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We study weak convergence of the projection type Ishikawa iteration scheme for two asymptot-
ically nonexpansive nonself-mappings in a real uniformly convex Banach space E which has a
Fréchet differentiable norm or its dual E∗ has the Kadec-Klee property. Moreover, weak conver-
gence of projection type Ishikawa iterates of two asymptotically nonexpansive nonself-mappings
without any condition on the rate of convergence associated with the two maps in a uniformly
convex Banach space is established. Weak convergence theorem without making use of any of
the Opial’s condition, Kadec-Klee property, or Fréchet differentiable norm is proved. Some results
have been obtained which generalize and unify many important known results in recent literature.

1. Introduction and Preliminaries

Let C be a nonempty closed convex subset of real normed linear space X. Let T : C → C
be a mapping. A point x ∈ C is called a fixed point of T if and only if Tx = x. The set of all
fixed points of a mapping T is denoted by F(T). A self-mapping T : C → C is said to be
nonexpansive if ‖T(x) − T(y)‖ ≤ ‖x − y‖ for all x, y ∈ C. A self-mapping T : C → C is called
asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,∞), kn → 1 as n → ∞ such
that

∥
∥Tn(x) − Tn(y

)∥
∥ ≤ kn

∥
∥x − y

∥
∥ (1.1)

for all x, y ∈ C and n ≥ 1. A mapping T : C → C is said to be uniformly L-Lipschitzian if
there exists a constant L > 0 such that

∥
∥Tn(x) − Tn(y

)∥
∥ ≤ L

∥
∥x − y

∥
∥ (1.2)
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for all x, y ∈ C and n ≥ 1. T is uniformly Hölder continuous if there exist positive constants
L and α such that

∥
∥Tn(x) − Tn(y

)∥
∥ < L

∥
∥x − y

∥
∥
α (1.3)

for all x, y ∈ C and n ≥ 1. T is termed as uniformly equicontinuous if, for any ε > 0, there
exists δ > 0 such that

∥
∥Tn(x) − Tn(y

)∥
∥ ≤ ε (1.4)

whenever ‖x−y‖ ≤ δ for all x, y ∈ C and n ≥ 1 or, equivalently, T is uniformly equicontinuous
if and only if

∥
∥Tn(xn) − Tn(yn

)∥
∥ −→ 0 (1.5)

whenever ‖xn − yn‖ → 0 as n → ∞.
It is easy to see that if T is an asymptotically nonexpansive, then it is uniformly

L-Lipschitzian with the uniform Lipschitz constant L = sup{kn : n ≥ 1}.

Remark 1.1. It is clear that asymptotically nonexpansiveness ⇒ uniformly L-Lipschitz ⇒
uniformly Hölder continuous ⇒ uniformly equicontinuous.

However, their converse fail in the presence of the following example.

Example 1.2 (see [1]). Define T : [0, 1] → [0, 1] by Tx = (1 − x3/2)2/3 for all x ∈ [0, 1].

Fixed-point iteration process for nonexpansive self-mappings including Mann and
Ishikawa iteration processes has been studied extensively by various authors [2–8]. For
nonexpansive nonself-mappings, some authors (see [9–13]) have studied the strong and
weak convergence theorems in Hilbert spaces or uniformly convex Banach spaces.

In [14], Tan and Xu introduced a modified Ishikawa iteration process:

xn+1 = (1 − bn)xn + bnT
((

1 − γn
)

xn + γnTxn

)

, n ≥ 1, (1.6)

to approximate fixed points of nonexpansive self-mappings defined on nonempty closed
convex bounded subsets of a uniformly convex Banach space X. The mapping T remains
self-mapping of a nonempty closed convex subset C of a uniformly convex Banach space.
If, however, the domain C of T is a proper subset of X (and this is the case in several
applications) and T maps C into X then, the sequence {xn} generated by (1.6) may not be
well defined. More precisely, Tan and Xu [14] proved weak convergence of the sequences
generated by (1.6) to some fixed point of T in a uniformly convex Banach spacewhich satisfies
Opial’s condition or has a Fréchet differentiable norm.

Note that each lp (1 ≤ p < ∞) satisfies Opial’s condition, while all Lp do not
have the property unless p = 2 and the dual of reflexive Banach spaces with a Fréchet
differentiable norm has the Kadec-Klee property. It is worth mentioning that there are
uniformly convex Banach spaces, which have neither a Fréchet differentiable norm nor Opial
property; however, their dual does have the Kadec-Klee property (see [15, 16]).
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In 2005, Shahzad [11] extended Tan and Xu’s result [14] to the case of nonexpansive
nonself-mapping in a uniformly convex Banach space. He studied weak convergence of the
modified Ishikawa type iteration process:

xn+1 = P
(

(1 − bn)xn + bnTP
((

1 − γn
)

xn + γnTxn

))

, n ≥ 1, (1.7)

in a uniformly convex Banach space whose dual has the Kadec-Klee property. The result
applies not only to Lp spaces with (1 ≤ p < ∞) but also to other spaces which do not
satisfy Opial’s condition or have a Fréchet differentiable norm. Meanwhile, the results of
[11] generalized the results of [14].

The class of asymptotically nonexpansive self-mappings is a natural generalization of
the important class of nonexpansive mappings. Goebel and Kirk [17] proved that if C is a
nonempty closed convex and bounded subset of a real uniformly convex Banach space, then
every asymptotically nonexpansive self-mapping has a fixed point.

In 1991, the modified Mann iteration which was introduced by Schu [18] generates a
sequence {xn} in the following manner:

xn+1 = (1 − αn)xn + αnT
nxn, n ≥ 1, (1.8)

where {αn} is a sequence in the interval (0, 1) and T : C → C is an asymptotically
nonexpansive mapping. To be more precise, Schu [18] obtained the following weak
convergence result for an asymptotically nonexpansive mapping in a uniformly convex
Banach space which satisfies Opial’s condition.

