E be a reflexive smooth Banach space and let C be a nonempty closed
convex subset of E, and let x ∈ E, x̂ ∈ Πf

Cx. Then

φ
(
y, x̂

)
+G(x̂, Jx) ≤ G

(
y, Jx

)
, ∀y ∈ C. (2.10)

Remark 2.10. Let E be a uniformly convex and uniformly smooth Banach space, and let f(x) =
0 for all x ∈ E. Then Lemma 2.9 reduces to the property of the generalized projection operator
considered by Alber [1].

Lemma 2.11 (Li et al. [42]). Let E be a Banach space, and let f : E → R ∪ {+∞} be a proper,
convex, and lower semicontinuous mapping with convex domainD(f). If {xn} is a sequence inD(f)
such that xn ⇀ x̂ ∈ D(f) and limn→∞G(xn, Jy) = G(x̂, Jy), then limn→∞‖xn‖ = ‖x̂‖.

Lemma 2.12 (Chang et al. [44]). Let E be a real uniformly smooth and strictly convex Banach space
with Kadec-Klee property, and let C be a nonempty closed convex subset of E. Let S : C → C be a
closed and quasi-φ-asymptotically nonexpansive mapping with a sequence {kn} ⊂ [1,∞), kn → 1.
Then F(S) is a closed convex subset of C.

Lemma 2.13 (Chang et al. [44]). Let E be a uniformly convex Banach space, let r > 0 be a positive
number, and let Br(0) be a closed ball of E. Then, for any given sequence {xi}∞i=1 ⊂ Br(0) and for
any given sequence {λi}∞i=1 of positive number with

∑∞
n=1 λn = 1, there exists a continuous, strictly

increasing, and convex function g : [0, 2r) → [0,∞) with g(0) = 0 such that, for any positive
integer i, j with i < j,

∥∥∥∥∥

∞∑

n=1

λnxn

∥∥∥∥∥

2

≤
∞∑

n=1

λn‖xn‖2 − λiλjg
(∥∥xi − xj

∥∥). (2.11)

Definition 2.14. (Chang et al. [44]).

(1) Let {Si}∞i=1 : C → C be a sequence of mappings. {Si}∞i=1 is said to be a family
of uniformly quasi-φ-asymptotically nonexpansive mappings, if F := ∩∞

i=1F(Si)/= ∅, and
there exists a sequence {kn} ⊂ [1,∞) with kn → 1 such that for each i ≥ 1

φ
(
p, Sn

i x
) ≤ knφ

(
p, x

)
, ∀p ∈ F, x ∈ C, ∀n ≥ 1. (2.12)

(2) Amapping S : C → C is said to be uniformly L-Lipschitz continuous, if there exists a
constant L > 0 such that

∥∥Snx − Sny
∥∥ ≤ L

∥∥x − y
∥∥, ∀x, y ∈ C. (2.13)

If f(x) ≥ 0, it is clearly by the definition of mappings {Si}∞i=1 is a family of uniformly
quasi-φ-asymptotically nonexpansive is equivalent to if ∩∞

i=1F(Si)/= ∅ and there exists a
sequence {kn} ⊂ [1,∞)with kn → 1 such that for each i ≥ 1,

G
(
p, JSn

i x
) ≤ knG

(
p, Jx

)
, ∀p ∈ F, x ∈ C, ∀n ≥ 1. (2.14)



Abstract and Applied Analysis 11

3. Strong Convergence Theorem

Now we state and prove our main result.

Theorem 3.1. Let C be a nonempty closed and convex subset of a uniformly smooth and strictly
convex Banach space E with the Kadec-Klee property. Let {Si}∞i=1 : C → C be an infinite family of
closed uniformly Li-Lipschitz continuous and uniformly quasi-φ-asymptotically nonexpansive map-
pings with a sequence {kn} ⊂ [1,∞), kn → 1, and let f : E → R be a convex lower semicontinuous
mapping with C ⊂ int(D(f)). For each j = 1, 2, . . . , m, let θj be a bifunction from C × C to R

which satisfies conditions (A1)–(A4), let Aj : C → E∗ be a continuous and monotone mapping, and
let ϕj : C → R be a lower semicontinuous and convex function. Assume that F := (∩∞

i=1F(Si)) ∩
(∩m

j=1 GMEP(θj ,Aj , ϕj))/= ∅. For an initial point x0 ∈ E with x1 = Πf

C1
x0 and C1 = C, we define the

sequence {xn} as follows:

zn = J−1
(

αn,0Jxn +
∞∑

i=1

αn,iJS
n
i xn

)

,

yn = J−1
(
βnJxn +

(
1 − βn

)
Jzn

)
,

un = T
Qm
rm,n

T
Qm−1
rm−1,n · · · TQ2

r2,nT
Q1
r1,nyn,

Cn+1 = {z ∈ Cn : G(z, Jun) ≤ G(z, Jxn) + (kn − 1)Mn},

xn+1 = Πf

Cn+1
x0, ∀n ≥ 1,

(3.1)

whereMn = supq∈F{G(q, Jxn)}, {αn,i}, {βn} are sequences in [0, 1], and
∑∞

i=0 αn,i = 1, for all n ≥ 0,
satisfy the following conditions.

