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By using a generalized arithmetic-geometric mean inequality on time scales, we study the forced
oscillation of second-order dynamic equations with nonlinearities given by Riemann-Stieltjes
integrals of the form [p(t)φα(xΔ(t))]Δ + q(t)φα(x(τ(t))) +

∫σ(b)
a r(t, s)φγ(s)(x(g(t, s)))Δξ(s) = e(t),

where t ∈ [t0,∞)
T

= [t0,∞)
⋂

T, T is a time scale which is unbounded from above; φ∗(u) =
|u|∗sgnu; γ : [a, b]

T1
→ R is a strictly increasing right-dense continuous function; p, q, e :

[t0,∞)
T

→ R, r : [t0,∞)
T
× [a, b]

T1
→ R, τ : [t0,∞)

T
→ [t0,∞)

T
, and g : [t0,∞)

T
× [a, b]

T1
→

[t0,∞)
T
are right-dense continuous functions; ξ : [a, b]

T1
→ R is strictly increasing. Some interval

oscillation criteria are established in both the cases of delayed and advanced arguments. As a
special case, the work in this paper unifies and improves many existing results in the literature for
equations with a finite number of nonlinear terms.

1. Introduction

Following Hilger’s landmark paper [1], there have been plenty of references focused on the
theory of time scales in order to unify continuous and discrete analysis, where a time scale
is an arbitrary nonempty closed subset of the reals, and the cases when this time scale is equal
to the reals or to the integers represent the classical theories of differential and of difference
equations. The oscillation theory has been developed very rapidly since the discovery of time
scale calculus with this understanding. Throughout this paper, a knowledge and understand-
ing of time scale calculus is assumed. For an introduction to time scale calculus and dynamic
equations, we refer to the seminal books by Bohner and Peterson [2, 3].
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In this paper, we consider the following second-order dynamic equation with the non-
linearity given by a Riemann-Stieltjes integral of the form

[
p(t)φα

(
xΔ(t)
)]Δ

+ q(t)φα(x(τ(t))) +
∫σ(b)

a

r(t, s)φγ(s)
(
x
(
g(t, s)
))
Δξ(s) = e(t), (1.1)

where t ∈ [t0,∞)
T

= [t0,∞) ∩ T, t0 ∈ T, T is a time scale (a closed nonempty subset of
real numbers) which is unbounded from above; φ∗(u) = |u|∗ sgnu; a, b ∈ T1, b > a, T1 is
another time scale; γ : [a, b]

T1
→ R is a strictly increasing right-dense continuous function

satisfying 0 < γ(a) < α < γ(b); p, q, e : [t0,∞)
T

→ R are right-dense continuous with
p > 0; r : [t0,∞)

T
× [a, b]

T1
→ R is right-dense continuous; τ : [t0,∞)

T
→ [t0,∞)

T
, g :

[t0,∞)
T
× [a, b]

T1
→ [t0,∞)

T
are right-dense continuous functions satisfying limt→∞τ(t) =

limt→∞g(t, s) = ∞; ξ : [a, b]
T1

→ R is strictly increasing. Here
∫σ(b)
a f(s)Δξ(s) denotes the

Riemann-Stieltjes integral of the function f on [a, σ(b)]
T1

with respect to ξ, σ : [t0,∞)
T

→
[t0,∞)

T
is the forward jump operator.

We restrict our attention to those solutions of (1.1) which exist on the time scale half-
line [Tx,∞)

T
, where Tx ≥ t0 may depend on the particular solution, a nontrivial function in

any neighborhood of infinity. As usual, such a solution of (1.1) is said to be oscillatory if it is
neither eventually positive nor eventually negative. Equation (1.1) is said to be oscillatory if
every proper solution is oscillatory.

