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We study univalence properties for certain subclasses of univalent functions &, £, f2,, and S(p),

respectively. These subclasses are associated with a generalized integral operator. The extended
Becker-typed univalence criteria will be studied for these subclasses.

1. Introduction and Preliminaries
Let A denote the class of analytic functions f in the open unit disk U = {z : |z| < 1} normal-
ized by f(0) = f'(0) =1 = 0. Thus, each f € A has a Taylor series representation
f(z) = Z+Zakzk- (1.1)
k=2
Let A, be the subclass of A consisting of functions of the form
f(z)=z+ Zakzk- (1.2)
k=3
Let & be the univalent subclass of A which satisfies

zel. (1.3)

sz—l(z)z —1' <1
(f(2)
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Let R, be the subclass of & for which f"(0) = 0. Let £, be the subclass of &, consisting of
functions of the form (1.2) which satisfy

2f'(2)
(f(2))*

-1

<p, 0<pu<l, zel. (1.4)

Next, we define a subclass S(p) of A consisting of all functions f(z) that satisfy

‘((JC(LZDMSP' 0<p<2 peR zel. (1.5)

For functions f(z) = z + 32, axzF and g(z) = z + 332, bk z¥, the Hadamard product (or
convolution) f * g is defined as usual by

(f*8)(2) = z+ D axbyz" (1.6)
k=2
Define the function ¢(a, ¢; z) by
p(a,c;z) =zF(,a,¢c;z) = ZE ;k k=1 c#0,-1-,2,..., (1.7)
k

where (a)k is the famous Pochhammer symbol defined in terms of Gamma function. It is
easily seen that ¢(2 — a, 2; z) is a convex function, since z¢'(z) = ¢(2 - a,1; z) € SV*(a)-

Using the fractional derivative of order a, D? [1], Owa and Srivastava [2] introduced
the operator Q% : A — A which is known as an extension of fractional derivative and frac-
tional integral, as follows:

Q%f(z) =T2-a)z"DIf(z), a#2,3,4,...

Z Tk +1)TQ2-a)

Ml (1.8)

k=2
=¢(2,2-a;2) * f(2)-

Note that Q°f(z) = f(z)-
For a function f in A, we define D)""(a, B, ) f(z) : A — A, the linear fractional differ-
ential operator, as follows:

L (a, B, 1) f(2) = f(2),

L (e B, ) f(2) = (%)(Q“ﬂz)) N <Zi

g>z(£2"‘f(z)),
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B (a, p ) f(2) = 5 (1 (., 1) £(2))

1 (e, B 1) f(2) = T (17 (@, B 1) £ (2))-
(1.9)

If f is given by (1.1), then by (1.8) and (1), we see that

. & Tk+ T2 -a)\ (v+ (u+ )k -1)+p\\"
L (a,ﬂ,#)f(z)—z+kzz2<( Tkl —a) )< o >> az (1.10)

From (1.8) and (1), D" (a, B, ) f (z) can be written in terms of convolution as

L7 pu)f() = [p2-w2) x g} ()92 2-m2) x g ()] * f(2), (A1)

—

where

2 (g D)/ (04 )7

gg,/;(z)

(1-2)°
=z- <%>z2<1+22+322+--->
:z+<1+i:;)z2+<1+2‘::g>z3--- (1.12)

v © v+ (u+A)(k-1)+p
e -z (P )

02,2 -a;2) * ggf(z) (2,2 -y z) * gg/'r(z) = n-times product, (1.13)

which generalizes many operators. Indeed, if we choose suitably values of «a, §, u, and v in
(1.12), we have the following.
(i) p=1,u=0,and a = 0, we obtain D, f(z) given by Aouf et al. [3].
(i) v=1,=0, p=0,and a = 0, we obtain DY" f(z) given by Al-Oboudi [4].
(i) v=1,=0,4=0,1=1, and a = 0, we obtain D" f(z) given by Saldgean [5].
(ivyv=1=11=1u=0,anda = 0, we obtain I f(z) given by Uralegaddi and
Somanatha [6].
v) p=1,1=1,4=0,and a = 0, we obtain I"(¢) f(z) given by Cho and Srivastava [7]
and Cho and Kim [8].
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(vijv =1, =0,y =0,A =0, andn = 1, we obtain Owa and Srivastava differential
operator [2].
(vii) v = 1,4 = 0, and u = 0, we obtain D f(z) given by Al-Oboudi and Al-Amoudi
[9, 10].
(viii) p =1, p =0, and = p, we obtain I} (1,1) f (z) given by Catas [11].

(ix)p=1pu=0a=p and A =1, we obtain I;(\,I)f(z) given by Kumar et al. and
Srivastava et al., respectively [12, 13].

Next, we introduce a new family of integral operator by using generalized differential oper-
ator already defined above.