(i) {rj,n} ⊂ [d,∞) for some d > 0.

(ii) lim infn→∞αn,0αn,i > 0 for all i ≥ 1, and lim infn→∞(1 − βn) > 0.

(iii) f(x) ≥ 0 for all x ∈ C. and f(0) = 0.

Then {xn} converges strongly to p ∈ F, where p = Πf

Fx0.

Proof. We split the proof into six steps.

Step 1. We first show that Cn+1 is closed and convex for each n ≥ 1.
Clearly C1 = C is closed and convex. Suppose that Cn is closed and convex for each

n ∈ N. Since for any z ∈ Cn, we know that G(z, Jun) ≤ G(z, Jxn) + (kn − 1)Mn is equivalent to

2〈z, Jxn − Jun 〉 ≤ ‖xn‖2 − ‖un‖2 + (kn − 1) Mn, (3.2)

it follow that

Cn+1 =
{
z ∈ Cn : 2〈z, Jxn − Jun〉 ≤ ‖xn‖2 − ‖un‖2 + (kn − 1)Mn

}
. (3.3)

So, Cn+1 is closed and convex. This implies that Πf

Cn+1
x0 is well defined for all n ≥ 1.
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Step 2. We show that F ⊂ Cn for all n ≥ 1.
We show by induction that F ⊂ Cn for all n ∈ N. It is obvious that F ⊂ C1 = C. Suppose

that F ⊂ Cn for some n ≥ 1. Let q ∈ F ⊂ Cn, by the convexity of ‖ · ‖2, Lemma 2.13, and the
uniformly quasi-φ-asymptotically nonexpansive of Si, we compute

G
(
q, Jzn

)
= G

(

q,

(

αn,0Jxn +
∞∑

i=1

αn,iJS
n
i xn

))

=
∥
∥q

∥
∥2 − 2

〈

q, αn,0Jxn +
∞∑

i=1

αn,iJS
n
i xn

〉

+

∥
∥
∥
∥
∥
αn,0Jxn +

∞∑

i=1

αn,iJS
n
i xn

∥
∥
∥
∥
∥

2

+ 2ρf
(
q
)

=
∥
∥q

∥
∥2 − 2αn,0

〈
q, Jxn

〉 − 2
∞∑

i=1

αn,i

〈
q, JSn

i xn

〉

+

∥∥∥∥∥
αn,0Jxn +

∞∑

i=1

αn,iJS
n
i xn

∥∥∥∥∥

2

+ 2ρf
(
q
)

≤ ∥∥q
∥∥2 − 2αn,0

〈
q, Jxn

〉 − 2
∞∑

i=1

αn,i

〈
q, JSn

i xn

〉
+ αn,0‖Jxn‖2

+
∞∑

i=1

αn,i

∥∥JSn
i xn

∥∥2 − αn,0αn,jg
∥∥∥Jxn − JSn

j xn

∥∥∥ + 2ρf
(
q
)

= ‖q‖2 − 2αn,0
〈
q, Jxn

〉
+ αn,0‖Jxn‖2 − 2

∞∑

i=1

αn,i

〈
q, JSn

i xn

〉

+
∞∑

i=1

αn,i

∥∥JSn
i xn

∥∥2 − αn,0αn,jg
∥∥∥Jxn − JSn

j xn

∥∥∥ + 2ρf
(
q
)

= αn,0G
(
q, Jxn

)
+

∞∑

i=1

αn,iG
(
q, JSn

i xn

) − αn,0αn,jg
∥∥∥Jxn − JSn

j xn

∥∥∥

≤ αn,0knG
(
q, Jxn

)
+

∞∑

i=1

αn,iknG
(
q, Jxn

) − αn,0αn,jg
∥∥∥Jxn − JSn

j xn

∥∥∥

≤ knG
(
q, Jxn

)
.

(3.4)

Since un = Ωm
n yn, when Ωj

n = T
Qj

rj,nT
Qj−1
rj−1,n · · · TQ2

r2,nT
Q1
r1,n , j = 1, 2, 3, . . . , m, Ω0

n = I, it follows from
(3.4) that

G
(
q, Jun

)
= G

(
q, JΩm

n yn

)

≤ G
(
q, Jyn

)

= G
(
q, βnJxn +

(
1 − βn

)
Jzn

)

=
∥∥q

∥∥2 − 2
〈
q, βnJxn +

(
1 − βn

)
Jzn

〉
+
∥∥βnJxn +

(
1 − βn

)
Jzn

∥∥2 + 2ρf
(
q
)
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≤ ∥
∥q

∥
∥2 − 2βn

〈
q, Jxn

〉 − 2
(
1 − βn

)〈
q, Jzn

〉
+ βn‖xn‖2 +

(
1 − βn

)‖zn‖2 + 2ρf
(
q
)

= βnG
(
q, Jxn

)
+
(
1 − βn

)
G
(
q, Jzn

)

≤ βnG
(
q, Jxn

)
+
(
1 − βn

)
knG

(
q, Jxn

)

≤ G
(
q, Jxn

)
+
(
1 − βn

)
(kn − 1)G

(
q, Jxn

)

= G
(
q, Jxn

)
+ (kn − 1)Mn.

