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Let L2
a(Ω) denote a Hilbert space consisting of analytic functions on an unbounded domain Ω

located outside an angle domain with vertex at the origin. We obtain a completeness theorem for
the systemMΛ = {zλn logjz, j = 0, 1, . . . , mn − 1}∞n=1, in L2

a(Ω).

1. Introduction

Let Ω denote a domain in the complex z plane. Let L2
a(Ω) denote the space consisting of all

functions f analytic in Ω with

∫∫
Ω

∣∣f(z)∣∣2dm < ∞, z = x + iy, (1.1)

where dm is the area element in the z plane (i.e., dm = dxdy = rd rdθ for z = reiθ). It is well
known that, with the inner product

〈
f, g
〉
=
∫∫

Ω
f(z)g(z)dm, (1.2)

and the norm ‖f‖ = 〈f, f〉1/2, L2
a(Ω) is a Hilbert space (see, e.g., [1, Chapter 1]).

We say a system {hn} ⊂ L2
a(Ω) is complete in L2

a(Ω) if its linear span is dense in L2
a(Ω)

(see, e.g., [2–7]). The following lemma provides an elementary fact on completeness (see,
e.g., [1, Chapter 1] and [3, Lemma 1.1]).
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Lemma 1.1. A necessary and sufficient condition for the system {hn} to be complete in L2
a(Ω) is that

for any f ∈ L2
a(Ω), if 〈f, hn〉 = 0 for all hn, then f(z) ≡ 0.

A Dzhrbasian domain (see, e.g., [8]) is an unbounded simply connected domain
satisfying the following conditions:

Condition Ω(I). For r > 0, let σ(r) denote the linear measure of the intersection of the
circle |z| = r and Ω. There exists r0 > 0 such that, for r > r0,

σ(r) ≤ e−α(r), (1.3)

where α(r) > 0 satisfies

α(r) = α(r0) +
∫ r
r0

ϕ(t)
t

dt (1.4)

with ϕ(r) ≥ 0 and ϕ(r) ↑ ∞ as r → ∞.
Condition Ω(II). The complement of Ω consists of m unbounded simply connected

domains Ωj (j = 1, 2, . . . , m), each containing an angle domain Δj with opening π/βj , βj >
1/2.

For a Dzhrbasian domain satisfying Condition Ω(I) and Condition Ω(II), Dzhrbasian
proved that if

∫∞ α(r)
r1+ϑ

dr = +∞ (1.5)

(here
∫∞ means that the lower limit of the integral is sufficiently large), where

ϑ = max
{
β1, . . . , βm

}
, (1.6)

then the polynomial system {1, z, z2, . . .} is complete in L2
a(Ω).

Motivated by the result of Dzhrbasian, Shen [4–7] studied the completeness of the
system {zλn} in L2

a(Ω), where {λn} is a sequence of complex numbers satisfying

the λn are all distinct and lim
n→∞

|λn| = ∞, (1.7)

lim
n→∞

n

|λn| = D, 0 < D < ∞, (1.8)

Reλn > 0, |Im λn| ≤ A (1.9)

for some constant A. Shen also supposed that Ω is a Dzhrbasian domain with the vertex of
Δ1 at the origin (hence 0 is outside of Ω). The following result was obtained in [4, 5].

Theorem A. Assume that the sequence {λn} satisfy (1.7), (1.8), and (1.9), and Ω is a Dzhrbasian
domain which satisfies Ω(I), Ω(II). If

2β1(1 −D) < 1, (1.10)
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and, for some ε0,

∫∞ α(r)
r1+η

dr = ∞, (1.11)

where

η = max
{
ϑ,

1
1/β1 − 2(1 −D)

+ ε0

}
, (1.12)

then the system {zλn} is complete in L2
a(Ω).

An improved version of Shen’s result is given in [3]. Let Ω be a Dzhrbasian domain
with the added requirement of

Δ1 =
{
z :
∣∣arg(z) − π

∣∣ < π

2�

}
, (1.13)

where � > 1/2 is some constant. In [3], for such a domain, results on the completeness on
{zλn} in L2

a(Ω) were obtained, assuming {zλn} is a sequence of complex numbers satisfying
(1.7) and (1.8), but (1.9) is replaced by the more general condition

∣∣arg(λn)∣∣ < β <
π

2
, (1.14)

thus allowing I(λn) → 0 as n → ∞.
More accurately, the main result in [3] is described as follows.