Theorem 1.3 (see [18]). Let X be a uniformly convex Banach space satisfying Opial’s condition,
∅/=C ⊂ X closed bounded and convex, and T : C → C asymptotically nonexpansive with sequence
{kn} ⊂ [1,∞) for which

∑∞
n=1(kn−1) < ∞ and {αn} ∈ [0, 1] is bounded away. Let {xn} be a sequence

generated in (1.8). Then, the sequence {xn} converges weakly to some fixed point of T .

Since then, Schu’s iteration process has been widely used to approximate fixed points
of asymptotically nonexpansive self-mappings in Hilbert space or Banach spaces (see [6, 14,
19, 20]).

In 1994, Tan and Xu [21] obtained the following results.

Theorem 1.4 (see [21]). Let X be a uniformly convex Banach space whose norm is Fréchet
differentiable, C a nonempty closed and convex subset of X, and T : C → C an asymptotically
nonexpansive mapping with a sequence {kn} ⊂ [1,∞) such that

∑∞
n=1(kn − 1) < ∞ such that F(T) is

nonempty. Let {xn} be sequence generated in (1.8), where {αn} is a real sequence bounded away from
0 and 1. Then, the sequence {xn} converges weakly to some point in F(T).

In 2001, Khan and Takahashi [22] constructed and studied the following Ishikawa
iteration process:

xn+1 = (1 − αn)xn + αnT
n
1 yn,

yn =
(

1 − βn
)

xn + βnT
n
2 xn, n ≥ 1,

(1.9)
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where T1, T2 are asymptotically nonexpansive self-mappings on C with
∑∞

n=1(kn − 1) < ∞
(rate of convergence) and 0 ≤ αn, βn ≤ 1.

Note that the rate of convergence condition, namely,
∑∞

n=1(kn − 1) < ∞ has remained
in extensive use to prove both weak and strong convergence theorems to approximate fixed
points of asymptotically nonexpansive maps. The conditions like Opial’s condition, Kadec-
Klee property, or Fréchet differentiable norm have remained key to prove weak convergence
theorems.

In 2010, Khan and Fukhar-Ud-Din [23] established weak convergence of Ishikawa
iterates of two asymptotically nonexpansive self-mappings without any condition on the
rate of convergence associated with the two mappings. They got that the following new
weak convergence theorem does not require any of Opial’s condition, Kadec-Klee property
or Fréchet differentiable norm.

Theorem 1.5 (see [23]). Let C be a nonempty bounded closed convex subset of a uniformly convex
Banach space X. Let T1, T2 : C → C be asymptotically nonexpansive maps with sequences
{kn}, {ln} ⊂ [1,∞) such that limn→∞ kn = 1, limn→∞ ln = 1, respectively. Let the sequence {xn} be
as in (1.9) with δ ≤ αn, βn ≤ 1 − δ. for some δ ∈ (0, 1/2). If F(T1) ∩ F(T2)/= ∅, then {xn} converges
weakly to a common fixed point of T1 and T2.

The concept of asymptotically nonexpansive nonself-mappings was introduced by
Chidume et al. [24] in 2003 as the generalization of asymptotically nonexpansive self-
mappings. The asymptotically nonexpansive nonself-mapping is defined as follows.

Definition 1.6 (see [24]). Let C be a nonempty subset of a real normed linear space X. Let
P : X → C be a nonexpansive retraction of X onto C. A nonself-mapping T : C → X
is called asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,∞), kn → 1 as
n → ∞ such that

∥
∥
∥T(PT)n−1x − T(PT)n−1y

∥
∥
∥ ≤ kn

∥
∥x − y

∥
∥ (1.10)

for all x, y ∈ C and n ≥ 1. T is said to be uniformly L-Lipschitzian if there exists a constant
L > 0 such that

∥
∥
∥T(PT)n−1x − T(PT)n−1y

∥
∥
∥ ≤ L

∥
∥x − y

∥
∥ (1.11)

for all x, y ∈ C and n ≥ 1.

By studying the following iteration process:

x1 ∈ C, xn+1 = P
(

(1 − αn)xn + αnT(PT)n−1xn

)

, (1.12)

Chidume et al. [24] got the following weak convergence theorem for asymptotically
nonexpansive nonself-mapping.

Theorem 1.7 (see [24]). Let X be a real uniformly convex Banach space which has a Fréchet
differentiable norm and C a nonempty closed convex subset ofX. Let T : C → X be an asymptotically
nonexpansive map with sequence {kn} ⊂ [1,∞) such that

∑∞
n=1(k

2
n − 1) < ∞ and F(T)/= ∅. Let
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{αn} ⊂ (0, 1) be such that ε ≤ 1 − αn ≤ 1 − ε, for all n ≥ 1 and some ε > 0. From an arbitrary x1 ∈ C,
define the sequence {xn} by (1.12). Then, {xn} converges weakly to some fixed point of T .

If T is a self-mapping, then P becomes the identity mapping so that (1.10) and (1.11)
reduce to (1.1) and (1.2), respectively. Equation (1.12) reduces to (1.8).

In 2006, Wang [25] generalizes the iteration process (1.12) as follows: x1 ∈ C,

xn+1 = P
(

(1 − αn)xn + αnT1(PT1)n−1yn

)

,

yn = P
((

1 − βn
)

xn + βnT2(PT2)n−1xn

)

, n ≥ 1,
(1.13)

where T1, T2 : C → X are asymptotically nonexpansive nonself-mappings and {αn}, {βn} are
real sequences in [0, 1). He studied the strong and weak convergence of the iterative scheme
(1.13) under proper conditions. Meanwhile, the results of [25] generalized the results of [24].

Recently, an iterative scheme which is called the projection type Ishikawa iteration
for two asymptotically nonexpansive nonself-mappings was defined and constructed by
Thianwan [26]. It is given as follows:

xn+1 = P
(

(1 − αn)yn + αnT1(PT1)n−1yn

)

,

yn = P
((

1 − βn
)

xn + βnT2(PT2)n−1xn

)

, n ≥ 1,
(1.14)

where {αn} and {βn} are appropriate real sequences in [0, 1).
In [26], Thianwan gave the following weak convergence theorem.