(3.5)

This shows that q ∈ Cn+1 which implies that F ⊂ Cn+1, and hence, F ⊂ Cn for all n ≥ 1. Since F
is nonempty, Cn is a nonempty closed convex subset of E, and hence, Πf

Cn
exist for all n ≥ 0.

This implies that the sequence {xn} is well defined.

Step 3. We show that {xn} is bounded.
Since f : E → R is convex and lower semicontinuous mapping, from Lemma 2.7, we

have known that there exist x∗ ∈ E∗ and α ∈ R such that

f(x) ≥ 〈x, x∗〉 + α, ∀x ∈ E. (3.6)

Since xn ∈ E, it follows that

G(xn, Jx0) = ‖xn‖2 − 2〈xn, Jx0〉 + ‖x0‖2 + 2ρf(xn)

≥ ‖xn‖2 − 2〈xn, Jx0〉 + ‖x0‖2 + 2ρ〈xn, x
∗〉 + 2ρα

= ‖xn‖2 − 2
〈
xn, Jx0 − ρx∗〉 + ‖x0‖2 + 2ρα

≥ ‖xn‖2 − 2‖xn‖‖Jx0 − ρx∗‖ + ‖x0‖2 + 2ρα

=
(‖xn‖ −

∥∥Jx0 − ρx∗∥∥)2 + ‖x0‖2 −
∥∥Jx0 − ρx∗∥∥2 + 2ρα.

(3.7)

For each q ∈ F ⊂ Cn and by the definition of Cn that xn = Πf

Cn
x0, it follows from (3.7) that

G
(
q, Jx0

) ≥ G(xn, Jx0) ≥
(‖xn‖ −

∥∥Jx0 − ρx∗∥∥)2 + ‖x0‖2 −
∥∥Jx0 − ρx∗∥∥2 + 2ρα. (3.8)

This implies that {xn} is bounded and so are {G(xn, Jx0)}.

Step 4. We show that limn→∞‖un − xn‖ = 0 and limn→∞‖Jun − Jxn‖ = 0.
By the fact that xn+1 = Πf

Cn+1
x0 ∈ Cn+1 ⊂ Cn and xn = Πf

Cn
x0, followed by Lemma 2.9,

we get

0 ≤ (‖xn+1‖ − ‖xn‖)2 ≤ φ(xn+1, xn) ≤ G(xn+1, Jx0) −G(xn, Jx0). (3.9)
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This implies that {G(xn, Jx0)} is nondecreasing. So, we obtain that limn→∞G(xn, Jx0) exist,
and taking n → ∞, we obtain that

lim
n→∞

φ(xn+1, xn) = 0. (3.10)

Since {xn} is bounded in C and E is reflexive, we can assume that xn ⇀ p. From the fact that
xn = Πf

Cn
x0 when Cn is closed and convex for each n ≥ 1, it is easy to see that p ∈ Cn and we

get

G(xn, Jx0) ≤ G
(
p, Jx0

)
, ∀n ≥ 1. (3.11)

Since f is convex and lower semicontinuous, we have

lim inf
n→∞

G(xn, Jx0) = lim inf
n→∞

{
‖xn‖2 − 2〈xn, Jx0〉 + ‖x0‖2 + 2ρf(xn)

}

≥ ‖p‖2 − 2
〈
p, Jx0

〉
+ ‖x0‖2 + 2ρf

(
p
)

= G
(
p, Jx0

)
.

(3.12)

By (3.11) and (3.12), we get

G
(
p, Jx0

) ≤ lim inf
n→∞

G(xn, Jx0) ≤ lim sup
n→∞

G(xn, Jx0) ≤ G
(
p, Jx0

)
. (3.13)

That is limn→∞G(xn, Jx0) = G(p, Jx0), by Lemma 2.11, we have ‖xn‖ → ‖p‖, from the Kadec-
Klee property of E, we obtain that

lim
n→∞

xn = p, (3.14)

and we also have

lim
n→∞

xn+1 = p. (3.15)

Since xn+1 = Πf

Cn+1
x0 ∈ Cn+1 ⊂ Cn and from the definition of Cn+1, we have

G(xn+1, Jun) ≤ G(xn+1, Jxn) + (kn − 1)Mn, ∀n ∈ N, (3.16)

is equivalent to

φ(xn+1, un) ≤ φ(xn+1, xn) + (kn − 1)Mn, ∀n ∈ N. (3.17)

By (3.10) and in view of limn→∞(kn − 1)Mn = 0, we also have

lim
n→∞

φ(xn+1, un) = 0. (3.18)
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From (1.20), it follow that

(‖xn+1‖ − ‖un‖)2 −→ 0. (3.19)

Since ‖xn+1‖ → ‖p‖, we also have

‖un‖ −→ ∥
∥p

∥
∥ as n −→ ∞. (3.20)

It follows that

‖Jun‖ −→ ∥
∥Jp

∥
∥ as n −→ ∞. (3.21)