Recently, people have been interested in the combined effects of linear, superlinear,
sublinear terms, and a forced term in oscillation. For instance, Sun andWong [4] investigated
the following forced differential equation with mixed nonlinearities

(
p(t)x′(t)

)′ + q(t)x(t) +
n∑

j=1

qj(t)φαj (x(t)) = e(t), (1.2)

where p, q, qj , e ∈ C[t0,∞), and 0 < α1 < · · · < αm < 1 < αm+1 < · · · < αn. The authors
obtained interval oscillation criteria for (1.2) by using an arithmetic-geometric inequality and
employing arguments developed earlier in [5–9]. Sun and Meng [10] studied (1.2) again by
making use of some of the arguments developed by Kong [11]. In [12], Agarwal and Zafer
extended the results in [4] to dynamic equations on time scales of the form

[
p(t)φα

(
xΔ(t)
)]Δ

+ q(t)φα(x(t)) +
n∑

j=1

qj(t)φβj (x(t)) = e(t), (1.3)

where t ∈ [t0,∞)
T
,

β1 > β2 > · · · > βm > α > βm+1 > · · · > βn. (1.4)

Very recently, Agarwal et al. [13] further to extend the results in [12] to the case of
several delays of the form

[
p(t)φα

(
xΔ(t)
)]�

+ q(t)φα(x(τ(t))) +
n∑

j=1

qj(t)φβj

(
x
(
τj(t)
))

= e(t), (1.5)
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where τ(t) and τj(t) are right-dense continuous functions satisfying limt→∞τ(t) =
limt→∞τj(t) = ∞ for j = 1, 2, . . . , n. Sun and Kong [14] studied the oscillation of the second-
order forced differential equation with the nonlinearity given by a Riemann-Stieltjes integral
of the form

(
p(t)x′(t)

)′ + q(t)x(t) +
∫b

0
r(t, s)φγ(s)(x(τ(s)))dξ(s) = e(t), (1.6)

where t ≥ 0, γ ∈ C[0, b) is a strictly increasing function satisfying 0 ≤ γ(0) < 1 < γ(b−). Some
interval oscillation criteria of the El-Sayed type and the Kong type are establishedwhich unify
many existing results in the literature.

It is obvious that (1.2), (1.3), (1.5), and (1.6) are special cases of (1.1). Some other
particular cased of (1.1) can be found in [15–20]. In this paper, we will establish interval
oscillation criteria for the more general (1.1). Clearly, our work is of significance because
(1.1) allows an infinite number of nonlinear terms and even a continuum of nonlinearities
determined by the function ξ. Moreover, even for the special cases of (1.2), (1.3), (1.5), and
(1.6), our results generalize many existing oscillation criteria in the literature.

This paper is organized as follows. We present some lemmas in Section 2 which play a
key role in the proof of themain results. Themain results are given in Section 3. Two examples
are given to illustrate the main results in Section 4.

2. Preliminaries

We here present four lemmas which play a key role in the proof of the main results in the
next section. In the sequel, we denote by Lξ[a, b]T1

the set of Riemann-Stieltjes integrable
functions on [a, σ(b))

T1
with respect to ξ. Assume that γ , γ−1 ∈ Lξ[a, b]T1

. Let h = sup{s ∈
(a, b)

T1
: γ(s) ≤ α}.
We first present the following two Lemmas 2.1, and 2.2, which generalize Lemma 2.1

and Lemma 3.1 in [14].

Lemma 2.1. Let

m1 = α

(∫σ(b)

σ(h)
γ−1(s)Δξ(s)

)(∫σ(b)

σ(h)
Δξ(s)

)−1
,

m2 = α

(∫σ(h)

a

γ−1(s)Δξ(s)

)(∫σ(h)

a

Δξ(s)

)−1
.

(2.1)

Then for any δ ∈ (m1, m2), there exists η ∈ Lξ([a, b]T1
such that η(s) > 0 on [a, b]

T1
,

∫σ(b)

a

γ(s)η(s)Δξ(s) = α, (2.2)

∫σ(b)

a

η(s)Δξ(s) = δ. (2.3)
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Proof. By the choice of h and the definitions of m1 andm2, we have that 0 < m1 < 1 < m2. Set

η1(s) =

⎧
⎪⎪⎨

⎪⎪⎩

αγ−1(s)

[∫σ(b)

σ(h)
Δξ(s)

]−1
, s ∈ [σ(h), b]

T
,

0, s ∈ [a, σ(h))
T
,

η2(s) =

⎧
⎪⎪⎨

⎪⎪⎩

0, s ∈ [σ(h), b]
T
,

αγ−1(s)

[∫σ(h)

a

Δξ(s)

]−1
, s ∈ [a, σ(h))

T
.