Form e NU{0} and y1,72,13,---, Yn, p € C\{0,-1,-2,...}, we define a family of integral
operators Yy, , 1 (1, p,v,a,p) : A" — A™ by

ny 1/yi 1/p
z n I rPr s it
YYi,n,)t("/PrV/“fﬂ:Z):{Pf t”‘ll_[<* (aﬁfn)f()> dt} , fieA, (119
=1

0 i

which generalize many integral operators. In fact, if we choose suitable values of parameters
in this type of operator, we get the following interesting operators.

Hv=1p=0,u=0,a=0,7,=1/a;,and p = 1, we obtain I(f1, ..., fn) given by Bulut
[14].

(i) n=0,v=1, =0, u=0,a=0,y;=1/(a-1),and p = n(a-1) + 1, we obtain F,, 4(z)
given by Breaz et al. [15].

(iii)yn=0,v=1,=0,u=0,a=0,y; =1/a;, andp = 1, we obtain F,(z) given by D.
Breaz and N. Breaz [16].

For our main result, we need the following lemmas.

Lemma 1.1 (see [17, 18]). Let ¢ be a complex number, |c| <1, c# — 1. If f(2) = z+ axz> +-+- isa
regular function in U and

"
clzf* + (1 - IZI2> = (ZZ) <1, Vzel, (1.15)

f'(2)

then the function f is reqular and univalent in U.
Lemma 1.2 (Schwarz Lemma). Let the function f(z) be regular in the disk Ugr = {z € C : |z| < R}
with |f(z)| < M. If f(z) has one zero with multiply > m for z = 0, then

M.
|f(2)] < ﬁ|z| , VzeUg, (1.16)

and equality holds only if f(z) = e'®(M/R™)|z|™, where 0 is constant.
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Lemma 1.3 (see [19]). Let 6 be a complex number with Re 6 > 0 such thatc € C, |c| <1, c# - 1.
If f € A satisfies the condition

2 25\ 21" (2)
1- <1, V .
clz| +< 4 >5f’(z) <1, Vzel, (1.17)
then the function
z 1/6
Fs(z) = {6 f 01 f’(t)dt} (1.18)
0
is analytic and univalent in U.
Lemma 1.4 (see [20]). If a function f € S(p), then
2 g1
=f (Z)Z -1l < p|z|2, vz e U. (1.19)
(f(2))

2. Univalence Properties

In this section, we will discuss the univalence properties of the new family of integral
operators mentioned above.

Theorem 2.1. Let ¢ be a complex number, I\ (a, B, u, 1) fi(z)| < Mi, M; > 1 foralli = {1,2,3,...}
and I} (a, B, u, 1) fi(t) € S(pi) fori = {1,2,3,...} such that

© ((M;-1)p; +2)M; -1

i=1 |Yi|(Mi1) ’ @1)

where p, y; are complex numbers. If

1 S((Mi-Dpi+2)M; -1
Z( pi+2)

e <1-
Re(p) |Yi|(Mi -1)

, M;>1, (2.2)

then the family Y, ,\(n, p, v, a, B : z) is univalent.

Proof. Since I}"”(a, B, u, 1) fi(t) € S(p;), so by Lemma 1.4, we have

2 (" (a, ) filh)

1 |z[2, Vzel. 2.3
(17 (a, B, ) fi(h))? SplEf R 22

Now, by using hypothesis, we have

|1 (B, 1) fi(2)| < M, (2.4)
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so by Lemma 1.3, we get

|1} (a, 1, 1) fi(2)| < Miz, - R=1. (2.5)
Let
LY(a,pp)f(z) &[T+ DTR-a)\ /v+ @+ Kk-1D+p\\"
E— _1+kz_2< I'k+1-a) )< v+ p >> axz"1#0
=1 ifz=0
(2.6)
SO

lﬂ[<1’“’(d BH, n)fz(2)> <I"”(a B 1, n)fl(z)>ml <If’”(arﬂr#,n)fm(z)>m’"

-1
2.7)

Let

2 ny /v ny 1/Ym
o[ ((Rleppnan) " (Tepennoy™,

which implies that

F(z) - <<If'v(“fﬂfffn)f1(t)>”” . <I"”<a bt rz)fm(t>>”“>

(2.9)
ZF"(Z) _ l<z(I;’v(a,ﬂ,ﬂ,7l)f1(z))l B 1> N i<Z(Ij\1lv(a/ﬁ/I’l/Tl)fm(Z))l _ 1>
Fz)  n\ L7(apun)fiz) Yu \ I (a B 1) fin(2) '
2F'(z) _ &1 (2 () fi(z) >
=) = -1). 2.10
F'(z) ; i< I (a, B, 1, m) fi(2) 210
This implies that
] 3 ([ ey, ) .
F'(2) <§|Y < b | ) 1
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=1
< +1 2.12
—Enﬂ< > e