Theorem 1.8. Let X be a uniformly convex Banach space which satisfies Opial’s condition and C a
nonempty closed convex nonexpansive retract of X with P as a nonexpansive retraction. Let T1, T2 :
C → X be two asymptotically nonexpansive nonself-mappings of C with sequences {kn}, {ln} ⊂
[1,∞) such that

∑∞
n=1(kn − 1) < ∞,

∑∞
n=1(ln − 1) < ∞, respectively, and F(T1) ∩ F(T2)/= ∅. Suppose

that {αn} and {βn} are real sequences in [ε, 1 − ε] for some ε ∈ (0, 1). Let {xn} and {yn} be the
sequences defined by (1.14). Then, {xn} and {yn} converge weakly to a common fixed point of T1 and
T2.

The iterative schemes (1.14) and (1.13) are independent: neither reduces to the other.
If T1 = T2 and βn = 0 for all n ≥ 1, then (1.14) reduces to (1.12). It also can be reduces to Schu
process (1.8).

Inspired and motivated by the recent works, we prove some new weak convergence
theorems of the sequences generated by the projection type Ishikawa iteration scheme (1.14)
for two asymptotically nonexpansive nonself-mappings in uniformly convex Banach spaces.

Now, we recall some well-known concepts and results.
Let X be a Banach space with dimension X ≥ 2. The modulus of X is the function

δX : (0, 2] → [0, 1] defined by

δX(ε) = inf
{

1 −
∥
∥
∥
∥

1
2
(

x + y
)
∥
∥
∥
∥
: ‖x‖ = 1,

∥
∥y

∥
∥ = 1, ε =

∥
∥x − y

∥
∥

}

. (1.15)
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Banach space X is uniformly convex if and only if δX(ε) > 0 for all ε ∈ (0, 2]. It is known that
a uniformly convex Banach space is reflexive and strictly convex.

Recall that a Banach space X is said to satisfy Opial’s condition [27] if xn → x weakly
as n → ∞ and x /=y implying that

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

∥
∥xn − y

∥
∥. (1.16)

The norm of X is said to be Fréchet differentiable if for each x ∈ X with ‖x‖ = 1 the limit

lim
t→ 0

‖x + ty‖ − ‖x‖
t

(1.17)

exists and is attained uniformly for y, with ‖y‖ = 1. In the case of Fréchet differentiable norm,
it has been obtained in [21] that

〈h, J(x)〉 + 1
2
‖x‖2 ≤ 1

2
‖x + h‖2

≤ 〈h, J(x)〉 + 1
2
‖x‖2 + b(‖h‖)

(1.18)

for all x, h in E, where J is the normalized duality map from E to E∗ defined by

J(x) =
{

x∗ ∈ E∗ : 〈x, s∗〉 = ‖x‖2 = ‖x∗‖2
}

, (1.19)

〈·, ·〉 is the duality pairing between E and E∗ and b is an increasing function defined on [0,∞)
such that limt↓0 b(t)/t = 0.

A subset C of X is said to be retract if there exists continuous mapping P : X → C
such that Px = x for all x ∈ C. Every closed convex subset of a uniformly convex Banach
space is a retract. A mapping P : X → X is said to be a retraction if P 2 = P . If a mapping P
is a retraction, then Pz = z for every z ∈ R(P), range of P . A set C is optimal if each point
outside C can be moved to be closer to all points of C. It is well known (see [28]) that

(1) if X is a separable, strictly convex, smooth, reflexive Banach space, and if C ⊂ X is
an optimal set with interior, then C is a nonexpansive retract of X;

(2) a subset of lp, with 1 < p < ∞, is a nonexpansive retract if and only if it is optimal.

Note that every nonexpansive retract is optimal. In strictly convex Banach spaces,
optimal sets are closed and convex. Moreover, every closed convex subset of a Hilbert space
is optimal and also a nonexpansive retract.

Recall that weak convergence is defined in terms of bounded linear functionals on X
as follows.

A sequence {xn} in a normed spaceX is said to be weakly convergent if there is an x ∈
X such that limn→∞ f(xn) = f(x) for every bounded linear functional f on X. The element
x is called the weak limit of {xn}, and we say that {xn} converges weakly to x. In this paper,
we use → and ⇀ to denote the strong convergence and weak convergence, respectively.
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A Banach space X is said to have the Kadec-Klee property if, for every sequence {xn}
in X, xn ⇀ x and ‖xn‖ → ‖x‖ together imply ‖xn − x‖ → 0; for more details on Kadec-Klee
property, the reader is referred to [29, 30] and the references therein.

In the sequel, the following lemmas are needed to prove our main results.

Lemma 1.9 (see [31]). Let p > 1, r > 0 be two fixed numbers. Then, a Banach space X is uniformly
convex if and only if there exists a continuous, strictly increasing, and convex function g : [0,∞) →
[0,∞), g(0) = 0 such that

∥
∥λx + (1 − λ)y

∥
∥
p ≤ λ‖x‖p + (1 − λ)

∥
∥y

∥
∥
p −wp(λ)g

(∥
∥x − y

∥
∥
)

(1.20)

for all x, y in Br = {x ∈ X : ‖x‖ ≤ r}, λ ∈ [0, 1], where

wp(λ) = λ(1 − λ)p + λp(1 − λ). (1.21)

Lemma 1.10 (see [24]). Let X be a uniformly convex Banach space and C a nonempty closed convex
subset of X, and let T : C → X be an asymptotically nonexpansive mapping with a sequence {kn} ⊂
[1,∞) and kn → 1 as n → ∞. Then, I − T is demiclosed at zero; that is, if xn → x weakly and
xn − Txn → 0 strongly, then x ∈ F(T).

