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By using fixed-point theorems of a cone, we investigate the existence and multiplicity of positive
solutions for complementary Lidstone boundary value problems: (−1)nu(2n+1)(t) = h(t)f(u(t)), in
0 < t < 1, u(0) = 0, u(2i+1)(0) = u(2i+1)(1) = 0, 0 ≤ i ≤ n − 1, where n ∈ N.

1. Introduction

In this paper, we are concerned with the existence of positive solutions for the following
nonlinear differential equation:

(−1)nu(2n+1)(t) = h(t)f(u(t)), in 0 < t < 1,

u(0) = 0, u(2i+1)(0) = u(2i+1)(1) = 0, 0 ≤ i ≤ n − 1,
(1.1)

where n ∈ N, h(t) ∈ C((0, 1), [0,+∞)), and h(t) may be singular at t = 0 or t = 1; f ∈
C([0,+∞), [0,+∞)).

Recently, on the boundary value problems of 2nth-order ordinary differential equation
(system)

(−1)nu(2n)(t) = λh(t)f(u(t)), (1.2)
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many authors have established the existence and multiplicity of positive solutions of (1.2) by
means of the method of upper and lower solutions and fixed point theorem, see [1–7] and
references therein. More recently, the complementary Lidstone problem:

(−1)nu(2n+1)(t) = h
(
t, u(t), . . . , u(q)(t)

)
, n ≥ 1, q fixed, 0 ≤ q ≤ 2n in 0 < t < 1,

u(0) = a0, u(2i+1)(0) = ai, u(2i+1)(1) = βi, 0 ≤ i ≤ n − 1,
(1.3)

was discussed in [8]. Here, h : [0, 1] × Rq+1 → R is continuous at least in the interior of the
domain of interest. Existence and uniqueness criteria for the above problem are proved by
the complementary Lidstone interpolating polynomial of degree 2n. In [9], the authors have
studied the existence of positive solutions of singular complementary Lidstone problems on
the basis of a fixed-point theorem of cone compression type. As far as we know, no papers
are concerned with the multiplicity of positive solutions for (1.1). Therefore, inspired by the
above references, we will show the existence and multiplicity of positive solutions of (1.1).
The proof of our results is based on the following fixed-point theorems in a cone

Let E be a real Banach space with norm ‖ · ‖ and P ⊂ E a cone in E, Pr = {x ∈ P :
‖x‖ < r}(r > 0). Then Pr = {x ∈ P : ‖x‖ ≤ r}. A map α is said to be a nonnegative continuous
concave functional on P if α : P → [0,+∞) is continuous and

α
(
tx + (1 − t)y

) ≥ tα(x) + (1 − t)α
(
y
)

(1.4)

for all x, y ∈ P and t ∈ [0, 1]. For numbers a, b such that 0 < a < b and α is a nonnegative
continuous concave functional on P , we define the convex set

P(α, a, b) = {x ∈ P : a ≤ α(x), ‖x‖ ≤ b}. (1.5)

Lemma 1.1 (see [10]). Let A : Pc → Pc be completely continuous and α be a nonnegative contin-
uous concave functional on P such that α(x) ≤ ‖x‖ for all x ∈ Pc. Suppose there exists 0 < d < a <
b ≤ c such that

(i) {x ∈ P(α, a, b) : α(x) > a}/= ∅ and α(Ax) > a for x ∈ P(α, a, b);

(ii) ‖Ax‖ < d for ‖x‖ ≤ d;

(iii) α(Ax) > a for x ∈ P(α, a, c) with ‖Ax‖ > b.

Then A has at least three fixed points x1, x2, x3 satisfying

‖x1‖ < d, a < α(x2),

‖x3‖ > d, α(x3) < a.
(1.6)

Lemma 1.2 (see [10]). Let E be a Banach space, and let P ⊂ E be a closed, convex cone in E. Assume
Ω1, Ω2 are bounded open subsets of E with 0 ∈ Ω1,Ω1 ⊂ Ω2, and let A : P ∩ (Ω2 \ Ω1) → P be a
completely continuous operator such that either
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(i) ‖Au‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1 and ‖Au‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2 or

(ii) ‖Au‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1 and ‖Au‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2.

