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We study some new A-sequence spaces using ideal convergence and an Orlicz function in
2-normed space and we give some relations related to these sequence spaces.

1. Introduction

Let X and Y be two nonempty subsets of the space w of complex sequences. Let A =
(ank), (n, k = 1, 2, . . .) be an infinite matrix of complex numbers. We write Ax = (An(x))
if An(x) =

∑∞
k=1 ankxk converges for each n. If x = (xk) ∈ X ⇒ Ax = (An(x)) ∈ Y we say that

A defines a (matrix) transformation from X to Y , and we denote it by A : X → Y .
The notion of ideal convergence was introduced first by Kostyrko et al. [1] as a

generalization of statistical convergence. More applications of ideals can be seen in [2–5].
The concept of 2-normed space was initially introduced by Gähler [6] as an interesting

nonlinear generalization of a normed linear space which was subsequently studied by many
authors (see, [7, 8]). Recently a lot of activities have started to study summability, sequence
spaces, and related topics in these nonlinear spaces (see, [9–12]).

Let (X, ‖ · ‖) be a normed space. Recall that a sequence (xn) of elements of X is called
statistically convergent to x ∈ X if the set A(ε) = {n ∈ � : ‖xn − x‖ ≥ ε} has natural density
zero for each ε > 0.

A family I ⊂ 2Y of subsets a nonempty set Y is said to be an ideal in Y if

(i) A,B ∈ I imply A ∪ B ∈ I;
(ii) A ∈ I, B ⊂ A imply B ∈ I, while an admissible ideal I of Y further satisfies {x} ∈ I

for each x ∈ Y , (see [7, 13]).
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Given I ⊂ 2� a nontrivial ideal in �. The sequence (xn)n∈� in X is said to be I-
convergent to x ∈ X, if for each ε > 0 the set A(ε) = {n ∈ � : ‖xn − x‖ ≥ ε} belongs to
I, (see, [1, 3]).

Let X be a real vector space of dimension d, where 2 ≤ d < ∞. A 2-norm on X is a
function ‖·, ·‖ : X ×X → � which satisfies

(i) ‖x, y‖ = 0 if and only if x and y are linearly dependent;

(ii) ‖x, y‖ = ‖y, x‖;

(iii) ‖αx, y‖ = |α|‖x, y‖, α ∈ �;

(iv) ‖x, y + z‖ ≤ ‖x, y‖ + ‖x, z‖.

The pair (X, ‖·, ·‖) is then called a 2-normed space [7]. As an example of a 2-normed
space we may take X = �2 being equipped with the 2-norm ‖x, y‖ := the area of the
parallelogram spanned by the vectors x and y, which may be given explicitly by the
formula

‖x1, x2‖E = abs

(∣
∣
∣
∣
∣

x11 x12

x21 x22

∣
∣
∣
∣
∣

)

. (1.1)

Recall that (X, ‖·, ·‖) is a 2-Banach space if every Cauchy sequence in X is convergent to some
x in X.

Recall in [14] that an Orlicz function M : [0,∞) → [0,∞) is a continuous, convex,
nondecreasing function such that M(0) = 0 and M(x) > 0 for x > 0, and M(x) → ∞ as
x → ∞.

Subsequently Orlicz function was used to define sequence spaces by Parashar and
Choudhary [15] and others [16, 17].

If convexity of Orlicz function M is replaced by M(x + y) ≤ M(x) + M(y) then
this function is called modulus function, which was presented and discussed by Ruckle [18]
and Maddox [19]. It should be mentioned that notable works involving Orlicz function and
modulus function were done in [16, 18–23].

In this article, we define some new sequence spaces in 2-normed spaces by using
Orlicz function, infinite matrix, generalized difference sequences, and ideals. We introduce
and examine certain new sequence spaces using the above tools as also the 2-norm.

2. Main Results

Let I be an admissible ideal of �, M be an Orlicz function, (X, ‖·, ·‖) be a 2-normed space,
andA = (an,k) be a nonnegative matrix method. Further, let p = (pk) be a bounded sequence
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of positive real numbers. By S(2 − X), we denote the space of all sequences defined over
(X, ‖·, ·‖). Now we define the following sequence spaces:

WI(M,Δm, p, ‖, ·, ‖)

=

⎧
⎪⎨

⎪⎩

x ∈ S(2 −X) : ∀ε > 0

{

n ∈ � :
∞∑

k=1

ank

[

M

(∥
∥
∥
∥
Δmxk − L

ρ
, z

∥
∥
∥
∥

)]pk
≥ ε

}

∈ I

for some ρ > 0, L ∈ X and each z ∈ X

⎫
⎪⎬

⎪⎭
,

WI
0
(
A,M,Δm, p, ‖, ·, ‖)