Lemma 1.11 (see [26]). Let X be a uniformly convex Banach space and C a nonempty closed
convex nonexpansive retract of X with P as a nonexpansive retraction. Let T1, T2 : C → X be
two asymptotically nonexpansive nonself-mappings of C with sequences {kn}, {ln} ⊂ [1,∞) such
that

∑∞
n=1(kn − 1) < ∞,

∑∞
n=1(ln − 1) < ∞, respectively, and F(T1) ∩ F(T2)/= ∅. Suppose that {αn}

and {βn} are real sequences in [0, 1). From an arbitrary x1 ∈ C, define the sequence {xn} by (1.14). If
q ∈ F(T1) ∩ F(T2), then limn→∞ ‖xn − q‖ exists.

Lemma 1.12 (see [26]). Let X be a uniformly convex Banach space and C a nonempty closed
convex nonexpansive retract of X with P as a nonexpansive retraction. Let T1, T2 : C → X be two
asymptotically nonexpansive nonself-mappings of C with sequences {kn}, {ln} ⊂ [1,∞) such that
∑∞

n=1(kn − 1) < ∞,
∑∞

n=1(ln − 1) < ∞, respectively, and F(T1) ∩ F(T2)/= ∅. Suppose that {αn} and
{βn} are real sequences in [ε, 1− ε] for some ε ∈ (0, 1). From an arbitrary x1 ∈ C, define the sequence
{xn} by (1.14). Then, limn→∞ ‖xn − T1xn‖ = limn→∞ ‖xn − T2xn‖ = 0.

Lemma 1.13 (see [16]). Let X be a real reflexive Banach space such that its dual X∗ has the Kadec-
Klee property. Let {xn} be a bounded sequence in X and x∗, y∗ ∈ ωw(xn), where ωw(xn) denotes the
set of all weak subsequential limits of {xn}. Suppose that limn→∞ ‖txn + (1 − t)x∗ − y∗‖ exists for all
t ∈ [0, 1]. Then, x∗ = y∗.

We denote by Γ the set of strictly increasing, continuous convex functions γ : R
+ → R

+

with γ(0) = 0. Let C be a convex subset of the Banach space X. A mapping T : C → C is said
to be type (γ) [32] if γ ∈ Γ and 0 � α � 1,

γ
(∥
∥αTx + (1 − α)Ty − T

(

αx + (1 − α)y
)∥
∥
)

�
∥
∥x − y

∥
∥ − ∥

∥Tx − Ty
∥
∥ (1.22)

for all x, y in C. Obviously, every type (γ) mapping is nonexpansive. For more information
about mappings of type (γ), see [33–35].
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Lemma 1.14 (see [36, 37]). Let X be a uniformly convex Banach space and C a convex subset of X.
Then, there exists γ ∈ Γ such that for each mapping S : C → C with Lipschitz constant L,

∥
∥αSx + (1 − α)Sy − S

(

αx + (1 − α)y
)∥
∥ � Lγ−1

(
∥
∥x − y

∥
∥ − 1

L

∥
∥Sx − Sy

∥
∥

)

(1.23)

for all x, y ∈ C and 0 < α < 1.

2. Main Results

In this section, we prove weak convergence theorems of the projection type Ishikawa iteration
scheme (1.14) for two asymptotically nonexpansive nonself-mappings in uniformly convex
Banach spaces.

Firstly, we deal with the weak convergence of the sequence {xn} defined by (1.14) in a
real uniformly convex Banach space X whose dual X∗ has the Kadec-Klee property. In order
to prove our main results, the following lemma is needed.

Lemma 2.1. Let X be a real uniformly convex Banach space and C a nonempty closed convex
nonexpansive retract of X with P as a nonexpansive retraction. Let T1, T2 : C → X be two
asymptotically nonexpansive nonself-mappings of C with sequences {kn}, {ln} ⊂ [1,∞) such that
∑∞

n=1(kn − 1) < ∞,
∑∞

n=1(ln − 1) < ∞, respectively, and F(T1) ∩ F(T2)/= ∅. Suppose that {αn} and
{βn} are real sequences in [ε, 1 − ε] for some ε ∈ (0, 1). Let {xn} and {yn} be the sequences defined
by (1.14). Then, for all u, v ∈ F(T1) ∩ F(T2), the limit limn→∞ ‖txn − (1 − t)u − v‖ exists for all
t ∈ [0, 1].

Proof. It follows from Lemma 1.11 that the sequence {xn} is bounded. Then, there exists R > 0
such that {xn} ⊂ BR(0)∩C. Let an(t) := ‖txn+(1−t)u−v‖where t ∈ [0, 1]. Then, limn→∞ an(0) =
‖u − v‖ and, by Lemma 1.11, limn→∞ an(1) = limn→∞ ‖xn − v‖ exists. Without loss of the
generality, we may assume that limn→∞ ‖xn − v‖ = r for some positive number r. Let x ∈ C
and t ∈ (0, 1). For each n ≥ 1, define An : C → C by

Anx = P
(

(1 − αn)yn(x) + αnT1(PT1)n−1yn(x)
)

, (2.1)

where

yn(x) = P
((

1 − βn
)

x + βnT2(PT2)n−1x
)

. (2.2)

Setting kn = 1 + sn and ln = 1 + tn. For x, z ∈ C, we have

‖Anx −Anz‖ =
∥
∥
∥P

(

(1 − αn)yn(x) + αnT1(PT1)n−1yn(x)
)

−P
(

(1 − αn)yn(z) + αnT1(PT1)n−1yn(z)
)∥
∥
∥

≤ ∥
∥(1 − αn)

(

yn(x) − yn(z)
)

+αn

(

T1(PT1)n−1yn(x) − T1(PT1)n−1yn(z)
)∥
∥
∥
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≤ (1 − αn)
∥
∥yn(x) − yn(z)

∥
∥ + αnkn

∥
∥yn(x) − yn(z)

∥
∥

≤ (1 − αn)
∥
∥
∥

(

1 − βn
)

(x − z) + βnT2(PT2)n−1(x − z)
∥
∥
∥

+ αnkn
∥
∥
∥

(

1 − βn
)

(x − z) + βnT2(PT2)n−1(x − z)
∥
∥
∥

≤ (1 − αn)
(

1 − βn
)‖x − z‖ + (1 − αn)βnln‖x − z‖

+ αnkn
(

1 − βn
)‖x − z‖ + αnβnknln‖x − z‖

=
(

1 − αn − βn + αnβn
)‖x − z‖ + (1 − αn)βn(1 + tn)‖x − z‖

+ αn(1 + sn)
(

1 − βn
)‖x − z‖ + αnβn(1 + sn)(1 + tn)‖x − z‖

= ‖x − z‖ + βntn‖x − z‖ + αnsn‖x − z‖ + αnβntnsn‖x − z‖
≤ (1 + tn + sn + tnsn)‖x − z‖.