(2.4)

It is easy to see that ηi ∈ Lξ[a, b]T1
and

∫σ(b)

a

γ(s)ηi(s)Δξ(s) = α, i = 1, 2. (2.5)

Moreover,

∫σ(b)

a

η1(s)Δξ(s) = m1,

∫σ(b)

a

η2(s)Δξ(s) = m2. (2.6)

Let

η(s, l) = (1 − l)η1(s) + lη2(s), s ∈ [a, b]
T1, l ∈ [0, 1]. (2.7)

Then we have that

∫σ(b)

a

η(s, 0)Δξ(s) =
∫σ(b)

a

η1(s)Δξ(s) = m1 < 1,

∫σ(b)

a

η(s, 1)Δξ(s) =
∫σ(b)

a

η2(s)Δξ(s) = m2 > 1.

(2.8)

By the continuous dependence of η(s, l) on l, there exists l∗ ∈ (0, 1) such that η(s) := η(s, l∗)
satisfies

∫σ(b)
a η(s)Δξ(s) = δ ∈ (m1, m2). Note that η(s) > 0 on [a, b]

T1
and
∫σ(b)
a γ(s)η(s)Δξ(s) =

α. This completes the proof of Lemma 2.1.

The next lemma is a generalized arithmetic-geometric mean inequality on time scales.

Lemma 2.2. Assume that u : [a, b]
T1

→ R is right-dense continuous, η ∈ Lξ[a, b]T
, u > 0, η > 0

on [a, b]
T1

and
∫σ(b)
a η(s)Δξ(s) = 1. Then

∫σ(b)

a

η(s)u(s)Δξ(s) ≥ exp

(∫σ(b)

a

η(s) lnu(s)Δξ(s)

)

. (2.9)
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Proof. Define an operator L as follows:

L
(
f
)
=
∫σ(b)

a

η(s)f(s)Δξ(s). (2.10)

It is obvious that L is a linear operator satisfying that L(1) = 1 and L(u) > 0. To derive ine-
quality (2.9) it suffices to show that

L(u) ≥ exp(L(lnu)). (2.11)

Note that ln t ≤ t − 1 for t > 0. Thus, for any s ∈ [a, b]
T1

we have

ln
(
u(s)
L(u)

)
≤ u(s)

L(u)
− 1, (2.12)

which follows that

lnu(s) − lnL(u) ≤ u(s)
L(u)

− 1. (2.13)

Taking the operator L on both sides of (2.13), we get

L(lnu) − lnL(u) = L(lnu − lnL(u))

≤ L

(
u

L(u)

)
− L(1)

= 1 − 1 = 0,

(2.14)

which implies (2.11). This completes the proof.

The following two lemmas generalize Lemma 2.4 and Lemma 6.1 in [13].

Lemma 2.3. Let τ : [t0,∞]
T
→ [t0,∞]

T
be a right-dense continuous function satisfying 0 ≤ τ(t) ≤

t, c, d ∈ [t0,∞)
T
with c < d, and τcd = min{τ(t) : t ∈ [c, d]

T
}. Assume x : [τcd, d]T

→ R is a
positive right-dense continuous function such that p(t)φα(xΔ(t)) is nonincreasing on [τcd, d]T

. Then

x(τ(t))
x(σ(t))

≥ P(τ(t), τcd)
P(σ(t), τcd)

, t ∈ [c, d), (2.15)

where P(t, s) =
∫ t
s p

−1/α(s)Δs.
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Proof. Set z(t) = p1/α(t)xΔ(t). It is not difficult to verify that z(t) is nonincreasing on [τcd, d]T

since p(t)φα(xΔ(t)) is nonincreasing on [τcd, d]T
. Then we have

x(t) = x(τcd) +
∫ t

τcd

xΔ(s)Δs

= x(τcd) +
∫ t

τcd

p−1/α(s)z(s)Δs

≥ z(t)
∫ t

τcd

p−1/α(s) Δs

= p1/α(t)P(t, τcd)xΔ(t), t ∈ [τcd, b]T
.

(2.16)

Next, for s ∈ [τ(t), σ(t)]
T
, and t ∈ [c, d)

T
we define

ε(s) := x(s) − p1/α(s)P(s, τcd)xΔ(s). (2.17)

Then (2.16) yields that ε(s) ≥ 0 for s ∈ [τ(t), σ(t)]
T
and t ∈ [c, d)

T
. Consequently, for t ∈

[c, d)
T
, we have

0 ≤
∫σ(t)

τ(t)

p−1/α(s)ε(s)
x(s)xσ(s)

Δs =
∫σ(t)

τ(t)

[
P(s, τcd)
x(s)

]Δ
Δs

=
P(σ(t), τcd)
x(σ(t))

− P(τ(t), τcd)
x(τ(t))

.