This implies that {‖Jun‖} is bounded in E∗. Note that E is reflexive and E∗ is also reflexive;
we can assume that Jun ⇀ x∗ ∈ E∗. In view of the reflexive of E, we see that J(E) = E∗. Hence,
there exists x ∈ E such that Jx = x∗. It follows that

φ(xn+1, un) = ‖xn+1‖2 − 2〈xn+1, Jun〉 + ‖un‖2

= ‖xn+1‖2 − 2〈xn+1, Jun〉 + ‖Jun‖2.
(3.22)

Taking lim infn→∞ on both sides of the equality above and in view of the weak lower
semicontinuity of norm ‖ · ‖, it yields that

0 ≥ ∥∥p
∥∥2 − 2

〈
p, x∗〉 + ‖x∗‖2

=
∥∥p

∥∥2 − 2
〈
p, Jx

〉
+ ‖Jx‖2

=
∥∥p

∥∥2 − 2
〈
p, Jx

〉
+ ‖x‖2

= φ
(
p, x

)
.

(3.23)

That is p = x, which implies that x∗ = Jp. It follows that Jun ⇀ Jp ∈ E∗. From (3.21) and the
Kadec-Klee property of E∗; that, is Jun → Jp as n → ∞, we known that J−1 : E∗ → E is
norm-weak∗-continuous, that is, un ⇀ p. From (3.20) and the Kadec-Klee property of E, we
have

lim
n→∞

un = p. (3.24)

Since ‖xn − un‖ ≤ ‖xn − p‖ + ‖p − un‖, it follows that

lim
n→∞

‖xn − un‖ = 0. (3.25)

From J that is uniformly norm-to-norm continuous on bounded subsets of E, we obtain

lim
n→∞

‖Jun − Jxn‖ = 0. (3.26)
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Step 5. We will show that p ∈ F := (∩∞
i=1F(Si)) ∩ (∩m

j=1 GMEP(θj ,Aj , ϕj)).
(a)We show that p ∈ ∩∞

i=1F(Si).
For q ∈ F, we note that

φ
(
q, xn

) − φ
(
q, un

)
+ (kn − 1)Mn = ‖xn‖2 − ‖un‖2 − 2

〈
q, Jxn − Jun

〉
+ (kn − 1)Mn

≤ ‖xn − un‖(‖xn‖ + ‖un‖) + 2
∥
∥q

∥
∥‖Jxn − Jun‖

+ (kn − 1)Mn.

(3.27)

It follows from ‖xn − un‖ → 0, ‖Jxn − Jun‖ → 0 and (kn − 1)Mn → 0 as n → ∞ that

φ
(
q, xn

) − φ
(
q, un

)
+ (kn − 1)Mn −→ 0 as n −→ ∞. (3.28)

For any i ≥ 1 and any q ∈ F, it follows from (3.4) and (3.5) that

G
(
q, Jun

) ≤ βnG
(
q, Jxn

)
+
(
1 − βn

)
G
(
q, Jzn

)

≤ βnG
(
q, Jxn

)
+
(
1 − βn

)
(

αn,0knG
(
q, Jxn

)

+
∞∑

i=1

αn,iknG
(
q, Jxn

) − αn,0αn,jg
∥∥∥Jxn − JSn

j xn

∥∥∥

)

= βnG
(
q, Jxn

)
+
(
1 − βn

)(
knG

(
q, Jxn

) − αn,0αn,jg
∥∥∥Jxn − JSn

j xn

∥∥∥
)

= βnG
(
q, Jxn

)
+
(
1 − βn

)
knG

(
q, Jxn

) − (
1 − βn

)
αn,0αn,jg

∥∥∥Jxn − JSn
j xn

∥∥∥

≤ G
(
q, Jxn

)
+ (kn − 1)Mn −

(
1 − βn

)
αn,0αn,jg

∥∥∥Jxn − JSn
j xn

∥∥∥.

(3.29)

It follows that

αn,0αn,jg
∥∥∥Jxn − JSn

j xn

∥∥∥ ≤ 1
(
1 − βn

)
(
G
(
q, Jxn

) −G
(
q, Jun

)
+ (kn − 1)Mn

)
, (3.30)

is in equivalence to

αn,0αn,jg
∥∥∥Jxn − JSn

j xn

∥∥∥ ≤ 1
(
1 − βn

)
(
φ
(
q, xn

) − φ
(
q, un

)
+ (kn − 1)Mn

)
. (3.31)

From (3.28), lim infn→∞αn,0αn,i > 0 and lim infn→∞(1 − βn) > 0, we see that

g
(∥∥∥Jxn − JSn

j xn

∥∥∥
)
−→ 0, n −→ ∞. (3.32)
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It follows from the property of g that

lim
n→∞

∥
∥
∥Jxn − JSn

j xn

∥
∥
∥ = 0, ∀j ≥ 1. (3.33)

Since xn → p and J is uniformly continuous, it yields that Jxn → Jp. Thus from (3.33), we
have

JSn
i xn −→ Jp, ∀i ≥ 1. (3.34)

Since J−1 : E∗ → E is norm-weak∗-continuous, we also have

Sn
i xn ⇀ p, ∀i ≥ 1. (3.35)