(2.3)

Set Sn,m := An+m−1An+m−2 · · ·An, n,m ≥ 1 and bn,m = ‖Sn,m(txn + (1 − t)u) − (tSn,mxn +
(1 − t)u)‖, where 0 ≤ t ≤ 1. Also,

∥
∥Sn,mx − Sn,my

∥
∥ ≤ ∥

∥An+m−1(An+m−2 · · ·Anx) −An+m−1
(

An+m−2 · · ·Any
)∥
∥

≤ (1 + tn+m−1 + sn+m−1 + tn+m−1sn+m−1)
∥
∥An+m−2(An+m−3 · · ·Anx) −An+m−2

(

An+m−3 · · ·Any
)∥
∥

...

≤
n+m−1∏

j=n

(

1 + tj + sj + tjsj
)∥
∥x − y

∥
∥

(2.4)

for all x, y ∈ C and Sn,m xn = xn+m, Sn,m x∗ = x∗ for all x∗ ∈ F(T1) ∩ F(T2).
Applying Lemma 1.14 with x = xn, y = u, S = Sn,m and using the facts that limn→∞ tn =

limn→∞ (ln − 1) = 0, limn→∞ sn = limn→∞ (kn − 1) = 0, and limn→∞ ‖xn − x∗‖ exist for all
x∗ ∈ F(T1) ∩ F(T2), we obtain limn→∞ bn,m = 0. Observe that

an+m(t) = ‖txn+m + (1 − t)u − v‖
= ‖tSn,mxn + (1 − t)u − Sn,mv‖
= ‖Sn,mv − (tSn,mxn + (1 − t)u)‖
= ‖Sn,mv − Sn,m(txn + (1 − t)u) + Sn,m(txn + (1 − t)u)

− (tSn,mxn + (1 − t)u)‖
≤ ‖Sn,mv − Sn,m(txn + (1 − t)u)‖ + bn,m
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= ‖Sn,m(txn + (1 − t)u) − Sn,mv‖ + bn,m

≤
n+m−1∏

j=n

(

1 + tj + sj + tjsj
)‖txn + (1 − t)u − v‖ + bn,m

≤
∞∏

j=n

(

1 + tj + sj + tjsj
)

an(t) + bn,m.

(2.5)

Consequently,

lim sup
m→∞

am(t) = lim sup
m→∞

an+m(t) ≤ lim sup
m→∞

(

bn,m +
∞∏

j=n

(

1 + tj + sj + tjsj
)

an(t)

)

, (2.6)

lim sup
n→∞

an(t) ≤ lim inf
n→∞

an(t). (2.7)

This implies that limn→∞ an(t) exists for all t ∈ [0, 1]. This completes the proof.

Theorem 2.2. LetX be a real uniformly convex Banach space which has a Fréchet differentiable norm
and C a nonempty closed convex nonexpansive retract of X with P as a nonexpansive retraction.
Let T1, T2 : C → X be two asymptotically nonexpansive nonself-mappings of C with sequences
{kn}, {ln} ⊂ [1,∞) such that

∑∞
n=1(kn − 1) < ∞,

∑∞
n=1(ln − 1) < ∞, respectively, and F(T1) ∩

F(T2)/= ∅. Suppose that {αn} and {βn} are real sequences in [ε, 1 − ε] for some ε ∈ (0, 1). Let {xn}
and {yn} be the sequences defined by (1.14). Then, {xn} converges weakly to a fixed point of T1 and T2.

Proof. Set x = p1 − p2 and h = t(xn − p1) in (1.18). By using Lemmas 1.11, and 2.1 and the
same proof of Lemma 4 of Osilike and Udomene [7], we can show that, for every p1, p2 ∈
F(T1) ∩ F(T2),

〈

p − q, J
(

p1 − p2
)〉

= 0, (2.8)

for all p, q ∈ ωw(xn). Since E is reflexive and {xn} is bounded, we from Lemma 1.13 conclude
that ωw(xn) ⊂ F(Ti) for each i = 1, 2. Let p, q ∈ ωw(xn). It follows that p, q ∈ F(T1) ∩ F(T2);
that is,

∥
∥p − q

∥
∥
2 =

〈

p − q, J
(

p − q
)〉

= 0. (2.9)

Therefore, p = q. This completes the proof.

Theorem 2.3. Let X be a real uniformly convex Banach space such that its dual X∗ has the Kadec-
Klee property and C a nonempty closed convex nonexpansive retract of X with P as a nonexpansive
retraction. Let T1, T2 : C → X be two asymptotically nonexpansive nonself-mappings of C with
sequences {kn}, {ln} ⊂ [1,∞) such that

∑∞
n=1(kn − 1) < ∞,

∑∞
n=1(ln − 1) < ∞, respectively, and

F(T1)∩F(T2)/= ∅. Suppose that {αn} and {βn} are real sequences in [ε, 1− ε] for some ε ∈ (0, 1). Let
{xn} and {yn} be the sequences defined by (1.14). Then, {xn} converges weakly to a fixed point of T1
and T2.
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Proof. It follows from Lemma 1.11 that the sequence {xn} is bounded. Then, there exists a
subsequence {xnj} of {xn} converging weakly to a point x∗ ∈ C. By Lemma 1.12, we have

lim
n→∞

∥
∥
∥xnj − T1xnj

∥
∥
∥ = 0 = lim

n→∞

∥
∥
∥xnj − T2xnj

∥
∥
∥. (2.10)

Now, using Lemma 1.10, we have (I − T)x∗ = 0; that is, Tx∗ = x∗. Thus, x∗ ∈ F(T1) ∩ F(T2). It
remains to show that {xn} converges weakly to x∗. Suppose that {xni} is another subsequence
of {xn} converging weakly to some y∗. Then, y∗ ∈ C and so x∗, y∗ ∈ ωw(xn) ∩ F(T1) ∩ F(T2).
By Lemma 2.1,

lim
n→∞

∥
∥txn − (1 − t)x∗ − y∗∥∥ (2.11)

exists for all t ∈ [0, 1]. It follows from Lemma 1.13 that x∗ = y∗. As a result, ωw(xn) is a
singleton, and so {xn} converges weakly to a fixed point of T .