Theorem B. Assume that the sequence {λn} satisfy (1.7), (1.8), and (1.14), and Ω is a Dzhrbasian
domain which satisfies Ω(I), Ω(II), and (1.13). Moreover, assume that

2�
(
1 −D cos β

)
< 1. (1.15)

Let

η = max
{
ϑ,

1
h
+ ε0

}
, (1.16)

where ϑ is defined in (1.6), ε0 is some positive number, and

h = max
0<δ<D cos β−1+1/2�

2δ√
D2 sin2 β + δ2

(
D cos β − 1 +

1
2�

− δ

)
. (1.17)
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If

∫∞ α(r)
r1+η

dr = +∞, (1.18)

then the system {zλn} is complete in L2
a(Ω).

Remark 1.2. The h in (1.17) is well defined, for reference we refer to [3, Remark 4].

In this paper, motivated by the work in [3–7], we will investigate the completeness of
the systemMΛ = {zλn logjz, j = 0, 1, . . . , mn−1}∞n=1 in L2

a(Ω), whereΩ is a Dzhrbasian domain
with the added requirement of Δ1 satisfying (1.13). The system MΛ is associated with the
multiplicity sequence Λ = {λn,mn}∞n=1, that is, a sequence where {λn} are complex numbers
with λn /=λm wherever n/=m, and each λn having multiplicity equal to mn. The sequence Λ
satisfies (1.7), (1.14) and also

lim
nΛ(t)
t

= D, 0 < D < ∞, (1.19)

where nΛ(t) =
∑

|λn|≤t mn is the so-called counting function of the sequence Λ. We note that
when mn = 1 for all λn, the above relation is equivalent to (1.8). To describe even further
the sequence Λ, thus the system MΛ as well, we need some definitions from [9]. We denote
by L(c,D) the class of all complex sequence A = {an}, |an| ≤ |an+1| satisfying the following
properties: (1)n/|an| → D ≥ 0,(2) for n/= k one has that |an − ak| ≥ c|n − k| for some constant
c and (3) sup | arg(an)| < π/2. The following definition is from [9].

Definition 1.3. Let the sequenceA ∈ L(c,D) and a, b be real positive numbers such that a+b <
1. We say that a sequence B = {bn}∞n=1 belongs to the class Aa,b if for all n ∈ N we have

bn ∈ {z : |z − an| ≤ aa
n}, (1.20)

and for all k /=n one of the following holds:

(i) bk = bn,

(ii) |bk − bn| ≥ max{e−|ak |b , e−|an|b}.
We may write B in the form of a multiplicity sequence Λ = {λn,mn}∞n=1, by grouping

together all those terms that have the same modulus and ordering them so that |λn| < |λn+1|.
This form of B is called as {λ,m} reordering (see [9]).

We prove the elementary fact.

Lemma 1.4. Suppose Ω is a Dzhrbasian domain such that Conditions Ω (I), Condition Ω (II), and
(1.13) are satisfied. Moreover, suppose Λ = {λn,mn}∞n=1 is a sequence of complex numbers which is a
{λ,m} reordering of B = {bn} ∈ Aa,b of a sequence A = {an} ∈ L(c,D) such that arg(an) → 0 as
n → ∞, satisfying (1.14). Then zλn logmnz ∈ L2

a(Ω).

Proof. Due to the definition of the domain Δ1, the principal branch of log z, that is, log z, is
well defined on Ω. Thus, (logjz)(zλn) = logjz exp{λn log z} is an analytic function in Ω. Let
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z = reiθ and λn = |λn|eiθn . Considering |θn| < β < π/2 and |θ| < π − π/2� whenever z ∈ Ω,
there exists some positive constant A such that for z ∈ Ω.

∣∣∣zλn logmnz
∣∣∣ < (Ar)|λn|+mn. (1.21)

Since ϕ(r) ↑ ∞ as r → ∞, for r sufficiently large which is denoted by r1, we have ϕ(r) >
2(|λn| +mn) + 2. Without loss of generality, we can suppose r1 > r0. By (1.4), we have

e−α(r)r2(|λn|+mn) < exp{−(2(|λn| +mn) + 2)}r2(|λn|+mn) =
r
2(|λn|+mn)
1

r24
. (1.22)

Thus, we have

∫∫
Ω

∣∣∣zλn logmnz
∣∣∣2dxdy ≤

∫ r0
0
2πr(Ar)2(|λn|+mn)dr +

∫∞
r0

σ(r)(Ar)2(|λn|+mn)dr

≤ 2πA2(|λn|+mn)r
2(|λn|+mn)+2
0

2(|λn| +mn) + 2
+
∫∞
r0

e−α(r)(Ar)2(|λn|+mn)dr

< ∞.