Then A has a fixed point in P ∩ (Ω2 \Ω1).

This paper is organized as follows: in Section 2, some preliminaries are given; in
Section 3, we give the existence results.

2. Preliminaries

First, it is clear to see that the boundary value problem (1.1),

(−1)nu(2n+1)(t) = h(t)f(u(t)), in 0 < t < 1,

u(0) = 0, u(2i+1)(0) = u(2i+1)(1) = 0, 0 ≤ i ≤ n − 1,
(2.1)

is equivalent to the system

u′(t) = v, in 0 < t < 1,

(−1)nv(2n)(t) = h(t)f(u(t)), in 0 < t < 1,

u(0) = 0, v(2i)(0) = v(2i)(1) = 0, 0 ≤ i ≤ n − 1.

(2.2)

Next, Problem (2.2) can be easily transformed into a nonlinear 2n-order ordinary differential
equation. Briefly, the initial value problem,

u′(t) = v, in 0 < t < 1,

u(0) = 0,
(2.3)

can be solved as

u(t) =
∫ t

0
v(s)ds. (2.4)

Then, inserting (2.4) into the second equation of (1.1), we have

(−1)nv(2n)(t) = h(t)f

(∫ t

0
v(s)ds

)
, in 0 < t < 1,

v(2i)(0) = v(2i)(1) = 0, 0 ≤ i ≤ n − 1.

(2.5)

Finally, we only need to consider the existence of positive solutions of (2.5). The function
v ∈ C[0, 1] is a positive solution of (2.5), if v satisfies (2.5) and v ≥ 0, t ∈ [0, 1], v /= 0.
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Let Gn(t, s) be the Greens function of the following problem:

(−1)nω(2n)(t) = 0, in 0 < t < 1,

ω(2i)(0) = ω(2i)(1) = 0, 0 ≤ i ≤ n − 1.
(2.6)

By induction, the Greens function Gn(t, s) can be expressed as (see [2])

Gi(t, s) =
∫1

0
G(t, ξ)Gi−1(ξ, s)dξ, 2 ≤ i ≤ n, (2.7)

where

G1(t, s) = G(t, s) =

⎧
⎨
⎩
t(1 − s), 0 ≤ t ≤ s ≤ 1,

s(1 − t), 0 ≤ s ≤ t ≤ 1.
(2.8)

So it is easy to see that

Gn(t, s) > 0, (t, s) ∈ (0, 1) × (0, 1). (2.9)

Lemma 2.1 (see [2]). (I) For any (t, s) ∈ [0, 1] × [0, 1],

Gn(t, s) ≤ 1
6n−1

s(1 − s). (2.10)

(II) Let δ ∈ (0, 1/2), then for any (t, s) ∈ [δ, 1 − δ] × [0, 1],

Gn(t, s) ≥ θn(δ)s(1 − s) ≥ 6n−1θn(δ)max
0≤t≤1

Gn(t, s), (2.11)

where θn(δ) = δn((4δ3 − 6δ2 + 1)/6)n−1.

Therefore, the solution of (2.5) can be expressed as

v(t) =
∫1

0
Gn(t, s)h(s)f

(∫s

0
v(τ)dτ

)
ds. (2.12)

We now define a mapping T : C[0, 1] → C[0, 1] by

Tv(t) =
∫1

0
Gn(t, s)h(s)f

(∫ s

0
v(τ)dτ

)
ds. (2.13)

Set

P =
{
v ∈ C[0, 1] : v(t) ≥ 0, min

t∈[1/4,3/4]
v(t) ≥ σ‖v‖

}
, (2.14)
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where ‖v‖ = maxt∈[0,1]|v(t)|, σ = 6n−1θn(1/4) = 11n−1/26n−4. It is clear that σ ∈ (0, 1) by
Lemma 2.1.