=

⎧
⎪⎨

⎪⎩

x ∈ S(2 −X) : ∀ε > 0

{

n ∈ � :
∞∑

k=1

ank

[

M

(∥
∥
∥
∥
Δmxk

ρ
, z

∥
∥
∥
∥

)]pk
≥ ε

}

∈ I

for some ρ > 0, and each z ∈ X

⎫
⎪⎬

⎪⎭
,

W∞
(
A,M,Δm, p, ‖, ·, ‖)

=

⎧
⎪⎨

⎪⎩

x ∈ S(2 −X) : ∃K > 0 s.t. sup
n∈�

∞∑

k=1

ank

[

M

(∥
∥
∥
∥
Δmxk

ρ
, z

∥
∥
∥
∥

)]pk
≤ K

for some ρ > 0, and each z ∈ X

⎫
⎪⎬

⎪⎭
,

WI
∞
(
A,M,Δm, p, ‖, ·, ‖)

=

{

x ∈ S(2 −X) : ∃K > 0, s.t.

{

n ∈ � :
∞∑

k=1

ank

[

M

(∥
∥
∥
∥
Δmxk

ρ
, z

∥
∥
∥
∥

)]pk
≥ K

}

∈ I for some ρ > 0, and each z ∈ X

}

,

(2.1)

where Δmxk = Δm−1xk −Δm−1xk+1.
Let us consider a few special cases of the above sets.

(1) If M(x) = x, for all x ∈ [0,∞), then the above classes of sequences
are denoted by WI(A,Δm, p, ‖, ·, ‖), WI

0(A,Δm, p, ‖, ·, ‖), W∞(A,Δm, p, ‖, ·, ‖), and
WI

∞(A,Δm, p, ‖, ·, ‖), respectively.
(2) If pk = 1 for all k ∈ N, then we denote the above classes of sequences

by WI(A,M,Δm, ‖, ·, ‖),WI
0(A,Δm, ‖, ·, ‖),W∞(A,Δm, ‖, ·, ‖), andWI

∞(A,Δm, ‖, ·, ‖),
respectively.

(3) If M(x) = x, for all x ∈ [0,∞), and pk = 1 for all k ∈ N, then we denote
the above spaces by WI(A,Δm, ‖, ·, ‖), WI

0(A,Δm, ‖, ·, ‖), W∞(A,Δm, ‖, ·, ‖), and
WI

∞(A,Δm, ‖, ·, ‖), respectively.
(4) If we take A = (ank) as

ank =

⎧
⎨

⎩

1
n
, if n ≥ k,

0, otherwise,
(2.2)
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then the above classes of sequences are denoted by WI(C,M,Δm, p, ‖, ·, ‖),
WI

0(C,M,Δm, p, ‖, ·, ‖), W∞(C,M,Δm, p, ‖, ·, ‖), and WI
∞(C,M,Δm, p, ‖, ·, ‖) respec-

tively, which were defined and studied by Savaş [24]

(5) If we take A = (ank) is a de la Vallée poussin mean, that is,

ank =

⎧
⎨

⎩

1
λn

, if k ∈ In = [n − λn + 1, n],

0, otherwise,
(2.3)

where (λn) is a nondecreasing sequence of positive numbers tending to ∞
and λn+1 ≤ λn + 1, λ1 = 1, then the above classes of sequences are
denoted by WI(M,Δm, λ, p, ‖, ·, ‖), WI

0(M,Δm, λ, p, ‖, ·, ‖), W∞(M,Δm, λ, p, ‖, ·, ‖),
and WI

∞(M,Δm, λ, p, ‖, ·, ‖).
(6) By a lacunary θ = (kr); r = 0, 1, 2, . . . where k0 = 0, we will mean an increasing

sequence of nonnegative integers with kr−kr−1 as r → ∞. The intervals determined
by θ will be denoted by Ir = (kr−1, kr] and hr = kr − kr−1. As a final illustration let

ank =

⎧
⎨

⎩

1
hr

, if kr−1 < k ≤ kr,

0, otherwise.
(2.4)

Then we denote the above classes of sequences by WI(M,Δm, θ, p, ‖, ·, ‖),
WI

0(M,Δm, θ, p, ‖, ·, ‖), W∞(M,Δm, θ, p, ‖, ·, ‖), and WI
∞(M,Δm, θ, p, ‖, ·, ‖).