Using (2.5), we get

or

(1" (@ B 1) fi(2))
(2)

z(I” (a, B, 1, 1) fi(2))
(177 (a, B, 1,1) fi(2))?

zF"(z)
F'(z)

zF’"(Z) . Z 2(L (@ B ) fi(2)' M1 ). (2.13)
P& | = &I\ | (0w pon) i)
This implies that
zF'(z) Py ii Z(I;l'v(a/ﬂ//l/rl)fi(z))’ 1M+ M +1 ) (2.14)
F@) 17 S\ 4y @ ppn) fi2)’
By using (2.3), we get
which implies that
O < S (it (M M) 1) @16

because M;, M;?',Mf’,. ..,2 1 implies that

zF'(2) M; &1 [2Mi-1
F(z) ZIYI <p’M +<Ml~—1)+1>_glril<le’+<Mi—1>)'
zF"(2) °°L piM? - piM; +2M; - 1 > 1 (piM; —pi +2)M; - 1
ol () S ((P5r))
ZFII(Z) Z ((M 1)Pi+2>Mi_1 .
Fz) |~ <yl M; -1
(2.17)
Now, we calculate
5 2o\ zF"(2) zF"(z) zF"(z)
clz 4 (1= 12) Sy | <l + || Ty | Sl m<p> ) (2.18)
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This implies that

zF"(z)
pF'(z)

clz + (1 - |z|2P)

1 OOL ((Ml—l)p1+2)M1—1>> 219
<'C'*m<p>§|n|<< M1 1)

By using (2.46), we conclude that

clzP? + (1~ 1zP7) —ZI;((ZZ))

1
<lel+ +—

- lp|

zF"(z)
F'(z)

<1 (2.20)

Hence, by Lemma 1.3, the family of integral operators Y}, , 1 (1, p, v, &, f : z) is univalent. [

Corollary 2.2. Let c be a complex number, |I"” (a, B, u, 1) fi(z)| < M, M > 1 forall i = {1,2,3,...}
and I} (a, B, u, 1) fi(t) € S(p), My = M > 1, forall i = {1,2,3,...} such that

m(P)Zi((M—l)p+2)M—l

, 2.21
i=1 |Yi | (M-1) ( )

where p, y; are complex numbers. If

1 &((M-Dp;+2)M-1
>

dl<1-
Re(p) i=1 |Yi|(M -1)

, M2>1, (2.22)
then the family Yy, ,\(n, p, v, a, B : z) is univalent.

Corollary 2.3. Let ¢ be a complex number, [I{"" (a, B, u, 1) fi(z)| < M, M > 1, forall i = {1,2,3,...}
and the family I}"" (a, B, u, 1) fi(t) € S(p), Mi = M > 1, |yi| = ly|, forall i = {1,2,3,...} such that

m(P)Zi((M—l)p+2)M—1

i=1 |Y| (M-1) ’ 22

where p, y; are complex numbers. If

<1 1 i((M—l)p,-+2)M—1

- , M>1, 2.24
Re(p) ly|(M-1) (2.24)

then the family Yy, , \(n, p, v, a, B : z) is univalent.

Using the method given in the proof of Theorem 2.1, one can prove the following
results.
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Theorem 2.4. Let ¢ be a complex number, |I"" (a, B, u, 1) fi(z)| < M, M; > 1 foralli={1,2,3,...}
and the family I}"" (a, B, u, 1) fi(t) € S(py) for i = {1,2,3,...} and c such that

(p:M 1)M< +1
R(p) > (2.25)
023N
where p, y; are complex numbers. If
1 (piM; - 1)M; +1
el <1 Z , M;>1, (2.26)
Re(p) 5 |Yz|(PzM )

then the family Yy, ,\(n, p, v, a, B : z) is univalent.

Theorem 2.5. Let ¢ be a complex number, |I}"”(a, B, u, 1) fi( z)| < My, M > 1forali =

(1,2,3,...,n} and I}'""(a, B, u, m) fi(t) € S(pi) for i = {1,2,3,...,n} such that

L (pi(M;=1) + M =2)M; +1
R(p) 2 Z( ) , (2.27)
i=1 |yi| (M; - 1)
where p, y; are complex numbers. If
i(M;=1)+ MP-2)M; +1
1L S PO D MEZ )M (228)
Re(p) 5 il (M = 1)

then the family Y, , 1 (n, p, v, a, B : z) is univalent.

Theorem 2.6. Let ¢ be a complex number, |I}"” (a, f, y,q)f,(z)| < M;, M; > 1foralli={1,2,
3,...,n})and I\ (a, B, u, ) fi(t) € S(pi) fori = {1,2,3,...,n} such that

+(nn+1)/2))M; -1

, (2.29)
|v:]

n()> 3,

where p, y; are complex numbers. If

+(nn+1)/2))M; -1

, M;>1, (2.30)
|7:]

1 (pi
|c|§1—R 0 )Z

then the family Yy, ,\(n, p, v, a, B : z) is univalent.