Lemma 2.2 (see [2]). T : P → P is completely continuous.

3. Main Result

Theorem 3.1. Assume that the following conditions hold

(H1) h(t) ∈ C((0, 1), [0,+∞)) does not vanish identically on any subinterval of [0, 1],

0 <

∫3/4

2/4
s(1 − s)h(s)ds ≤

∫1

0
s(1 − s)h(s)ds < +∞ (3.1)

(H2) f : [0,+∞) → [0,+∞) is nondecreasing, and

lim
r→ 0+

f(r)
r

= 0, lim
r→+∞

f(r)
r

= +∞. (3.2)

Then (2.5) or (1.1) has at least one positive solution.

Proof. Since limr→ 0+(f(r))/r = 0, there exists η1 > 0 such that

f(r)
r

≤ 6n−1∫1
0 s(1 − s)h(s)ds

, for 0 < r ≤ η1. (3.3)

Take R1 = η1, and set Ω1 = {v ∈ E : ‖v‖ < R1}. Then, for for all v ∈ P ∩ ∂Ω1, we have

Tv(t) =
∫1

0
Gn(t, s)h(s)f

(∫ s

0
v(τ)dτ

)
ds

≤ 1
6n−1

∫1

0
s(1 − s)h(s)f

(∫s

0
v(τ)dτ

)
ds

≤ 1
6n−1

∫1

0
s(1 − s)h(s)f(R1)ds

≤ 1
6n−1

6n−1R1∫1
0 s(1 − s)h(s)ds

∫1

0
s(1 − s)h(s)ds

≤ R1 = ‖v‖

(3.4)

by (H2) and Lemma 2.1.
Consequently,

‖Tv‖ ≤ ‖v‖, ∀v ∈ ∂P ∩ ∂Ω1. (3.5)
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On the other hand, since limr→+∞(f(r))/r = +∞, there exists R̂ > 0 such that

f(r)
r

≥ 4

σθn(1/4)
∫3/4
2/4 s(1 − s)h(s)ds

, for r ≥ R̂. (3.6)

Choose R2 = max{R1, 4R̂/σ} + 1, and set Ω2 = {v ∈ E : ‖v‖ < R2}. Then, for ∀v ∈ P ∩ ∂Ω2,
we have

Tv

(
1
4

)
=
∫1

0
Gn

(
1
4
, s

)
h(s)f

(∫ s

0
v(τ)dτ

)
ds

≥ θn

(
1
4

)∫3/4

1/4
s(1 − s)h(s)f

(∫ s

0
v(τ)dτ

)
ds

≥ θn

(
1
4

)∫3/4

2/4
s(1 − s)h(s)f

(∫ s

0
v(τ)dτ

)
ds

≥ θn

(
1
4

)∫3/4

2/4
s(1 − s)h(s)f

(∫2/4

0
v(τ)dτ

)
ds

≥ θn

(
1
4

)∫3/4

2/4
s(1 − s)h(s)f

(∫2/4

1/4
v(τ)dτ

)
ds

(3.7)

by (H2) and Lemma 2.1.
Since v ∈ P ∩ ∂Ω2, then we have

∫2/4

1/4
v(τ)dτ ≥

∫2/4

1/4

(
min

τ∈[1/4,3/4]
v(τ)

)
dτ ≥ σ

4
‖v‖ ≥ σ

4
R2 > R̂. (3.8)

So from (3.7), we get

Tv

(
1
4

)
≥ θn

(
1
4

)∫3/4

2/4
s(1 − s)h(s)f

(∫2/4

1/4
v(τ)dτ

)
ds

≥ θn

(
1
4

)∫3/4

2/4
s(1 − s)h(s)f

(σ
4
R2

)
ds

≥ θn

(
1
4

)∫3/4

2/4
s(1 − s)h(s)ds

4

σθn(1/4)
∫3/4
2/4 s(1 − s)h(s)ds

σR2

4

≥ R2 = ‖v‖.