The following well-known inequality (see [25, p. 190])will be used in the study.
If

0 ≤ pk ≤ sup pk = H, D = max
(
1, 2H−1

)
, (2.5)

then

|ak + bk|pk ≤ D
{|ak |pk + |bk|pk

}
, (2.6)

for all k and ak, bk ∈ � . Also |a|pk ≤ max(1, |a|H) for all a ∈ � .

Theorem 2.1. WI(A,M,Δm, p, ‖, ·, ‖),WI
0(A,M,Δm, p, ‖, ·, ‖), andWI

∞(A,M,Δm, p, ‖, ·, ‖) are
linear spaces.

Proof. We will prove the assertion for WI
0(A,M,Δm, p, ‖, ·, ‖) only, and the others can be

proved similarly. Assume that x, y ∈ WI
0(A,M,Δm, p, ‖, ·, ‖) and α, β ∈ �. In order to prove

the result we need to find some ρ3 such that

{

n ∈ � :
∞∑

k=1

ank

[

M

(∥
∥
∥
∥
αΔmxk + βΔmxk

ρ3
, z

∥
∥
∥
∥

)]pk
≥ ε

}

∈ I for some ρ3 > 0. (2.7)
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Since x, y ∈ WI
0(A,M,Δm, p, ‖, ·, ‖), there exist some positive ρ1 and ρ2 such that

{

n ∈ � :
∞∑

k=1

ank

[

M

(∥
∥
∥
∥
Δmxk

ρ1
, z

∥
∥
∥
∥

)]pk
≥ ε

}

∈ I for some ρ1 > 0,

{

n ∈ � :
∞∑

k=1

ank

[

M

(∥
∥
∥
∥
Δmxk

ρ2
, z

∥
∥
∥
∥

)]pk
≥ ε

}

∈ I for some ρ2 > 0.

(2.8)

Define ρ3 = max(2|α|ρ1, 2|β|ρ2). Since M is nondecreasing and convex and also ‖, ·, ‖ is a 2-
norm, Δm is linear

∞∑

k=1

ank

[

M

(∥
∥
∥
∥
∥

Δm
(
αxk + βyk

)

ρ3
, z

∥
∥
∥
∥
∥

)]pk

≤
∞∑

k=1

ank

[

M

(∥
∥
∥
∥
αΔmxk

ρ3
, z

∥
∥
∥
∥ +
∥
∥
∥
∥
βΔmxk

ρ3
, z

∥
∥
∥
∥

)]pk

≤
∞∑

k=1

ank
1
2pk

[

M

(∥
∥
∥
∥
Δmxk

ρ1
, z

∥
∥
∥
∥ +
∥
∥
∥
∥
Δmxk

ρ2
, z

∥
∥
∥
∥

)]pk

≤
∞∑

k=1

ank

[

M

(∥
∥
∥
∥
Δmxk

ρ1
, z

∥
∥
∥
∥ +
∥
∥
∥
∥
Δmxk

ρ2
, z

∥
∥
∥
∥

)]pk

≤ D
∞∑

k=1

ank

[

M

(∥
∥
∥
∥
Δmxk

ρ1
, z

∥
∥
∥
∥

)]pk

+D
∞∑

k=1

ank

[

M

(∥
∥
∥
∥
Δmxk

ρ2
, z

∥
∥
∥
∥

)]pk
,

(2.9)

where D = max(1, 2H−1). From the above inequality we get

{

n ∈ � :
∞∑

k=1

ank

[

M

(∥
∥
∥
∥
∥

Δm
(
αxk + βyk

)

ρ3
, z

∥
∥
∥
∥
∥

)]pk

≥ ε

}

⊆
{

n ∈ � : D
∞∑

k=1

ank

[

M

(∥
∥
∥
∥
Δmxk

ρ1
, z

∥
∥
∥
∥

)]pk
≥ ε

2

}

∪
{

n ∈ � : D
∞∑

k=1

ank

[

M

(∥
∥
∥
∥
Δmyk

ρ2
, z

∥
∥
∥
∥

)]pk
≥ ε

2

}

.

(2.10)

Two sets on the right-hand side belong to I, and this completes the proof.

It is also easy to verify that the space W∞(A,M,Δm, p, ‖, ·, ‖) is also a linear space and
moreover we have the following.
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Theorem 2.2. For any fixed n ∈ �, W∞(A,M,Δm, p, ‖, ·, ‖) is paranormed space with respect to the
paranorm defined by

gn(x) = inf
z∈X

⎧
⎨

⎩
ρpn/H :

( ∞∑

k=1

ank

[

M

(∥
∥
∥
∥
Δmxk

ρ
, z

∥
∥
∥
∥

)]pk
)1/H

≤ 1, ∀z ∈ X

⎫
⎬

⎭
. (2.11)

Proof. The proof is parallel to the proof of the Theorem 2 in [24] and so is omitted.