In the remainder of this section, we deal with the weak convergence of the sequences
generated by the projection type Ishikawa iteration scheme (1.14) for two asymptotically
nonexpansive nonself-mappings in a uniformly convex Banach space without any of the
Opial’s condition, Kadec-Klee property, or Fréchet differentiable norm.

Let T1 and T2 be two asymptotically nonexpansive nonself-mappings of C with {kn} ⊂
[1,∞), limn→∞ kn = 1, and {ln} ⊂ [1,∞), limn→∞ ln = 1, respectively. In the sequel, we take
{tn} ⊂ [1,∞), where tn = max{kn, ln}.

We start with proving the following lemma for later use.

Lemma 2.4. Let X be a uniformly convex Banach space and C a nonempty bounded closed convex
nonexpansive retract of X with P as a nonexpansive retraction. Let T1, T2 : C → X be two
asymptotically nonexpansive nonself-mappings of C with sequences {kn}, {ln} ⊂ [1,∞) such that
kn → 1, ln → 1 as n → ∞, respectively, and F(T1) ∩ F(T2)/= ∅. Suppose that {αn} and {βn} are
real sequences in [ε, 1 − ε] for some ε ∈ (0, 1). Then, for the sequence {xn} given in (1.14), we have
that

lim
n→∞

‖xn − T1xn‖ = 0 = lim
n→∞

‖xn − T2xn‖. (2.12)

Proof. By setting tn = max{kn, ln}, then limn→∞ tn = 1 if limn→∞ kn = 1 = limn→∞ ln. Let
p ∈ F(T1) ∩ F(T2). Since C is bounded, there exists Br(0) such that C ⊂ Br(0) for some r > 0.
Applying Lemma 1.9 for scheme (1.14), we have

∥
∥yn − p

∥
∥
2 =

∥
∥
∥P

((

1 − βn
)

xn + βnT2(PT2)n−1xn

)

− p
∥
∥
∥

2

≤
∥
∥
∥

(

1 − βn
)(

xn − p
)

+ βn
(

T2(PT2)n−1xn − p
)∥
∥
∥

2
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=
(

1 − βn
)∥
∥xn − p

∥
∥
2 + βnl

2
n

∥
∥xn − p

∥
∥
2

− βn
(

1 − βn
)

g
(∥
∥
∥xn − T2(PT2)n−1xn

∥
∥
∥

)

=
(

1 − βn + βnl
2
n

)∥
∥xn − p

∥
∥
2 − βn

(

1 − βn
)

g
(∥
∥
∥xn − T2(PT2)n−1xn

∥
∥
∥

)

(2.13)

and so,

∥
∥xn+1 − p

∥
∥
2 =

∥
∥
∥P

(

(1 − αn)yn + αnT1(PT1)n−1yn

)

− p
∥
∥
∥

2

≤
∥
∥
∥(1 − αn)

(

yn − p
)

+ αn(T1(PT1)n−1yn − p)
∥
∥
∥

2

= (1 − αn)
∥
∥yn − p

∥
∥
2 + αnk

2
n

∥
∥yn − p

∥
∥
2

− αn(1 − αn)g
(∥
∥
∥yn − T1(PT1)n−1yn

∥
∥
∥

)

=
(

1 − αn + αnk
2
n

)∥
∥yn − p

∥
∥
2

− αn(1 − αn)g
(∥
∥
∥yn − T1(PT1)n−1yn

∥
∥
∥

)

≤
(

1−αn + αnk
2
n

)((

1 − βn + βnl
2
n

)∥
∥xn − p

∥
∥
2− βn

(

1 − βn
)

g
(∥
∥
∥xn − T2(PT2)n−1xn

∥
∥
∥

))

− αn(1 − αn)g
(∥
∥
∥yn − T1(PT1)n−1yn

∥
∥
∥

)

=
(

1 − αn + αnk
2
n

)(

1 − βn + βnl
2
n

)∥
∥xn − p

∥
∥
2

−
(

1 − αn + αnk
2
n

)

βn
(

1 − βn
)

g
(∥
∥
∥xn − T2(PT2)n−1xn

∥
∥
∥

)

− αn(1 − αn)g
(∥
∥
∥yn − T1(PT1)n−1yn

∥
∥
∥

)

=
(

(1 − αn)
(

1 − βn
)

+ (1 − αn)βnl2n +
(

1 − βn
)

αnk
2
n + αnk

2
nβnl

2
n

)∥
∥xn − p

∥
∥
2

−
(

1 − αn + αnk
2
n

)

βn
(

1 − βn
)

g
(∥
∥
∥xn − T2(PT2)n−1xn

∥
∥
∥

)

− αn(1 − αn)g
(∥
∥
∥yn − T1(PT1)n−1yn

∥
∥
∥

)

≤
(

(1 − αn)
(

1 − βn
)

+ (1 − αn)βnt2n +
(

1 − βn
)

αnt
2
n + αnβnt

4
n

)∥
∥xn − p

∥
∥
2

−
(

1 − αn + αnk
2
n

)

βn
(

1 − βn
)

g
(∥
∥
∥xn − T2(PT2)n−1xn

∥
∥
∥

)

− αn(1 − αn)g
(∥
∥
∥yn − T1(PT1)n−1yn

∥
∥
∥

)
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≤
(

(1 − αn)
(

1 − βn
)

t4n + (1 − αn)βnt4n +
(

1 − βn
)