(2.18)

This implies (2.15). The proof of Lemma 2.3 is complete.

Similar to the proof of Lemma 2.3, we can get the following result.

Lemma 2.4. Let τ : [t0,∞]
T

→ [t0,∞]
T
be a right-dense continuous function satisfying τ(t) > t,

c, d ∈ [t0,∞)
T
with c < d, and τcd = max{τ(t) : t ∈ [c, d]

T
}. If x : [c, τcd]

T
→ R is a positive

right-dense continuous function for which p(t)φα(xΔ(t)) is nonincreasing on [c, τcd]
T
, then

x(τ(t))
x(σ(t))

≥ P
(
τcd, τ(t)

)

P
(
τcd, σ(t)

) , t ∈ [c, d)
T
, (2.19)

where P(t, s) is defined as in Lemma 2.3.

3. Main Results

We note from the definition of m1 and m2 that 0 < m1 < 1 < m2. In the following we will use
the values of δ in the interval (m1, 1] to establish interval criteria for oscillation of (1.1). For
c, d ∈ [t0,∞)

T
with c < d, we define the function class U(c, d) = {u ∈ C1

rd[c, d]T
: u(c) = 0 =

u(d), u /≡ 0}, where C1
rd[c, d]T

denotes the set of right-dense continuously Δ—differentiable
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functions on [c, d]
T
. In the following, let τcd and τcd be defined as in Lemmas 2.3 and 2.4.

Set

gcd = min
(t,s)∈[c,d]

T
×[a,b]

T1

g(t, s), gcd = max
(t,s)∈[c,d]

T
×[a,b]

T1

g(t, s). (3.1)

Theorem 3.1. Assume that τ(t), g(t, s) ≤ t for t ∈ [t0,∞)
T
and s ∈ [a, b]

T1
. Suppose also that for

any T ≥ t0, there exist subintervals [ci, di]T
of [T,∞), i = 1, 2, such that ci, di ∈ T, di > ci, and

r(t, s) ≥ 0, (t, s) ∈ [hi, di)T
× [a, b]

T1,

(−1)ie(t) ≥ 0, t ∈ [hi, di)T
,

(3.2)

where hi = min{τcidi , gcidi}. For each δ ∈ (m1, 1], let η ∈ Lξ[a, b]T1
be defined as in Lemma 2.1. If

there exists ui ∈ U(ci, di) for i = 1, 2 such that

sup
δ∈(m1,1]

∫di

ci

[
Qi(t)|ui(σ(t))|α+1 − p(t)

∣∣∣uΔ
i (t)
∣∣∣
α+1
]
Δt ≥ 0, (3.3)

where

Qi(t) = q(t)
[
P(τ(t), τcidi)
P(σ(t), τcidi)

]α
+
[ |e(t)|
1 − δ

]1−δ

× exp

⎛

⎝
∫σ(b)

a

η(s) ln

⎛

⎝r(t, s)
η(s)

[
P(g(t, s), gcidi)
P
(
σ(t), gcidi

)

]γ(s)⎞

⎠Δξ(s)

⎞

⎠.

(3.4)

Here we use the convention that ln 0 = −∞, e−∞ = 0, and 01−δ = 0 and (1 − δ)1−δ = 1 for δ = 1 due
to the fact that limt→ 0t

t = 1. Then (1.1) is oscillatory.

Proof. We prove this result by the contradiction method. Assume the contrary. Then (1.1) has
an extendible solution x(t) which is eventually positive or negative. Without loss of gener-
ality, we may assume that x(t) > 0 for all t ∈ [t0,∞)

T
. When x(t) is eventually negative, the

proof is in the same way except that the interval [c2, d2]T
, instead of [c1, d1]T

, is used. Define

w(t) = −p(t)φα

(
xΔ(t)
)

φα(x(t))
, t ∈ [c1, d1]T

. (3.5)

It follows that

wΔ(t) = q(t)
φα(x(τ(t)))
φα(x(σ(t)))

+
∫σ(b)

a

r(t, s)
φγ(s)
(
x
(
g(t, s)
))

φα(x(σ(t)))
Δξ(s)

− e(t)
φα(x(σ(t)))

+ p(t)
φα

(
xΔ(t)
)[
φα(x(t))

]Δ

φα(x(t))φα(x(σ(t)))
.