Theorem 2.3. Let X(A,Δm−1) stand for WI
0(A,Δm−1,M, p, ‖, ·, ‖), WI(A,Δm−1,M, p, ‖, ·, ‖), or

WI
∞(A,Δm−1,M, p, ‖, ·, ‖) and m ≥ 1. Then the inclusion X(A,Δm−1) ⊂ X(A,Δm) is strict. In

general X(A,Δi) ⊂ X(A,Δm) for all i = 1, 2, 3, . . . , m − 1 and the inclusion is strict.

Proof. We shall give the proof for WI
0(A,Δm−1,M, p, ‖, ·, ‖) only. It can be proved in a

similar way for WI
∞(A,Δm−1,M, p, ‖, ·, ‖), and WI(A,Δm−1, M, p, ‖, ·, ‖). Let x = (xk) ∈

WI
0(A,Δm−1,M, p, ‖, ·, ‖). Then given ε > 0 we have

{

n ∈ � :
∞∑

k=1

ank

[

M

(∥
∥
∥
∥
∥

Δm−1xk

ρ
, z

∥
∥
∥
∥
∥

)]pk

≥ ε

}

∈ I for some ρ > 0. (2.12)

SinceM is nondecreasing and convex it follows that

∞∑

k=1

ank

[

M

(∥
∥
∥
∥
Δmxk

2ρ
, z

∥
∥
∥
∥

)]pk

=
∞∑

k=1

ank

[

M

(∥
∥
∥
∥
∥

Δm−1xk+1 −Δm−1xk

2ρ
, z

∥
∥
∥
∥
∥

)]pk

≤ D
∞∑

k=1

ank

([
1
2
M

(∥
∥
∥
∥
∥

Δm−1xk+1

ρ
, z

∥
∥
∥
∥
∥

)]pk

+

[
1
2
M

(∥
∥
∥
∥
∥

Δm−1xk

ρ
, z

∥
∥
∥
∥
∥

)]pk)

≤ D
∞∑

k=1

ank

([

M

(∥
∥
∥
∥
∥

Δm−1xk+1

ρ
, z

∥
∥
∥
∥
∥

)]pk

+

[

M

(∥
∥
∥
∥
∥

Δm−1xk

ρ
, z

∥
∥
∥
∥
∥

)]pk)

.

(2.13)

Hence we have

{

n ∈ � :
∞∑

k=1

ank

[

M

(∥
∥
∥
∥
Δmxk

2ρ
, z

∥
∥
∥
∥

)]pk
≥ ε

}

⊆
{

n ∈ � : D
∞∑

k=1

ank

[

M

(∥
∥
∥
∥
∥

Δm−1xk+1

ρ
, z

∥
∥
∥
∥
∥

)]pk

≥ ε

2

}

∪
{

n ∈ � : D
∞∑

k=1

ank

[

M

(∥
∥
∥
∥
∥

Δm−1xk

ρ
, z

∥
∥
∥
∥
∥

)]pk

≥ ε

2

}

.

(2.14)
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Since the set on the right hand side belongs to I, so does the left hand side. The inclusion is
strict as the sequence x = (kr), for example, belongs toWI

0(Δ
m,M, ‖, ·, ‖) but does not belong

toWI
0(Δ

m−1,M, ‖, ·, ‖) forM(x) = x, A = (ank) = (C, 1) Cesàro matrix and pk = 1 for all k.

Theorem 2.4. (i) Let 0 < inf pk ≤ pk ≤ 1. ThenWI(A,Δm,M, p, ‖, ·, ‖) ⊂ WI(A,Δm,M, ‖, ·, ‖).
(ii) 1 < pk ≤ sup pk ≤ ∞. ThenWI(A,Δm,M, ‖, ·, ‖) ⊂ WI(A,Δm,M, p‖, ·, ‖).

Proof. (i) Let (xk) ∈ WI(A,M,Δm, p, ‖, ·, ‖). Since 0 < inf pk ≤ pk ≤ 1, we have

∞∑

k=1

ank

[

M

(∥
∥
∥
∥
Δmxk − L

ρ
, z

∥
∥
∥
∥

)]

≤
∞∑

k=1

ank

[

M

(∥
∥
∥
∥
Δmxk − L

ρ
, z

∥
∥
∥
∥

)]pk
. (2.15)

So

{

n ∈ � :
∞∑

k=1

ank

[

M

(∥
∥
∥
∥
Δmxk − L

ρ
, z

∥
∥
∥
∥

)]

≥ ε

}

⊆
{

n ∈ � :
∞∑

k=1

ank

[

M

(∥
∥
∥
∥
Δmxk − L

ρ
, z

∥
∥
∥
∥

)] pk

≥ ε

}

∈ I.