Theorem 2.7. Let ¢ be a complex number, |I;””(a,ﬁ,,u, ) fi(z)] < M;, M; > 1 foralli = {1,2,
3,...,nyand IV (a, B, u, ) fi(t) € Koy, fori = {1,2,3,...,n} such that

R(p) > i (ui + n(n+1)) M;

, (2.31)
i=1 |Yi|
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where p, y; are complex numbers. If

+ 1’1(1’1 + 1))Ml

7 Mi > 1/
[7i]

1 (i
11 2

then the family Y, , 1 (n, p, v, a, B : z) is univalent.

Proof. Using the proof of Theorem 2.1, we have

<;|Yl|<

Since I;"”(a, B, 1, 1) fi(t) € Ro,, so by using (1.4), we get

zF"(z)
F'(z)

z(I (a, B, 1, 1) fi(2))' M, + 1).
(17 (e, B, 1,1) fi(2))”

21 (a, f, 1, m) fi(2))
(177 (a, B, 1, 1) fi(2))?

-1l <p, O<pu<l, zel.

So from (2.33), we get

FlSni(emari )
or
ZFF((ZZ;) 2 (M +2M;), M; > 1,
15,;(;;) Zh,l (uiM; +2M; +4M; + - - + n-times), M; > 1,
Zlf((zz)) 2 (uiMi +n(n+1)M;),  M;>1.

Now, we evaluate the expression

5 oo\ zF"(2) zF"(z) 1 [zF'(z)
Clzl P+ <1 - |Z| P) PF’(Z) S | | | | F'(Z) = | | m(p) F,(Z)
'(2)
c|z|2P+<1—|z| >pF( ) <lec| + SR(P)Zh’z (uiM; + n(n+1)M;).

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)
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Using (2.45) and (2.46), we conclude that

F'(z)

2p 1= |z|? 2z . 2.
cl= 4 (1- ) S | < (238)
Hence by using Lemma 1.3, the family Y, , 1 (1, p, v, a, B : z) is univalent. O

Corollary 2.8. Let ¢ be a complex number, I} (a, B, u, ) fi(z)| < M, M > 1 forall i = {1,2,
3,...,n}and I\ (a, B, i, ) fi(t) € Ko, fori={1,2,3,...,n} such that

R(p) > Z": (i +nn+1)M

, (2.39)
i=1 |Yi|

where p, y; are complex numbers. If

1 & (pi+nn+1)M
i=1 |i]

, M>1, (2.40)

then the family Y, , \(n, p, v, a, B : z) is univalent.

Corollary 2.9. Let ¢ be a complex number, |I\"” (a, f, u, 1) fi(z)] < M, M > 1, |yi| = |yl for all
i=1{1,2,3,...,n} and IZ’v(a,ﬂ,y,q)fi(t) € Ry, fori={1,2,3,...,n} such that

" (ui+nn+1)M
(o) > ST ™ (2.41)
i=1 Iyl
where p, y; are complex numbers. If
L (i 1))M
] <1— — Z(”+"("+ IM sy, (2.42)
Re(p) 5 0

then the family Yy, , \(n, p, v, a, B : z) is univalent.

Using a similar method as in the proof of Theorem 2.7, one can prove the following
results.

Theorem 2.10. Let ¢ be a complex number, |I;"V(a,ﬁ,y,n)f,-(z)| < M, Mj > 1foralli =
{1,2,3,...,n) and I} (a, B, u, ) fi(t) € Koy, fori={1,2,3,...,n} such that

1 (/liMi - 1)M1 + M"M;
R(p) > -
®) _1; [v:] (M - 1)

, (2.43)
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where p, y; are complex numbers. If

1 zn: (,uiMi - 1)Ml + M?Ml

le] <1-
Re(p) i=1 |Yi|(Mi -1)

s Mi > 1/ (244)

then the family Yy, , \(n, p, v, a, B : z) is univalent.

Theorem 2.11. Let ¢ be a complex number, I (a, B, 1, 1) fi(z)] < M, M; > 1 for all i =
{1,2,3,...} and I} (a, B, u, 1) fi(t) € Ko, fori = {1,2,3,...} such that

() > 3 WM it )M -1 (2.45)

i=1 |y (M; - 1)

where p, y; are complex numbers. If

(M - +2)M; -1
IClSl_ 1 Z(‘u lu+)

7 Mi 2 1/ (246)
Re(p) i=1 |Yi|(Mi -1)

then the family Yy, , \(n, p, v, a, B : z) is univalent.

Note that some other related work involving integral operators regarding univalence
criteria can also be found in [21-23].
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