On the other hand, for each i ≥ 1, we observe that

∣∣∥∥Sn
i xn

∥∥ − ∥∥p
∥∥∣∣ =

∣∣∥∥J
(
Sn
i xn

)∥∥ − ∥∥Jp
∥∥∣∣ ≤ ∥∥J

(
Sn
i xn

) − Jp
∥∥. (3.36)

In view of (3.34), we obtain ‖Sn
i xn‖ → ‖p‖ for each i ≥ 1. Since E has the Kadec-Klee property,

we get

Sn
i xn −→ p for each i ≥ 1, n ∈ N. (3.37)

By the assumption that for each i ≥ 1, Si is uniformly Li-Lipschitz continuous, so we have

∥∥∥Sn+1
i xn − Sn

i xn

∥∥∥ ≤
∥∥∥Sn+1

i xn − Sn+1
i xn+1

∥∥∥ +
∥∥∥Sn+1

i xn+1 − xn+1

∥∥∥ + ‖xn+1 − xn‖ +
∥∥xn − Sn

i xn

∥∥

≤ (Li + 1)‖xn+1 − xn‖ +
∥∥∥Sn+1

i xn+1 − xn+1

∥∥∥ +
∥∥xn − Sn

i xn

∥∥.

(3.38)

By (3.14), (3.15), and (3.37), it yields that ‖Sn+1
i xn − Sn

i xn‖ → 0, n → ∞, for all i ≥ 1. From
Sn
i xn → p, we get Sn+1

i xn → p, that is, SiS
n
i xn → p. In view of the closeness of Si, we have

Sip = p, for all i ≥ 1. This imply that p ∈ ∩∞
i=1F(Si).

(b)We show that p ∈ ∩m
j=1 GMEP(θj ,Aj , ϕj).

Since xn+1 = Πf

Cn+1
x0 ∈ Cn+1 ⊂ Cn and from (3.5), we have

G
(
xn+1, Jyn

) ≤ G(xn+1, Jxn) + (kn − 1)Mn (3.39)

is in equivalence to

φ
(
xn+1, yn

) ≤ φ(xn+1, xn) + (kn − 1)Mn. (3.40)
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From (3.10) and (kn − 1)Mn → 0, as n → ∞, we see that

lim
n→∞

φ
(
xn+1, yn

)
= 0. (3.41)

From (1.20), it follows that

(‖xn+1‖ −
∥
∥yn

∥
∥)2 −→ 0. (3.42)

Since ‖xn+1‖ → ‖p‖, we have

∥∥yn

∥∥ −→ ∥∥p
∥∥, as n −→ ∞. (3.43)

It follow that

∥∥Jyn

∥∥ −→ ∥∥Jp
∥∥ as n −→ ∞. (3.44)

This implies that {‖Jyn‖} is bounded in E∗ and E∗ is reflexive; we can assume that Jyn ⇀
y∗ ∈ E∗. In view of J(E) = E∗. Hence, there exists y ∈ E such that Jy = y∗. It follows that

φ
(
xn+1, yn

)
= ‖xn+1‖2 − 2

〈
xn+1, Jyn

〉
+
∥∥yn

∥∥2

= ‖xn+1‖2 − 2
〈
xn+1, Jyn

〉
+
∥∥Jyn

∥∥2
.

(3.45)

Taking lim infn→∞ on both sides of the equality above and in view of the weak lower
semicontinuous of norm ‖ · ‖, it yields that

0 ≥ ∥∥p
∥∥2 − 2

〈
p, y∗〉 +

∥∥y∗∥∥2

=
∥∥p

∥∥2 − 2
〈
p, Jy

〉
+
∥∥Jy

∥∥2

=
∥∥p

∥∥2 − 2
〈
p, Jy

〉
+
∥∥y

∥∥2

= φ
(
p, y

)
.

(3.46)

That is p = y, which implies that y∗ = Jp. It follows that Jyn ⇀ Jp ∈ E∗. From (3.44) and
the Kadec-Klee property of E∗, that is, Jun → Jp as n → ∞, note that J−1 : E∗ → E is
norm-weak∗-continuous, that is, yn ⇀ p. From (3.43) and the Kadec-Klee property of E, we
have

lim
n→∞

yn = p. (3.47)
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For q ∈ F ⊂ Cn, by nonexpansiveness, we observe that

φ
(
q, un

)
= φ

(
q,Ωm

n yn

)

≤ φ
(
q,Ωm−1

n yn

)

≤ φ
(
q,Ωm−2

n yn

)

...

≤ φ
(
q,Ωj

nyn

)
.

(3.48)

By Lemma (2.12)(5), we have for j = 1, 2, 3, . . . , m

φ
(
Ωj

nyn, yn

)
≤ φ

(
q, yn

) − φ
(
q,Ωj

nyn

)

≤ φ
(
q, xn

) − φ
(
q,Ωj

nyn

)
+ (kn − 1)Mn

≤ φ
(
q, xn

) − φ
(
q, un

)
+ (kn − 1)Mn.