(3.9)
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Consequently,

‖Tv‖ ≥ ‖v‖, ∀v ∈ ∂P ∩ ∂Ω2. (3.10)

Therefore, by Lemma 1.2, (1.1) has at least one positive solution.

Theorem 3.2. Assume (H1) holds. In addition, suppose that the following conditions hold:

(H3) f : [0,+∞) → [0,+∞) is nondecreasing,

lim
r→ 0+

f(r)
r

= +∞, lim
r→+∞

f(r)
r

= 0. (3.11)

Then (2.5) or (1.1) has at least one positive solution.

Proof. Since limr→ 0+(f(r))/r = +∞, there exists η > 0 such that

f(r)
r

≥ 4

σθn(1/4)
∫3/4
2/4 s(1 − s)h(s)ds

, for 0 < r ≤ η. (3.12)

Take R1 ∈ (0, η), and set Ω1 = {v ∈ E : ‖v‖ < R1}. Then, for for allv ∈ P ∩ ∂Ω1, we have

Tv

(
1
4

)
=
∫1

0
Gn

(
1
4
, s

)
h(s)f

(∫s

0
v(τ)dτ

)
ds

≥ θn

(
1
4

)∫3/4

1/4
s(1 − s)h(s)f

(∫s

0
v(τ)dτ

)
ds

≥ θn

(
1
4

)∫3/4

2/4
s(1 − s)h(s)f

(∫s

0
v(τ)dτ

)
ds

≥ θn

(
1
4

)∫3/4

2/4
s(1 − s)h(s)f

(∫2/4

0
v(τ)dτ

)
ds

≥ θn

(
1
4

)∫3/4

2/4
s(1 − s)h(s)f

(∫2/4

1/4
v(τ)dτ

)
ds

≥ θn

(
1
4

)∫3/4

2/4
s(1 − s)h(s)f

(∫2/4

1/4

(
min

τ∈[1/4,3/4]
v(τ)

)
dτ

)
ds

≥ θn

(
1
4

)∫3/4

2/4
s(1 − s)h(s)f

(σ
4
R1

)
ds

≥ θn

(
1
4

)∫3/4

2/4
s(1 − s)h(s)ds

4

σθn(1/4)
∫3/4
2/4 s(1 − s)h(s)ds

σR1

4

≥ R1 = ‖v‖

(3.13)

by (H3) and Lemma 2.1.
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Consequently,

‖Tv‖ ≥ ‖v‖, ∀v ∈ ∂P ∩ ∂Ω1. (3.14)

On the other hand, since limr→+∞(f(r))/r = 0, there exists R > 0 such that

f(r)
r

≤ 6n−1∫1
0 s(1 − s)h(s)ds

, for r ≥ R. (3.15)

Choose R2 = max{R1, R} + 1, and set Ω2 = {v ∈ E : ‖v‖ < R2}. Then, for for all v ∈ P ∩ ∂Ω2,
we have

Tv(t) =
∫1

0
Gn(t, s)h(s)f

(∫ s

0
v(τ)dτ

)
ds

≤ 1
6n−1

∫1

0
s(1 − s)h(s)f

(∫s

0
v(τ)dτ

)
ds

≤ 1
6n−1

∫1

0
s(1 − s)h(s)f(R2)ds

≤ 1
6n−1

6n−1R2∫1
0 s(1 − s)h(s)ds

∫1

0
s(1 − s)h(s)ds

≤ R2 = ‖v‖.

(3.16)

Consequently,

‖Tv‖ ≤ ‖v‖, ∀v ∈ ∂P ∩ ∂Ω2. (3.17)

Therefore, by Lemma 1.2, (1.1) has at least one positive solution.