(3.6)
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It is obvious that the conditions in Lemma 2.3 are satisfied with τ replaced by g(t, s). By (2.15)
we have for t ∈ [c1, d1)T

x(τ(t))
x(σ(t))

≥ P(τ(t), τc1d1)
P(σ(t), τc1d1)

,
x
(
g(t, s)
)

x(σ(t))
≥ P
(
g(t, s), gc1d1

)

P
(
σ(t), gc1d1

) . (3.7)

By (3.2), (3.6), and (3.7), and the fact that φ∗ is increasing, we get

wΔ(t) ≥ q(t)
[
P(τ(t), τc1d1)
P(σ(t), τc1d1)

]α
− e(t)
φα(x(σ(t)))

+
∫σ(b)

a

r(t, s)

[
P
(
g(t, s), gc1d1

)

P
(
σ(t), gc1d1

)

]γ(s)
[x(σ(t))]γ(s)−αΔξ(s)

+ p(t)
φα

(
xΔ(t)
)[
φα(x(t))

]Δ

φα(x(t))φα(x(σ(t)))
.

(3.8)

(I) We first consider the case where the supremum in (3.3) is assumed at δ = 1. From
(3.2) and (3.8) we have that for t ∈ [c1, d1)T

wΔ(t) ≥ q(t)
[
P(τ(t), τc1d1)
P(σ(t), τc1d1)

]α
+ p(t)

φα

(
xΔ(t)
)[
φα(x(t))

]Δ

φα(x(t))φα(x(σ(t)))

+
∫σ(b)

a

r(t, s)

[
P
(
g(t, s), gc1d1

)

P
(
σ(t), gc1d1

)

]γ(s)
[x(σ(t))]γ(s)−αΔξ(s).

(3.9)

Let η ∈ Lξ[a, b]T1
be defined as in Lemma 2.1 with δ = 1. Then η satisfies (2.2) and (2.3) with

δ = 1. This follows that

∫σ(b)

a

η(s)
[
γ(s) − α

]
Δξ(s) = 0. (3.10)

Therefore, by Lemma 2.2 we have that for t ∈ [c1, d1]T

∫σ(b)

a

r(t, s)

[
P
(
g(t, s), gc1d1

)

P
(
σ(t), gc1d1

)

]γ(s)
[x(σ(t))]γ(s)−αΔξ(s)

=
∫σ(b)

a

η(s)η−1(s)r(t, s)

[
P
(
g(t, s), gc1d1

)

P
(
σ(t), gc1d1

)

]γ(s)
[x(σ(t))]γ(s)−αΔξ(s)

≥ exp

⎛

⎝
∫σ(b)

a

η(s) ln

⎛

⎝r(t, s)
η(s)

[
P
(
g(t, s), gc1d1

)

P
(
σ(t), gc1d1

)

]γ(s)
[x(σ(t))]γ(s)−α

⎞

⎠Δξ(s)

⎞

⎠
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= exp

⎛

⎝
∫σ(b)

a

η(s) ln

⎛

⎝r(t, s)
η(s)

[
P
(
g(t, s), gc1d1

)

P
(
σ(t), gc1d1

)

]γ(s)⎞

⎠Δξ(s)

⎞

⎠

× exp

(

lnx(σ(t))
∫σ(b)

a

η(s)
[
γ(s) − α

]
Δξ(s)

)

= exp

⎛

⎝
∫σ(b)

a

η(s) ln

⎛

⎝r(t, s)
η(s)

[
P
(
g(t, s), gc1d1

)

P
(
σ(t), gc1d1

)

]γ(s)⎞

⎠Δξ(s)

⎞

⎠.

(3.11)

Substituting (3.11) into (3.9) we obtain

wΔ(t) ≥ Q1(t) + p(t)
φα

(
xΔ(t)
)[
φα(x(t))

]Δ

φα(x(t))φα(x(σ(t)))
, t ∈ [c1, d1]T

, (3.12)

where Q1(t) is defined by (3.4) with i = 1 and δ = 1. Multiplying both sides of the above
inequality by |u1(σ(t))|α+1 and proceeding as in the proof of Theorem 3.1 in [13], we can get
a contradiction with (3.3).

