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We study special partial sums of multiple Fourier series of distributions. We obtain sufficient con-
ditions of summation of Riesz means of Fourier expansions of distributions with compact sup-
port.

1. Introduction

Reconstruction of a distribution from its Fourier expansions is one of the recently studied
problems in harmonic analysis. Well-defined sequence of partial sums always converges in
the weak topology [1, 2]. However, one can study these expansions in classical sense in the
domains where a distribution coincides with locally integrable function. From the divergence
of Fourier series of the Dirac delta function, it follows that a singularity of the distribution
makes significant influence for the convergence in a domain where it is very smooth (equal to
zero in this case). For eigenfunction expansions of even piecewise smooth functions, its dis-
continuity has negative effect on convergence at the point far from singularity sets (Pinsky
phenomenon) [3–5].

In the present paper, we consider a localization problem of multiple Fourier series of
distributions. Unlike one-dimensional case partial sums of multiple Fourier series can be de-
fined in various ways, such as rectangular, square, and spherical partial sums [1, 2]. Fourier
expansions of a singular distribution can be also studied in the classical sense in the domains
where it coincides with a regular function [1, 2, 6–13]. We prove a localization theorem for
nonspherical partial sums, that is, for Fourier series under summation over domains bounded
by level surfaces of elliptic polynomials.
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2. Preliminaries and Formulation of the Main Result

WedenoteC∞(TN)—the space of 2π-periodic in each variable, infinitely differentiable onRN

functions, where TN = {x ∈ RN : −π < xj ≤ π}.
Let γ = (γ1, γ2, . . . , γN) denote a multiindex, that is,N-dimensional vector with integer

nonnegative components and let Dγ = D
γ1
1 D

γ2
2 · · ·DγN

N , where Dj = (1/i)(∂/∂xj).
The system of seminorms Supx∈TN |Dγf(x)| produces a locally convex topology in

C∞(TN), where γ runs over all multiindexes. We denote ε(TN) corresponding locally convex
topological space. Let ε′(TN) be the space of periodic distributions, that is, the space of con-
tinuous linear functionals on ε(TN).

For any distribution f from ε′(TN)we define its Fourier coefficients fn as the action of
distribution f on the test function (2π)−N/2 exp(−inx), where x ∈ TN and n ∈ ZN , N-dimen-
sional vector with integer coordinates. Then f can be represented by Fourier series

f = (2π)−N/2
∑

n∈ZN

fn exp(inx), (2.1)

which always converges in the weak topology (see, e.g., in [1, 2]).
Consider the following polynomial:

Pm(n) =

⎛

⎝
r+1∑

j=1

n2
j

⎞

⎠
m+1

+

⎛

⎝
N∑

j=r+2

n2
j

⎞

⎠
m⎛

⎝
N∑

j=1

n2
j

⎞

⎠, (2.2)

where n = (n1, n2, . . . , nN) ∈ ZN, m is a positive integer number, and r = 0, 1, . . . ,N − 1.
Polynomial Pm(n) is a homogeneous of degree 2(m + 1), that is,

Pm(λ · n) = λ2(m+1) · Pm(n), (2.3)

and an elliptic, that is,

Pm(n) > 0, n /= 0. (2.4)

Thus, a family of bounded sets

Λ(λ) =
{
n ∈ ZN : Pm(n) < λ

}
, λ ∈ R+, (2.5)

enjoying the following properties:

(a) for any pairs (λ1, λ2) ∈ R+ × R+, there is λ ∈ R+, such that Λ(λ1) ∪Λ(λ2) ⊂ Λ(λ),

(b)
⋃

λ∈R+ Λ(λ) = ZN .

Let f ∈ ε′(TN). Then Λ-partial sums of series (2.1) define by equality

Eλf(x) = (2π)−N/2
∑

Λ(λ)

fn exp(in · x). (2.6)
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For any real s, s ≥ 0, we define the Riesz means of (2.6) by

Es
λf(x) = (2π)−N/2

∑

Λ(λ)

(
1 − Pm(n)

λ

)s

fn exp(inx). (2.7)

At s = 0 we obtain partial sums (2.6).
Summability of series (2.1), as well as its regularization (2.7), depends on power of

singularity of f . In order to classify singularities of distributions, we apply periodic Liouville
spaces Lα

p(T
N), 1 < p ≤ ∞, α ∈ R [14].

In this paper we study the convergence of the Riesz means (2.7) in domains where a
distribution coincides with the zero (the localization problem). The main result of this work
is to prove the following.