(3.49)

From (3.28), we get φ(Ωj
nyn, yn) → 0 as n → ∞, for j = 1, 2, 3, . . . , m. From (1.20), it follow

that

(∥∥∥Ω
j
nyn

∥∥∥ − ∥∥yn

∥∥
)2 −→ 0. (3.50)

Since ‖yn‖ → ‖p‖, we also have

∥∥∥Ω
j
nyn

∥∥∥ −→ ∥∥p
∥∥ as n −→ ∞. (3.51)

Since {Ωj
nyn} is bounded and E is reflexive, without loss of generality, we may assume that

Ωj
nyn ⇀ h. From the first step, we have known that Cn is closed and convex for each n ≥ 1, it

is obvious that h ∈ Cn. Again since

φ
(
Ωj

nyn, yn

)
=
∥∥∥Ω

j
nyn

∥∥∥
2 − 2

〈
Ωj

nyn, Jyn

〉
+
∥∥yn

∥∥2
, (3.52)

taking lim infn→∞ on both sides of the equality above, we have

0 ≥ ‖h‖2 − 2
〈
h, Jp

〉
+
∥∥p

∥∥2

= φ
(
h, p

)
.

(3.53)
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This implies that h = p, for all j = 1, 2, 3, . . . m, then it follow that

Ωj
nyn ⇀ p, (3.54)

from (3.51), (3.54) and the Kadec-Klee property, we have

lim
n→∞

Ωj
nyn = p ∀j = 1, 2, 3, . . . , m. (3.55)

By using the triangle inequality, we obtain

∥
∥
∥Ω

j
nyn −Ωj−1

n yn

∥
∥
∥ ≤

∥
∥
∥Ω

j
nyn − p

∥
∥
∥ +

∥
∥
∥p −Ωj−1

n yn

∥
∥
∥. (3.56)

Hence, we obtain that

lim
n→∞

∥∥∥Ω
j
nyn −Ωj−1

n yn

∥∥∥ = 0, ∀j = 1, 2, 3, . . . , m. (3.57)

Since {rj,n} ⊂ [d,∞) and J is uniformly norm-to-norm continuous on bounded subsets, so

lim
n→∞

∥∥∥JΩ
j
nyn − JΩj−1

n yn

∥∥∥

rj,n
= 0, ∀j = 1, 2, 3, . . . , m. (3.58)

From Lemma 2.3, we get for j = 1, 2, 3, . . . , m

Qj

(
Ωj

nyn, y
)
+

1
rj,n

〈
y −Ωj

nyn, JΩ
j
nyn − JΩj−1

n yn

〉
≥ 0, ∀y ∈ C. (3.59)

From (A2), we get

1
rj,n

〈
y −Ωj

nyn, JΩ
j
nyn − JΩj−1

n yn

〉
≥ Qj

(
y,Ωj

nyn

)
, ∀y ∈ C, ∀j = 1, 2, 3, . . . , m. (3.60)

From (3.55) and (3.58), we have

0 ≥ Qj

(
y, p

)
, ∀y ∈ C, ∀j = 1, 2, 3, . . . , m. (3.61)

For t with 0 < t ≤ 1 and y ∈ C, let yt = ty + (1 − t)p. Then, we get that yt ∈ C. From (3.61), it
follows that

Qj

(
yt, p

) ≤ 0, ∀y ∈ C, ∀j = 1, 2, 3, . . . , m. (3.62)
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By the conditions (A1) and (A4), we have for j = 1, 2, 3, . . . , m

0 = Qj

(
yt, yt

)

≤ tQj

(
yt, y

)
+ (1 − t)Qj

(
yt, p

)

≤ tQj

(
yt, y

)

≤ Qj

(
yt, y

)
.

(3.63)

From (A3), we get

0 ≤ Qj

(
yt, y

)

= Qj

(
ty + (1 − t)p, y

)
,

(3.64)

and letting t → 0, we have

0 = lim
n→∞

0 ≤ lim
n→∞

Qj

(
ty + (1 − t)p, y

) ≤ Qj

(
p, y

)
, ∀y ∈ C, ∀j = 1, 2, 3, . . . m. (3.65)

This implies that p ∈ GMEP(θj ,Aj , ϕj), for all j = 1, 2, 3, . . . m. Therefore, p ∈
∩m
j=1 GMEP(θj ,Aj , ϕj). Hence, from (a) and (b), we obtain p ∈ F.

Step 6. We show that p = Πf

Fx0.

Since F is closed and convex set from Lemma 2.8, we haveΠf

Fx0 is single value, denote

by v. From xn = Πf

Cn
x0 and v ∈ F ⊂ Cn, we also have

G(xn, Jx0) ≤ G(v, Jx0), ∀n ≥ 1. (3.66)

By definition of G and f , we know that, for each given x,G(ξ, Jx) is convex and lower
semicontinuous with respect to ξ. So

G
(
p, Jx0

) ≤ lim inf
n→∞

G(xn, Jx0) ≤ lim sup
n→∞

G(xn, Jx0) ≤ G(v, Jx0). (3.67)

From definition of Πf

Fx0 and p ∈ F, we can conclude that v = p = Πf

Fx0 and xn → p as
n → ∞. This completes the proof.