(II)Now we consider the case where the supremum in (3.3) is assumed at δ ∈ (m1, 1).
Let η̃(s) = δ−1η(s). Then from (2.2) and (2.3), we get

∫σ(b)

a

η̃(s)Δξ(s) = 1,
∫σ(b)

a

η̃(s)
[
δγ(s) − α

]
Δξ(s) = 0. (3.13)

Hence for t ∈ [c1, d1]T

− e(t)
φα(x(σ(t)))

+
∫σ(b)

a

r(t, s)

[
P
(
g(t, s), gc1d1

)

P
(
σ(t), gc1d1

)

]γ(s)
[x(σ(t))]γ(s)−αΔξ(s) =

∫σ(b)

a

η̃(s)Ω(t, s)Δξ(s),

(3.14)

where

Ω(t, s) = δ
r(t, s)
η(s)

[
P
(
g(t, s), gc1d1

)

P
(
σ(t), gc1d1

)

]γ(s)
[x(σ(t))]γ(s)−α +

|e(t)|
xα(σ(t))

. (3.15)

On the other hand, by the basic arithmetic-geometric mean inequality, we have that

Ω(t, s) ≥
[
r(t, s)
η(s)

]δ[P
(
g(t, s), gc1d1

)

P
(
σ(t), gc1d1

)

]δγ(s)[ |e(t)|
1 − δ

]1−δ
[x(σ(t))]δγ(s)−α. (3.16)
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Substituting (3.16) into (3.14), using Lemma 2.2 and similar to the computation in (I), for
t ∈ [c1, d1]T

we can get

− e(t)
φα(x(σ(t)))

+
∫σ(b)

a

r(t, s)

[
P
(
g(t, s), gc1d1

)

P
(
σ(t)gc1d1

)

]γ(s)
xγ(s)−α(σ(t))Δξ(s)

≥
∫σ(b)

a

η̃(s)
[
r(t, s)
η(s)

]δ[P
(
g(t, s), gc1d1

)

P
(
σ(t), gc1d1

)

]δγ(s)[ |e(t)|
1 − δ

]1−δ
[x(σ(t))]δγ(s)−αΔξ(s)

≥
[ |e(t)|
1 − δ

]1−δ
exp

⎛

⎝
∫σ(b)

a

η(s) ln

⎛

⎝r(t, s)
η(s)

[
P
(
g(t, s), gc1d1

)

P
(
σ(t), gc1d1

)

]γ(s)⎞

⎠Δξ(s)

⎞

⎠,

(3.17)

which also implies (3.12) for t ∈ [c1, d1]T
. The rest of the proof is similar to Part (I) and hence

is omitted. This completes the proof of Theorem 3.1.

For the case when τ(t), g(t, s) > t for t ∈ [t0,∞)
T
and s ∈ [a, b]

T1
, using Lemma 2.4

and following the proof of Theorem 3.1, we have the following oscillation result for (1.1)
immediately.

Theorem 3.2. Assume that τ(t), g(t, s) > t for t ∈ [t0,∞)
T
and s ∈ [a, b]

T1
. Suppose also that for

any T ≥ t0, there exist subintervals [ci, di]T
of [T,∞), i = 1, 2, such that ci, di ∈ T, di > ci, and

(3.2) holds for t ∈ [ci, hi)T
and s ∈ [a, b]

T
, where hi = max{τcidi , gcidi}. For each δ ∈ (m1, 1], let

η ∈ Lξ[a, b]T1
be defined as in Lemma 2.1. If there exists ui ∈ U(ci, di) for i = 1, 2 such that (3.4)

holds, where

Qi(t) = q(t)

[
P
(
τc1d1 , τ(t)

)

P
(
τc1d1 , σ(t)

)

]α
+
[ |e(t)|
1 − δ

]1−δ

× exp

⎛

⎝
∫σ(b)

a

η(s) ln

⎛

⎝r(t, s)
η(s)

[
P
(
gc1d1 , g(t, s)

)

P
(
gc1d1 , σ(t)

)

]γ(s)⎞

⎠Δξ(s)

⎞

⎠.