Theorem 2.1. Let f ∈ L−α
p (TN)

⋂
ε′(TN), 1 < p ≤ 2, α > 0, and coincide with zero in Ω ⊂ TN . If

s > max
{
(N − r − 1)(1 − 1/2m)

p
+
r

2
,
N − 1

2

}
+ α, (2.8)

then uniformly on any compact set K ⊂ Ω

lim
λ→∞

Es
λf(x) = 0. (2.9)

3. Auxiliary Lemmas on Estimations of the Dirichlet Kernel

The Riesz means (2.7) can be written as

Es
λf(x) =

〈
f,Ds

λ

(
x − y

)〉
, (3.1)

where f acts on Ds
λ
(x − y) by y and Ds

λ
(x) is the Riesz means of Λ-partial sums of multiple

Fourier series of the Dirac Delta Function:

Ds
λ(x) = (2π)−N/2

∑

Λ(λ)

(
1 − Pm(n)

λ

)s

exp(inx). (3.2)

Note that, if r = N − 1, then Ds
λ(x) is exactly the Riesz means of the Dirichlet Kernel.

First, we estimate (3.2) in the norm of positive Liouville spaces. In this, we use the re-
lation between the kernel (3.2) and the relevant kernel of Fourier integrals. Such a relation is
known as the Poisson Summation Formula. The kernel for the corresponding Fourier integ-
rals can be also described by the same polynomial Pm replacing its argument range from
n ∈ ZN to ξ ∈ RN :

Θs
λ(x) = (2π)−N/2

∫

Λ(λ)

(
1 − Pm(ξ)

λ

)s

exp(iξ · x)dξ, (3.3)

where in definition of the domain Λ(λ) its range must be changed accordantly.
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Following asymptotic formula valid for the kernel (3.3), we obtain Lemma 3.1.

Lemma 3.1. Let x ∈ RN, x = (x′, x′′), x′ ∈ Rr+1, x′′ ∈ RN−r−1, 0 < δ0 < |x′|, μ = λ1/2(m+1).
Then, for |x′′| < εμ−(1−1/2m), 0 < ε < 1/2, and μ → ∞

Θs
λ(x) =

cμN cos
(
μ|x′| + (r/2 − s)(π/2)

)

(
μ|x′|)((r+2)/2)+s+((N−1−r)/2m)

×
(
1 +O

(
1

μ|x|
)
+O

(∣∣x′′∣∣μ1−1/2m
))

. (3.4)

Note, that, integral operators, corresponding to the kernels Ds
λ
and Θs

λ
, act in different

functional spaces. On the assumptions of Lemma 3.1 it follows that, if s satisfies condition
(2.8) in Theorem 2.1, then Θs

λ ∈ L1.
Suppose that f ∈ L1(TN) vanishes near the boundary of the cube TN . Then the fun-

ction

g(x) =

⎧
⎨

⎩
f(x), if x ∈ TN,

0, if x /∈ TN,
(3.5)

belongs to L1(RN) and preserves all properties of f in the interior of TN . Conversely, if g ∈
L(RN) has its support in the interior of TN , then, if we shift its graph along the coordinate
axes with steps which are multiples of 2π , we get a periodic function f ∈ L1(TN), which
coincides with g on TN , that is,

f(x) =
∑

n∈ZN

g(x + 2πn). (3.6)

Fourier coefficient of f ∈ TN and the Fourier transformation of g ∈ L1(RN) are related
by the formula fn = (2π)−N/2ĝ(n). Thus, comparing this with previous formula, we obtain
the Poisson summation formula

∑

n∈ZN

g(x + 2πn) = (2π)−N/2
∑

n∈ZN

ĝ(n) exp inx. (3.7)

The Poisson summation formula (3.7) holds, for example, if the function g satisfies conditions

∣∣g(x)
∣∣ ≤ (1 + |x|)−N−ε,

∣∣ĝ(ξ)
∣∣ ≤ (1 + |ξ|)−N−ε, (3.8)

where ε is any positive number.
Note that from definition of the kernel Θs

λ
it follows that

Θ̂s
λ(n) =

⎧
⎪⎨

⎪⎩
(2π)−N/2

(
1 − Pm(n)

λ

)s

, if Pm(n) ≤ λ,

0, otherwise.
(3.9)

Equality (3.9) establishes relationships between the Fourier coefficients of the kernel
Ds

λ
and the Fourier transformation of the kernel Θs

λ
. Moreover, from Lemma 3.1 and
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inequality (2.8), it follows that the kernel Θs
λ satisfies conditions (3.8). Thus, from (3.7), we

obtain

∑

n∈ZN

Θs
λ(x + 2πn) = (2π)−N/2

∑

n∈ZN

Θ̂s
λ(n) exp inx. (3.10)

On the other hand, taking into account (3.9), from the definition of the kernel Ds
λ, we obtain

Ds
λ(x) = (2π)−N/2

∑

n∈ZN

Θ̂s
λ(n) exp inx. (3.11)

Thus, from (3.10) and (3.11), we obtain

Ds
λ(x) =

∑

n∈ZN

Θs
λ(x + 2πn). (3.12)

Then in (3.12) separating the term n = 0 we obtain

Ds
λ(x) = Θs

λ(x) + Θs
∗,λ(x), (3.13)

where Θs
∗,λ(x) is defined as

Θs
∗,λ(x) =

∑

n∈ZN,n/= 0

Θs
λ(x + 2πn). (3.14)

Then from Lemma 3.1 we immediately obtain the following lemma.