αnt
4
n + αnβnt

4
n

)∥
∥xn − p

∥
∥
2

−
(

1 + αn

(

k2
n − 1

))

βn
(

1 − βn
)

g
(∥
∥
∥xn − T2(PT2)n−1xn

∥
∥
∥

)

− αn(1 − αn)g
(∥
∥
∥yn − T1(PT1)n−1yn

∥
∥
∥

)

≤
(

(1 − αn)
(

1 − βn
)

t4n + (1 − αn)βnt4n +
(

1 − βn
)

αnt
4
n + αnβnt

4
n

)∥
∥xn − p

∥
∥
2

− βn
(

1 − βn
)

g
(∥
∥
∥xn − T2(PT2)n−1xn

∥
∥
∥

)

− αn(1 − αn)g
(∥
∥
∥yn − T1(PT1)n−1yn

∥
∥
∥

)

≤ ∥
∥xn − p

∥
∥
2 + r

(

t4n − 1
)

− ε2g
(∥
∥
∥xn − T2(PT2)n−1xn

∥
∥
∥

)

− ε2g
(∥
∥
∥yn − T1(PT1)n−1yn

∥
∥
∥

)

.

(2.14)

From (2.14), we obtain the following two important inequalities:

∥
∥xn+1 − p

∥
∥
2 ≤ ∥

∥xn − p
∥
∥
2 + r

(

t4n − 1
)

− ε2g
(∥
∥
∥xn − T2(PT2)n−1xn

∥
∥
∥

)

, (2.15)

∥
∥xn+1 − p

∥
∥
2 ≤ ∥

∥xn − p
∥
∥
2 + r

(

t4n − 1
)

− ε2g
(∥
∥
∥yn − T1(PT1)n−1yn

∥
∥
∥

)

. (2.16)

Now, we prove that

lim
n→∞

∥
∥
∥xn − T2(PT2)n−1xn

∥
∥
∥ = 0 = lim

n→∞

∥
∥
∥yn − T1(PT1)n−1yn

∥
∥
∥. (2.17)

Assume that lim supn→∞ ‖xn − T2(PT2)
n−1xn‖ > 0. Then, there exists a subsequence (use the

same notation for subsequence as for the sequence) of {xn} and μ > 0 such that

∥
∥
∥xn − T2(PT2)n−1xn

∥
∥
∥ ≥ μ > 0. (2.18)
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By definition of g, we have

g
(∥
∥
∥xn − T2(PT2)n−1xn

∥
∥
∥

)

≥ g
(

μ
)

> 0. (2.19)

From (2.15), we have

∥
∥xn+1 − p

∥
∥
2 ≤ ∥

∥xn − p
∥
∥
2 + r

(

t4n − 1
)

− ε2g
(

μ
)

=
∥
∥xn − p

∥
∥
2 + r

(
(

t4n − 1
)

− ε2

2r
g
(

μ
)

)

− ε2

2
g
(

μ
)

.

(2.20)

In addition, t4n → 1 and (ε2/2r)g(μ) > 0; there exists n0 ≥ 1 such that (t4n − 1) <
(ε2/2r)g(μ) for all n ≥ n0. From (2.20), we obtain

ε2

2
g
(

μ
) ≤ ∥

∥xn − p
∥
∥
2 − ∥

∥xn+1 − p
∥
∥
2 (2.21)

for all n ≥ n0.
Let m ≥ n0. It follows from (2.21) that

ε2

2

m∑

n=n0

g
(

μ
) ≤

m∑

n=n0

(∥
∥xn − p

∥
∥
2 − ∥

∥xn+1 − p
∥
∥
2
)

=
∥
∥xn0 − p

∥
∥
2
.

(2.22)

By letting m → ∞ in (2.22), we obtain

∞ =
∥
∥xn0 − p

∥
∥
2
< ∞ (2.23)

which contradicts the reality. This proves that μ = 0. Thus, lim supn→∞‖xn−T2(PT2)n−1xn‖ ≤ 0.
Consequently, we have

lim
n→∞

∥
∥
∥xn − T2(PT2)n−1xn

∥
∥
∥ = 0. (2.24)

Similarly, using (2.16), we may show that

lim
n→∞

∥
∥
∥yn − T1(PT1)n−1yn

∥
∥
∥ = 0. (2.25)

Using (2.24), we have

∥
∥xn − yn

∥
∥ ≤ βn

∥
∥
∥xn − T2(PT2)n−1xn

∥
∥
∥ −→ 0 (as n −→ ∞). (2.26)
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From (2.25), (2.26), and the uniform equicontinuous of T1 (see Remark 1.1), we have

∥
∥
∥xn − T1(PT1)n−1xn

∥
∥
∥ ≤ ∥

∥xn − yn

∥
∥ +

∥
∥
∥yn − T1(PT1)n−1xn

∥
∥
∥

≤ ∥
∥xn − yn

∥
∥ +

∥
∥
∥yn − T1(PT1)n−1yn

∥
∥
∥

+
∥
∥
∥T1(PT1)

n−1yn − T1(PT1)
n−1xn

∥
∥
∥ −→ 0 (as n −→ ∞).

(2.27)

Since

‖xn − xn+1‖ ≤ (1 − αn)
∥
∥yn − xn

∥
∥ + αn

∥
∥
∥T1(PT1)n−1yn − xn

∥
∥
∥

= (1 − αn)
∥
∥yn − xn

∥
∥ + αn

∥
∥
∥T1(PT1)n−1yn − T1(PT1)n−1xn + T1(PT1)n−1xn − xn

∥
∥
∥

≤ ∥
∥yn − xn

∥
∥ +

∥
∥
∥T1(PT1)n−1yn − T1(PT1)n−1xn

∥
∥
∥ +

∥
∥
∥T1(PT1)n−1xn − xn

∥
∥
∥,

(2.28)

it follows from (2.26), (2.27), and the uniform equi-continuity of T1 (see Remark 1.1) that

lim
n→∞

‖xn − xn+1‖ = 0. (2.29)

Since limn→∞‖xn − T1(PT1)
n−1xn‖ = 0 and again from the fact that T1 is uniformly

equicontinuous mapping, by Using (2.29), we have

∥
∥
∥xn+1 − T1(PT1)n−1xn+1

∥
∥
∥ =

∥
∥
∥xn+1 − xn + xn − T1(PT1)n−1xn + T1(PT1)n−1xn − T1(PT1)n−1xn+1

∥
∥
∥

≤ ‖xn+1 − xn‖ +
∥
∥
∥T1(PT1)n−1xn+1 − T1(PT1)n−1xn

∥
∥
∥

+
∥
∥
∥T1(PT1)n−1xn − xn

∥
∥
∥ −→ 0 (as n −→ ∞).