(2.16)

(ii) Let pk ≥ 1 for each k, and sup pk ≤ ∞. Let (xk) ∈ WI(A,M,Δm, p, ‖, ·, ‖). Then for
each 0 < ε < 1 there exists a positive integer N such that

∞∑

k=1

ank

[

M

(∥
∥
∥
∥
Δmxk − L

ρ
, z

∥
∥
∥
∥

)]

≤ ε < 1, (2.17)

for all n ≥ N. This implies that

∞∑

k=1

ank

[

M

(∥
∥
∥
∥
Δmxk − L

ρ
, z

∥
∥
∥
∥

)]pk
≤

∞∑

k=1

ank

[

M

(∥
∥
∥
∥
Δmxk − L

ρ
, z

∥
∥
∥
∥

)]

. (2.18)

So we have

{

n ∈ � :
∞∑

k=1

ank

[

M

(∥
∥
∥
∥
Δmxk − L

ρ
, z

∥
∥
∥
∥

)]pk
≥ ε

}

⊆
{

n ∈ � :
∞∑

k=1

ank

[ (

M

∥
∥
∥
∥
Δmxk − L

ρ
, z

∥
∥
∥
∥

)]

≥ ε

}

∈ I.

(2.19)

This completes the proof.

The following corollary follows immediately from the above theorem.

Corollary 2.5. Let A = (C, 1) Cesàro matrix and let M be an Orlicz function.
(1) If 0 < inf pk ≤ pk < 1, thenWI(Δm,M, p, ‖, ·, ‖) ⊂ WI(Δm,M, ‖, ·, ‖).
(2) If 1 ≤ pk ≤ sup pk < ∞, thenWI(Δm,M, ‖, ·, ‖) ⊂ WI(Δm,M, p‖, ·, ‖).



8 Abstract and Applied Analysis

Definition 2.6. Let X be a sequence space. Then X is called solid if (αkxk) ∈ X whenever
(xk) ∈ X for all sequences (αk) of scalars with |αk| ≤ 1 for all k ∈ N.

Theorem 2.7. The sequence spaces WI
0(A,M,Δm, p, ‖, ·, ‖) andWI

∞(A,M,Δm, p, ‖, ·, ‖) are solid.

Proof. We give the proof for WI
0(A,M,Δm, p, ‖, ·, ‖) only. Let (xk) ∈ WI

0(A,M,Δm, p, ‖, ·, ‖),
and let (αk) be a sequence of scalars such that |αk| ≤ 1 for all k ∈ N. Then we have

{

n ∈ � :
∞∑

k=1

ank

[

M

(∥
∥
∥
∥
Δm(αkxk)

ρ
, z

∥
∥
∥
∥

)]pk
≥ ε

}

⊆
{

n ∈ � : C
∞∑

k=1

ank

[(

M

∥
∥
∥
∥
Δmxk

ρ
, z

∥
∥
∥
∥

)]pk
≥ ε

}

∈ I,

(2.20)

where C = maxk{1, |αk|H}. Hence (αkxk) ∈ WI
0(A,M,Δm, p, ‖, ·, ‖) for all sequences of scalars

(αk) with |αk| ≤ 1 for all k ∈ N whenever (xk) ∈ WI
0(A,M,Δm, p, ‖, ·, ‖).

Remark 2.8. In general it is difficult to predict the solidity of WI
0(A,M,Δm, p, ‖, ·, ‖) and

WI
∞(A,M,Δm, p, ‖, ·, ‖)whenm > 0. For this, consider the following example.

Example 2.9. Let m = 2, pk = 1 for all k, A = (C, 1) Cesàro matrix and M(x) = x. Then
(xk) = (k) ∈ WI

0(M,Δ2, p, ‖, ·, ‖) but (αkxk) /∈ WI
0(M,Δ2, p, ‖, ·, ‖) when αk = (−1)k for all

k ∈ N. HenceWI
0(M,Δ2, p, ‖, ·, ‖) is not solid.
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[24] E. Savaş, “Δm-strongly summable sequences spaces in 2-normed spaces defined by ideal convergence
and an Orlicz function,” Applied Mathematics and Computation, vol. 217, no. 1, pp. 271–276, 2010.

[25] I. J. Maddox, Elements of Functional Analysis, Cambridge University Press, London, UK, 1970.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