Lemma 3.2. Let ε > 0 be an arbitrary small number and |xi| ≤ 2π − ε, for any i = 1, 2, 3, . . . ,N.
If s satisfies (2.8), then

Θs
∗,λ(x) = O

(
λ1/2(m+1)

)N−s−1−(r/2)−((N−1−r)/2m)
. (3.15)

Lemma 3.2 provides an estimation of the second term in (3.13). Moreover, if 0 < δ0 < |x′|, then
from (3.4)we obtain an estimation for the first term in (3.13). Thus, we proved the following
lemma.

Lemma 3.3. Let ε > 0 be an arbitrary small number and |x′| > ε. If s satisfies (2.8), then

Ds
λ(x) = O

(
λ1/2(m+1)

)N−s−1−(r/2)−((N−1−r)/2m)
. (3.16)

We will estimate the kernel Ds
λ(x) in the norm of Lq(TN) space. Lemma 3.3 provides

an estimation at q = ∞. If q = 2, then we have the following estimation see [15].
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Theorem 3.4. Let K ⊂⊂ TN be a compact set, then uniformly by x ∈ K

∥∥Ds
λ

(
x − y

)∥∥
L2(F)

= O
(
λ(N−1−2s)/4(m+1)

)
, (3.17)

where F is an arbitrary domain in TN such that F
⋂
K = ∅.

Then using Stein’s interpolation theorem for analytical family of linear operators [16]
with q = ∞ and q = 2, we obtain the following.

Lemma 3.5. Let s satisfy (2.8), and let K ⊂⊂ TN be an arbitrary compact set. Then uniformly by
x ∈ K

∥∥Ds
λ

(
x − y

)∥∥
Lq(F)

= O
(
λ1/2(m+1)

)N−s−1−(r/2)−((N−1−r)/2m)
, (3.18)

where F is an arbitrary domain in TNsuch that F
⋂
K = ∅, 2 ≤ q ≤ ∞.

For any number τ ≥ 0 introduce the following functions (kernels):

Ds
τ,λ(x) = (2π)−N/2

∑

Λ(λ)

Pτ
m(n)

(
1 − Pm(n)

λ

)s

exp inx. (3.19)

Note that Ds
0,λ(x) = Ds

λ(x).

Lemma 3.6. Let |x′| > ε, where ε > 0 is an arbitrary small number, and let s satisfy (2.8). Then for
any nonnegative number τ the following relation is true.

Ds
τ,λ(x) − λτDs

λ(x) = O(1)λ(N−s−2−(r/2)−((N−1−r)/2m)/2(m+1))+τ . (3.20)

Proof. If τ is an integer, then (3.20) follows directly from Lemma 3.3 and the relation

λ−1Ds
k+1,λ(x) = Ds

k,λ(x) −Ds+1
k,λ (x). (3.21)

If τ is not an integer, then write τ = k + δ, where k is an integer and δ ∈ (0, 1). Then there is
a positive function ρ(t), such that ρ ≤ const tδ−1 and

λ−δDs
k+1,λ(x) = Ds

k,λ(x) − δDs+1
k,λ (x) +

∫1

0
Ds+1

k,tλ(x)ρ(t)dt. (3.22)

Then statement of the Lemma 3.6 follows from the relation (3.22) and Lemma 3.3.
Lemma 3.6 is proved.
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From Lemmas 3.5 and 3.6 we obtain the following.

Lemma 3.7. Let K ⊂⊂ TN be an arbitrary compact set, s satisfy (2.8), and 2 ≤ q ≤ ∞. Then uni-
formly by x ∈ K the following estimation is valid:

∥∥∥Ds
τ,λ

(
x − y

)∥∥∥
Lq(F)

= O
(
λ(N−s−2−(r/2)−((N−1−r)/2m)/2(m+1))+τ

)
, (3.23)

where F is an arbitrary domain in TNsuch that F
⋂
K = ∅.

4. Proof of the Main Result

Let a distribution f have a compact support and belong to the space L−α
p (TN), where 1 < p ≤

2, α > 0. Let K be an arbitrary compact set from TN \ supp f and s satisfy (2.8). Then from
(3.1) it follows that

∣∣Es
λf(x)

∣∣ ≤ ∥∥f
∥∥
−α,p

∥∥Ds
λ

(
x − y

)∥∥
α,q,F

, (4.1)

where ‖ · ‖−α,p means a norm in the space L−α
p (TN) and ‖ · ‖α,q,F means a norm in the space

Lα
q(F), 1/q = 1 − (1/p), and supp f ⊂ F such that F

⋂
K = ∅.

Let τ = α/2(m + 1). Then from inequality

∥∥Ds
λ

∥∥
α,q

≤ c
∥∥∥Ds

τ,λ

∥∥∥
Lq

(4.2)

and Lemma 3.7 it follows that

Es
λf(x) = O(1)

∥∥f
∥∥
−α,p (4.3)

uniformly by x from K.
Statement of Theorem 2.1 follows from inequality (4.3).
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