For a special case that i = 1, 2, we can obtain the following results on a pair of quasi-φ-
asymptotically nonexpansive mappings immediately from Theorem 3.1.

Corollary 3.2. Let C be a nonempty closed and convex subset of a uniformly smooth and strictly con-
vex Banach space E with the Kadec-Klee property, and let f : E → R be a convex lower semicontinu-
ous mapping with C ⊂ int(D(f)). Let S1, S2 : C → C be closed uniformly L1, L2-Lipschitz continu-
ous and quasi-φ-asymptotically nonexpansive mappings with a sequence {k1

n} ⊂ [1,∞), k1
n → 1 and



22 Abstract and Applied Analysis

{k2
n} ⊂ [1,∞), k2

n → 1, respectively, and let {kn} = sup{{k1
n}, {k2

n}}. For each j = 1, 2, . . . , m, let θj
be a bifunction fromC×C to R which satisfies conditions (A1)–(A4), letAj : C → E∗ be a continuous
and monotone mapping and let ϕj : C → R be a lower semicontinuous and convex function. Assume

that F := (F(S1)∩F(S2))∩(∩m
j=1 GMEP(θj ,Aj , ϕj))/= ∅. For an initial point x0 ∈ E with x1 = Πf

C1
x0

and C1 = C, we define the sequence {xn} as follows:

zn = J−1
(
αn,0Jxn + αn,1JS

n
1xn + αn,2JS

n
2xn

)
,

yn = J−1
(
βnJxn +

(
1 − βn

)
Jzn

)
,

un = T
Qm
rm,n

T
Qm−1
rm−1,n · · · TQ2

r2,nT
Q1
r1,nyn,

Cn+1 = {z ∈ Cn : G(z, Jun) ≤ G(z, Jxn) + (kn − 1)Mn},

xn+1 = Πf

Cn+1
x0, ∀n ≥ 1,

(3.68)

where Mn = supq∈F{G(q, Jxn)}, {αn,i}2i=0 and {βn} are sequences in [0, 1] such that
∑2

i=0 αn,i = 1
for all n ≥ 0 and satisfy the following conditions.

(i) {rj,n} ⊂ [d,∞) for some d > 0.

(ii) lim infn→∞αn,0αn,i > 0 for all i = 1, 2, and lim infn→∞(1 − βn) > 0.

(iii) f(x) ≥ 0 for all x ∈ C, and f(0) = 0.

Then {xn} converges strongly to p ∈ F, where p = Πf

Fx0.

Remark 3.3. Corollary 3.2 improves and extends the result of Shehu [43, Theorem 3.1]
following senses:

(i) for the mappings, we extend the mappings from two closed weak relatively non-
expansive mappings (or relatively quasi-nonexpansive) mappings to a countable
infinite family of closed and uniformly quasi-φ-asymptotically nonexpansive map-
pings;

(ii) for the framework of spaces, we extend the space from a uniformly smooth and
uniformly convex Banach space to a uniformly smooth and strictly convex Banach
space with the Kadec-Klee property.

If Si = S for each i ∈ N, then Theorem 3.1 is reduced to the following corollary.

Corollary 3.4. Let C be a nonempty closed and convex subset of a uniformly smooth and strictly con-
vex Banach space E with the Kadec-Klee property. Let S : C → C be an infinite family of closed
uniformly L-Lipschitz continuous and quasi-φ-asymptotically nonexpansive mappings with a se-
quence {kn} ⊂ [1,∞), kn → 1, and let f : E → R be a convex lower semicontinuous
mapping with C ⊂ int(D(f)). For each j = 1, 2, . . . , m, let θj be a bifunction from C × C to R

which satisfies conditions (A1)–(A4), let Aj : C → E∗ be a continuous and monotone mapping,
and let ϕj : C → R be a lower semicontinuous and convex function. Assume that F := F(S)∩
(∩m

j=1 GMEP(θj ,Aj , ϕj))/= ∅. For an initial point x0 ∈ E with x1 = Πf

C1
x0 and C1 = C, we define the
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sequence {xn} as follows:

zn = J−1(αnJxn + (1 − αn)JSnxn),

yn = J−1
(
βnJxn +

(
1 − βn

)
Jzn

)
,

un = T
Qm
rm,n

T
Qm−1
rm−1,n · · · TQ2

r2,nT
Q1
r1,nyn,

Cn+1 = {z ∈ Cn : G(z, Jun) ≤ G(z, Jxn) + (kn − 1)Mn},

xn+1 = Πf

Cn+1
x0, ∀n ≥ 1,

(3.69)

where Mn = supq∈F{G(q, Jxn)}, {αn} and {βn} are sequences in [0, 1] and satisfy the following
conditions:

(i) {rj,n} ⊂ [d,∞) for some d > 0.

(ii) lim infn→∞αn(1 − αn) > 0, and lim infn→∞(1 − βn) > 0.

(iii) f(x) ≥ 0 for all x ∈ C, and f(0) = 0.

Then {xn} converges strongly to p ∈ F, where p = Πf

Fx0.

If taking θj ≡ 0, Aj ≡ 0, ϕj ≡ 0, rj,n = 1 and βn ≡ 0, for all n ∈ N in algorithm (3.69) in
Corollary 3.4, we obtain the following corollary.