(2.30)

In addition,

∥
∥
∥xn+1 − T1(PT1)n−2xn+1

∥
∥
∥

=
∥
∥
∥xn+1 − xn + xn − T1(PT1)n−2xn + T1(PT1)n−2xn − T1(PT1)n−2xn+1

∥
∥
∥

≤ ‖xn+1 − xn‖ +
∥
∥
∥T1(PT1)n−2xn − xn

∥
∥
∥ +

∥
∥
∥T1(PT1)n−2xn+1 − T1(PT1)n−2xn

∥
∥
∥

≤ ‖xn+1 − xn‖ +
∥
∥
∥T1(PT1)n−2xn − xn

∥
∥
∥ + L‖xn+1 − xn‖,

(2.31)
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where L = sup{kn : n ≥ 1}. It follows from (2.29) and (2.30) that

lim
→∞

∥
∥
∥xn+1 − T1(PT1)n−2xn+1

∥
∥
∥ = 0. (2.32)

We denote (PT1)
1−1 to be the identity maps from C onto itself. Thus, by the inequality (2.30)

and (2.32), we have

‖xn+1 − T1xn+1‖ =
∥
∥
∥xn+1 − T1(PT1)n−1xn+1 + T1(PT1)n−1xn+1 − T1xn+1

∥
∥
∥

≤
∥
∥
∥xn+1 − T1(PT1)n−1xn+1

∥
∥
∥ +

∥
∥
∥T1(PT1)n−1xn+1 − T1xn+1

∥
∥
∥

=
∥
∥
∥xn+1 − T1(PT1)n−1xn+1

∥
∥
∥ +

∥
∥
∥T1(PT1)1−1(PT1)n−1xn+1 − T1(PT1)1−1xn+1

∥
∥
∥

≤
∥
∥
∥xn+1 − T1(PT1)n−1xn+1

∥
∥
∥ + L

∥
∥
∥(PT1)n−1xn+1 − xn+1

∥
∥
∥

=
∥
∥
∥xn+1 − T1(PT1)n−1xn+1

∥
∥
∥ + L

∥
∥
∥(PT1)(PT1)n−2xn+1 − P(xn+1)

∥
∥
∥

≤
∥
∥
∥xn+1 − T1(PT1)n−1xn+1

∥
∥
∥

+ L
∥
∥
∥T1(PT1)n−2xn+1 − xn+1

∥
∥
∥ −→ 0 (as n −→ ∞),

(2.33)

which implies that limn→∞‖xn −T1xn‖ = 0. Similarly, we may show that limn→∞‖xn −T2xn‖ =
0. The proof is completed.

Our weak convergence theorem is as follows. We do not use the rate of convergence
conditions, namely,

∑∞
n=1(kn − 1) < ∞ and

∑∞
n=1(ln − 1) < ∞ in its proof.

Theorem 2.5. Let X be a uniformly convex Banach space and C a nonempty bounded closed convex
nonexpansive retract of X with P as a nonexpansive retraction. Let T1, T2 : C → X be two
asymptotically nonexpansive nonself-mappings of C with sequences {kn}, {ln} ⊂ [1,∞) such that
kn → 1, ln → 1 as n → ∞, respectively, and F(T1) ∩ F(T2)/= ∅. Suppose that {αn} and {βn} are
real sequences in [ε, 1 − ε] for some ε ∈ (0, 1). Then, the sequence {xn} given in (1.14) converges
weakly to a common fixed point of T1 and T2.

Proof. Since C is a nonempty bounded closed convex subset of a uniformly convex Banach
space X, there exists a subsequence {xnj} of {xn} such that xnj converges weakly to q ∈
ωw(xn), where ωw(xn) denotes the set of all weak subsequential limits of {xn}. This show
that ωw(xn)/= ∅ and, by Lemma 2.4, limn→∞ ‖xnj − T1xnj‖ = limn→∞ ‖xnj − T2xnj‖ = 0. Since
I − T1 and I − T2 are demiclosed at zero, using Lemma 1.10, we have T1q = q = T2q. Therefore,
ωw(xn) ⊂ F(T1) ∩ F(T2). For any q ∈ ωw(xn), there exists a subsequence {xni} of {xn} such
that

xni ⇀ q (as i −→ ∞). (2.34)
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It follows from (2.24) and (2.34) that

T2(PT2)nj−1xnj =
(

T2(PT2)nj−1xnj − xnj

)

+ xnj ⇀ q. (2.35)

Now, from (1.14), (2.34), and (2.35),

ynj = P
((

1 − βnj

)

xnj + βnj T2(PT2)
nj−1xnj

)

⇀ q. (2.36)

Also, from (2.25) and (2.36), we have

T1(PT1)nj−1ynj =
(

T1(PT1)nj−1ynj − ynj

)

+ ynj ⇀ q. (2.37)

It follows from (2.36) and (2.37) that

xnj+1 = P
((

1 − αnj

)

ynj + αnj T1(PT1)
nj−1ynj

)

⇀ q. (2.38)

Continuing in this way, by induction, we can prove that, for any m ≥ 0,

xnj+m ⇀ q. (2.39)

By induction, one can prove that ∪∞
m=0{xnj+m} converges weakly to q as j → ∞; in fact,

{xn}∞n=n1
= ∪∞

m=0{xnj+m}∞j=1 gives that xn ⇀ q as n → ∞. This completes the prove.
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