(3.18)

Then (1.1) is oscillatory.

Remark 3.3. We see from the proof of Lemma 2.1 in Section 2 that for each δ ∈ (m1, 1], the
function η can be constructed explicitly for any nondecreasing function ξ, and hence the
functions Qi in Theorems 3.1 and 3.2 are explicitly given.

Remark 3.4. We observe that in Theorems 3.1 and 3.2, if the supremum in (3.3) is assumed
at δ = 1, the effect of e(t) is neglected in some extent. This implies that the magnitude of
e(t) in [ci, di]T

cannot be large. For otherwise, the supremumwould have been taken at some
δ ∈ (m1, 1).
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Now, we interpret the results for (1.1) to the special case of (1.5). Set T1 = N, a = 1,
b = n + 1 for n ∈ N, and

ξ(s) = s, s = 1, 2, . . . , n + 1,

γ(s) = βs satisfying (1.4), s = 1, 2, . . . , n,

r(t, s) = qs(t), s = 1, 2, . . . , n,

g(t, s) = τs(t), s = 1, 2, . . . , n.

(3.19)

Then (1.1) reduces to (1.5). By a straightforward computation, we have that

m1 =
α

n −m

n∑

j=m+1

β−1j , m2 =
α

m

m∑

j=1

β−1j . (3.20)

Then Lemma 2.1 can be restated as the following: for any δ ∈ (m1, m2), there exists a positive
n-tuple (η1, . . . , ηn) satisfying

n∑

j=1

αjηj = α,
n∑

j=1

ηj = δ. (3.21)

Therefore, by Theorems 3.1 and 3.2, we obtain the following oscillation results for (1.5)which
generalize the results in [13].

Corollary 3.5. Assume that τ(t), τj(t) ≤ t for t ∈ [t0,∞)
T
and j = 1, . . . , n. Suppose also that for

any T ≥ t0, there exist subintervals [ci, di]T
of [T,∞), i = 1, 2, such that ci, di ∈ T, di > ci, and

qj(t) ≥ 0, (−1)ie(t) ≥ 0, t ∈ [θi, di)T
, (3.22)

where θi = min{ωi,ωij : j = 1, 2, . . . , n}, ωi = min{τ(t) : t ∈ [ci, di]T
} and ωij = min{τj(t) : t ∈

[ci, di]T
}. For each δ ∈ (m1, 1], let (η1, . . . , ηn) be defined by (3.21). We further assume that there

exists a function ui ∈ U(ai, bi) such that (3.4) holds, where

Qi(t) = q(t)
[
P(τ(t), ωi)
P(σ(t), ωi)

]α
+
[ |e(t)|
1 − δ

]1−δ n∏

j=1

[
qj(t)
ηj

]ηj[P
(
τj(t), ωij

)

P
(
σ(t), ωij

)

]βjηj
. (3.23)

Then (1.5) is oscillatory.

Corollary 3.6. Assume that τ(t), τj(t) > t for t ∈ [t0,∞)
T
and j = 1, . . . , n. Suppose also that for

any T ≥ t0, there exist subintervals [ci, di]T
of [T,∞), i = 1, 2, such that ci, di ∈ T, di > ci, and

qj(t) ≥ 0, (−1)ie(t) ≥ 0, t ∈
[
ci, θi

)

T

, (3.24)
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where θi = max{ωi,ωij : j = 1, 2, . . . , n}, ωi = max{τ(t) : t ∈ [ci, di]T
} and ωij = max{τj(t) : t ∈

[ci, di]T
}. For each δ ∈ (m1, 1], let (η1, . . . , ηn) be defined by (3.21). We further assume there exists a

function ui ∈ U(ai, bi) such that (3.4) holds, where

Qi(t) = q(t)
[
P(ωi, τ(t))
P(ωi, σ(t))

]α
+
[ |e(t)|
1 − δ

]1−δ n∏

j=1

[
qj(t)
ηj

]ηj[P
(
ωij , τj(t)

)

P
(
ωij , σ(t)

)

]βjηj
. (3.25)

Then (1.5) is oscillatory.

Remark 3.7. Corollaries 3.5 and 3.6 generalize those results in [13] since the sufficient condi-
tion for oscillation of (1.5) is given here in the form of supδ∈(m1,1]

∫di

ci
[·]Δt ≥ 0.