Theorem 3.3. Assume that (H1) holds. In addition, the function f is nondecreasing and satisfies the
following growth conditions:

(H4)

lim
r→∞

sup
f(r)
r

<
1
2

6n−1∫1
0 s(1 − s)h(s)ds

; (3.18)

(H5)

lim
r→ 0

sup
f(r)
r

<
6n−1∫1

0 s(1 − s)h(s)ds
; (3.19)
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(H6) there exists a constant a > 0 such that

f(r) >
a

θn(1/4)
∫3/4
2/4 s(1 − s)h(s)ds

, for r ∈
[
a

4
,
a

4σ

]
. (3.20)

Then (1.1) has at least three positive solutions.

Proof. For the sake of applying the Leggett-Williams fixed-point theorem, define a functional
α(u) on cone P by

α(v) = min
1/4≤t≤3/4

v(t), ∀v ∈ P. (3.21)

Evidently, α : P → R+ is a nonnegative continuous and concave. Moreover, α(v) ≤ ‖v‖ for
each v ∈ P .

Now we verify that the assumption of Lemma 1.1 is satisfied.
Firstly, it can verify that there exists a positive number c with c ≥ b = a/σ such that

T : Pc → Pc.
By (H4), it is easy to see that there exists τ > 0 such that

f(r)
r

<
1
2

6n−1∫1
0 s(1 − s)h(s)ds

, ∀r ≥ τ. (3.22)

Set M1 = f(τ), and take

c > max

{
b,

2M1

6n−1

∫1

0
s(1 − s)h(s)ds

}
. (3.23)

If v ∈ Pc, then

‖Tv‖ = max
t∈[0,1]

∫1

0
Gn(t, s)h(s)f

(∫s

0
v(τ)dτ

)
ds

≤ 1
6n−1

∫1

0
s(1 − s)h(s)f

(∫s

0
v(τ)dτ

)
ds

≤ 1
6n−1

∫1

0
s(1 − s)h(s)f(‖v‖)ds

<
1

6n−1

∫1

0
s(1 − s)h(s)ds

⎡
⎣ 6n−1‖v‖
2
∫1
0 s(1 − s)h(s)ds

+M1

⎤
⎦

< c

(3.24)

by (H1) and (H3).
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Next, from (H5), there exists d ∈ (0, a) such that

f(r)
r

<
6n−1∫1

0 s(1 − s)h(s)ds
, ∀r ∈ [0, d]. (3.25)

Then for each v ∈ Pd, we have

‖Tv‖ = max
t∈[0,1]

∫1

0
Gn(t, s)h(s)f

(∫ s

0
v(τ)dτ

)
ds

≤ 1
6n−1

∫1

0
s(1 − s)h(s)f

(∫s

0
v(τ)dτ

)
ds

≤ 1
6n−1

∫1

0
s(1 − s)h(s)f(‖v‖)ds

<
1

6n−1

∫1

0
s(1 − s)h(s)ds

6n−1‖v‖∫1
0 s(1 − s)h(s)ds

≤ d.

(3.26)

Finally, we will show that {v ∈ P(α, a, b) : α(v) > a}/= ∅ and α(Tv) > a for all v ∈
P(α, a, b).

In fact,

v(t) =
a + b

2
∈ {v ∈ P(α, a, b) : α(v) > a}. (3.27)

For v ∈ P(α, a, b), we have

b ≥ ‖v‖ ≥ v ≥ min
t∈[1/4,3/4]

v(t) ≥ a, (3.28)

for all t ∈ [1/4, 3/4]. Then we have

min
t∈[1/4,3/4]

Tv(t) = min
t∈[1/4,3/4]