Corollary 3.5. (Li et al. [42]) Let E be a uniformly convex and uniformly smooth Banach space, let C
be a nonempty closed and convex subset of E,let S : C → C be a weak relative nonexpansive mapping,
and let f : E → R be a convex lower semicontinuous mapping with C ⊂ int(D(f)). Assume that
{αn}∞n=0 is sequence in [0, 1) such that lim supn→∞(αn) < 1. Define a sequence {xn} in C by the
following algorithm:

xn = x0 ∈ C, C0 = C,

yn = J−1(αnJxn + (1 − αn)JSxn),

Cn+1 =
{
w ∈ Cn : G

(
w, Jyn

) ≤ G(w, Jxn)
}
,

xn+1 = Πf

Cn+1
x0, n ≥ 1.

(3.70)

If F(S) is nonempty, then {xn} converges toΠf

F(S)x0.

Taking f(x) = 0 for all x ∈ E, we have G(ξ, Jx) = φ(ξ, x) and Πf

Cx = ΠCx. By
Theorem 3.1, then we obtain the following Corollaries.

Corollary 3.6. Let C be a nonempty closed and convex subset of a uniformly smooth and strictly
convex Banach space E with the Kadec-Klee property. Let {Si}∞i=1 : C → C be an infinite family
of closed uniformly Li-Lipschitz continuous and uniformly quasi-φ-asymptotically nonexpansive
mappings with a sequence {kn} ⊂ [1,∞), kn → 1. For each j = 1, 2, . . . , m, let θj be a bifunction
from C × C to R which satisfies conditions (A1)–(A4), let Aj : C → E∗ be a continuous and
monotone mapping, and let ϕj : C → R be a lower semicontinuous and convex function. Assume
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that F := (∩∞
i=1F(Si)) ∩ (∩m

j=1 GMEP(θj ,Aj , ϕj))/= ∅. For an initial point x0 ∈ E with x1 = ΠC1x0

and C1 = C, we define the sequence {xn} as follows:

zn = J−1
(

αn,0Jxn +
∞∑

i=1

αn,iJS
n
i xn

)

,

yn = J−1
(
βnJxn +

(
1 − βn

)
Jzn

)
,

un = T
Qm
rm,n

T
Qm−1
rm−1,n · · · TQ2

r2,nT
Q1
r1,nyn,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, xn) + (kn − 1)Mn

}
,

xn+1 = ΠCn+1x0, ∀n ≥ 1,

(3.71)

where Mn = supq∈Fφ(q, xn), {αn,i} and {βn} are sequences in [0, 1] such that
∑∞

i=0 αn,i = 1 for all
n ≥ 0. If {xn} is satisfying the following conditions.

(i) {rj,n} ⊂ [d,∞) for some d > 0.

(ii) lim infn→∞αn,0αn,i > 0 for all i ≥ 1 and lim infn→∞(1 − βn) > 0.

Then {xn} converges strongly to p ∈ F, where p = ΠFx0.

Corollary 3.7. Let C be a nonempty closed and convex subset of a uniformly smooth and strictly
convex Banach space E with Kadec-Klee property. Let S1, S2 : C → C be closed uniformly L1, L2-
Lipschitz continuous and uniformly quasi-φ-asymptotically nonexpansive mappings with a sequence
{k1

n} ⊂ [1,∞), k1
n → 1 and {k2

n} ⊂ [1,∞), k2
n → 1, respectively, such that {kn} = sup{{k1

n}, {k2
n}}.

For each j = 1, 2, . . . , m let θj be a bifunction from C×C to R which satisfies conditions (A1)–(A4), let
Aj : C → E∗ be a continuous and monotone mapping, and let ϕj : C → R be a lower semicontinuous
and convex function. Assume that F := (F(S1)∩F(S2))∩(∩m

j=1 GMEP(θj ,Aj , ϕj))/= ∅. For an initial
point x0 ∈ E with x1 = ΠC1x0 and C1 = C, we define the sequence {xn} as follows:

zn = J−1
(
αn,0Jxn + αn,1JS

n
1xn + αn,2JS

n
2xn

)
,

yn = J−1
(
βnJxn +

(
1 − βn

)
Jzn

)
,

un = T
Qm
rm,n

T
Qm−1
rm−1,n · · · TQ2

r2,nT
Q1
r1,nyn,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, xn) + (kn − 1)Mn

}
,

xn+1 = ΠCn+1x0, ∀n ≥ 1,

(3.72)

whereMn = supq∈Fφ(q, xn), {αn,i}2i=0 and {βn} are sequences in [0, 1] such that
∑2

i=0 αn,i = 1 for all
n ≥ 0 with the following conditions.

(i) {rj,n} ⊂ [d,∞) for some d > 0.

(ii) lim infn→∞αn,0αn,i > 0 for all i = 1, 2 and lim infn→∞(1 − βn) > 0.

Then {xn} converges strongly to p ∈ F, where p = ΠFx0.

Remark 3.8. Corollary 3.6 and Corollary 3.7 extend and improve the results of many authors
in the literature works.
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