4. Examples

Wewill give two examples to illustrate Theorems 3.1 and 3.2 in the case when ξ(s) = s,T1 = R,
and T = R(N).

Example 4.1. Consider on T = R the following differential equation

(
φ3/2
(
x′(t)
))′ + k1 sin tφ3/2x

(
t − π

4

)
+ k2 sin t

∫2

1
φs(x(t))ds = −f(t) cos t, (4.1)

where t ≥ 0, k1, k2 > 0 are constants, f ∈ C[0,∞) is an arbitrary nonnegative function. Here
we have p(t) = 1, q(t) = k1 sin t, r(t, s) = k2 sin t, e(t) = −f(t) cos t, a = 1, b = 2, γ(s) = s,
τ(t) = t − 2π , and g(t, s) = t. For any T ≥ 0, we choose k large enough so that 2kπ ≥ T and let
c1 = 2kπ + π/4, d1 = 2kτ + π/2, c2 = 2kπ + 3π/4 and d2 = 2kπ + π . Then it is easy to verify
that (3.2) holds, and

Qi(t) = k1 sin t
(

t − ci
t − ci + (π/4)

)3/2
+ k2 sin t, i = 1, 2. (4.2)

A straightforward computation yields thatm1 = 3 ln(4/3) = 0.863 andm2 = 3 ln(3/2)=
1.2164. By Lemma 2.1, for any δ ∈ (m1, m2), there exists a positive Riemann integrable func-
tion on [1, 2] such that (2.2) and (2.3) hold. Particularly, we can choose δ = 1 and hence
η(s) = 1. If we choose ui(t) = (t − ci)(di − t) for i = 1, 2, then we have

∫di

ci

Qi(t)|ui(t)|5/2dt

=
∫π/2

π/4
sin t

[

k1
(t − (π/4))4((π/2) − t)5/2

t3/2
+ k2
((

t − π

4

)(π
2
− t
))5/2
]

dt,

∫di

ci

∣∣u′
i(t)
∣∣5/2dt =

∫π/2

π/4

∣∣∣∣
3π
4

− 2t
∣∣∣∣

5/2

dt =
2
7

(π
4

)7/2
.

(4.3)
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If there exist positive constants k1 and k2 such that

∫di

ci

Qi(t)|ui(t)|5/2dt ≥ 2
7

(π
4

)7/2
, (4.4)

then condition (3.3) holds. By Theorem 3.1, we have that (4.1) is oscillatory.

Example 4.2. Consider on T = N the following difference equation

(
φ3/2

(
xΔ(t)
))Δ

+ q(t)φ3/2(x(t + 1)) + r(t)
∫2

1
φs(x(t + 1))ds = e(t), (4.5)

where t ∈ N,

q(t) =

⎧
⎨

⎩

k1, t = 8j, 8j + 1, 8j + 2, 8j + 3, 8j + 4, 8j + 5,

f1(t), t = 8j + 6, 8j + 7,

r(t) =

⎧
⎨

⎩

k2, t = 8j, 8j + 1, 8j + 2, 8j + 3, 8j + 4, 8j + 5,

f2(t), t = 8j + 6, 8j + 7,

e(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f3(t), t = 8j, 8j + 1, 8j + 2,

f4(t), t = 8j + 3, 8j + 4, 8j + 5,

f5(t), t = 8j + 6, 8j + 7,

(4.6)

for j ∈ N, k1 and k2 are positive constants, fi(t) (i = 1, 2, 3, 4, 5) are arbitrary real-valued
functions with f3(t) ≤ 0 and f4(t) ≥ 0. For any N ∈ N, we can choose j large enough so that
8j ≥ N. Let c1 = 8j + 1, d1 = 8j + 3, c2 = 8j + 4, and d2 = 8j + 6. Then (3.2) is valid. Choose
η(s) = 1 and ui(t) = (t − ci)(di − t) for i = 1, 2. Then (2.2) and (2.3) hold with δ = 1. By the
straightforward computation, we get

∫di

ci

[
Qi(t)|ui(σ(t))|5/2 −

∣∣∣uΔ
i (t)
∣∣∣
5/2
]
Δt = k1 + k2 − 1. (4.7)

By Theorem 3.2, (4.5) is oscillatory if k1 + k2 ≥ 1.
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