∫1

0
Gn(t, s)h(s)f

(∫s

0
v(τ)dτ

)
ds

≥ θn

(
1
4

)∫3/4

1/4
s(1 − s)h(s)f

(∫ s

0
v(τ)dτ

)
ds

≥ θn

(
1
4

)∫3/4

2/4
s(1 − s)h(s)f

(∫ s

0
v(τ)dτ

)
ds
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≥ θn

(
1
4

)∫3/4

2/4
s(1 − s)h(s)f

(∫2/4

0
v(τ)dτ

)
ds

≥ θn

(
1
4

)∫3/4

2/4
s(1 − s)h(s)f

(∫2/4

1/4
v(τ)dτ

)
ds

> θn

(
1
4

)∫3/4

2/4
s(1 − s)h(s)ds

a

θn(1/4)
∫3/4
2/4 s(1 − s)h(s)ds

= a

(3.29)

by (H6). In addition, for each v ∈ P(α, a, c)with ‖Tv‖ > b, we have

min
t∈[1/4,3/4]

(Tv)(t) ≥ σ‖Tv‖ > σb ≥ a. (3.30)

Above all, we know that the conditions of Lemma 1.1 are satisfied. By Lemma 1.1, the
operator T has at least three fixed points vi (i = 1, 2, 3) such that

‖v1‖ < d,

a < min
t∈[1/4,3/4]

v2(t)

‖v3‖ > d with min
t∈[1/4,3/4]

v3(t) < a.

(3.31)

The proof is complete.

Example 3.4. If n = 1, then consider the boundary value problem:

−u′′′(t) =
u2

t(1 − t)
, in 0 < t < 1,

u(0) = 0, u′(0) = u′(1) = 0.
(3.32)

Example 3.5. If n = 2, then consider the boundary value problem:

u(5)(t) =
u1/3

t(1 − t)
, in 0 < t < 1,

u(0) = 0, u′(0) = u′(1) = u′′′(0) = u′′′ (1) = 0.

(3.33)

It is obvious to see that Examples 3.4 and 3.5 satisfy the assumptions of Theorems 3.1 and 3.2.
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Example 3.6. Let n = 1, h(t) = 1/(t(1 − t)). Then let us consider the following problem:

−u(3)(t) =
1

t(1 − t)
f(u), in 0 < t < 1,

u(0) = 0, u′(0) = u′(1) = 0,
(3.34)

where the function f is defined as follows:

f(u) =

⎧
⎪⎨
⎪⎩

(u − 1)1/2 + 65, u ≥ 1,

195u2

2 + u
, 0 ≤ u < 1.

(3.35)

It is obvious that f is continuous and (H1) holds. On the other hand, since [u2/(2 + u)]′ =
(u2 + 4u)/(2 + u)2 ≥ 0, for 0 ≤ u, it is clear to see that 195u2/(2 + u) is nondecreasing for
0 ≤ u < 1, and (u − 1)1/2 + 65 is also nondecreasing for u ≥ 1. In addition,

lim
r→∞

sup
f(r)
r

= lim
r→∞

sup
(r − 1)1/2 + 65

r
= 0 <

1
2

6n−1∫1
0 s(1 − s)(1/s(1 − s))ds

=
1
2
,

lim
r→ 0

sup
f(r)
r

= lim
r→ 0

sup
195r2

r(2 + r)
= 0 <

6n−1∫1
0 s(1 − s)(1/s(1 − s))ds

= 1.

(3.36)

So (H4) and (H5) hold.
Finally, choosing a = 4, then for r ∈ [1, 1/σ], we have

f(r) ≥ 65 > 64 =
a

θn(1/4)
∫3/4
2/4 s(1 − s)h(s)ds

. (3.37)

Therefore (H6) hold.
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[9] R. P. Agarwal, D. O’Regan, and S. Staněk, “Positive solutions of singular complementary Lidstone
boundary value problems,” Boundary Value Problems, vol. 2010, Article ID 368169, 15 pages, 2010.

[10] D. J. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, vol. 5 of Notes and Reports in
Mathematics in Science and Engineering, Academic Press, New York, NY, USA, 1988.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