(1.23)

The main result of this paper is as follows.

Theorem 1.5. Suppose thatΩ is a Dzhrbasian domain such that ConditionsΩ (I),Ω (II), and (1.13)
are satisfied. Moreover, suppose that Λ = {λn,mn}∞n=1 is a sequence of complex numbers which is a
{λ,m} reordering of B = {bn} ∈ Aa,b of a sequence A = {an} ∈ L(c,D) such that arg(an) → 0 as
n → ∞, satisfying (1.14). If

∫∞ α(r)
r1+η

dr = +∞, (1.24)

where η is defined in (1.16), ϑ is defined in (1.6), and h is defined in (1.17), then the system MΛ is
complete in L2

a(Ω).

The paper is organized as follows. In Section 2, crucial lemmas in proving Theorem 1.5
will be presented. In Section 3, the completeness theorem above will be proved.

2. Preliminary Lemmas

We consider the function

G(z) =
∞∏
n=1

(
1 − z2

λ2n

)μn

, (2.1)
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where μn denotes the multiplicity of the term 1 − z2/λ2n and the integral

K(s) = − 1
2πi

∫+∞
−∞

e−iys

G
(
iy
)dy, s = u + iv. (2.2)

For sufficiently small δ > 0, denote

Bδ =
{
s = u + iv : |v| ≤ πD cos β − δπ

}
. (2.3)

Under the Conditions Ω (I), Ω (II), and Definition 1.3, by [10], we can get the following
estimates which will play an important role in the proof of Theorem 1.5.

Lemma 2.1. Given ε > 0,

1∣∣K(iy)∣∣ ≤ A(ε)e(−πD cosα+ε)|y|, (2.4)

where A(ε) is a constant which depends only on ε.

Lemma 2.2. There exists a sequence {tk} with k ≥ tk ≥ (1−λ)k (λ is some sufficiently small positive
number) such that, for s = u + iv ∈ Bδ,Re s = u ≥ 0,

∣∣∣∣∣∣K(s) −
∑

|λn|<tk

mn−1∑
m=0

an,ms
me−λns

∣∣∣∣∣∣ ≤ Atke−utk sin(μπ), (2.5)

and, for s = u + iv ∈ Bδ,Re s = u ≤ 0,

∣∣∣∣∣∣K(s) −
∑

|λn|<tk

mn−1∑
m=0

an,ms
me−λns

∣∣∣∣∣∣ ≤ Atkeutk , (2.6)

where A is a constant independent of s and tk, while μ is a small positive number satisfying

tan
(
μπ
)
<

δ

D sin β
. (2.7)

Let z = eξ, ξ = ξ1 + iξ2 and denote the image of Ω in the ξ plane by Ω′. It follows from
Condition Ω(II) and (1.13) that Ω′ must be located inside the strip

Bξ =
{
ξ = ξ1 + iξ2 : |ξ2| < π

(
1 − 1

2�

)}
. (2.8)
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Denote

B� =
{
s = u + iv : |v| < πD cos β − π

(
1 − 1

2�

)}
,

Bδ
� =
{
s = u + iv : |v| ≤ πD cos β − δπ − π

(
1 − 1

2�

)}
.

(2.9)

Suppose that

2�
(
1 −D cos β

)
< 1 (2.10)

from which πD cos β − π(1 − 1/2�) > 0 follows, choosing δ sufficiently small so that

0 < δ < D cos β − 1 +
1
2�

. (2.11)

It is obvious that if s ∈ Bδ
� and ξ ∈ Ω′, then | Im(s − ξ)| < πD cos β − δπ , that is, s − ξ ∈ Bδ in

(2.3). Thus for any f(z) ∈ L2
a(Ω), we can define a function for s ∈ Bδ

� by

F(s) =
∫
Ω′
f
(
eξ
)∣∣∣eξ
∣∣∣2K(s − ξ)dξ1 dξ2, ξ = ξ1 + iξ2. (2.12)

Remark 2.3. By Lemma 2.6 in [10], when ξ ∈ Ω′ is fixed K(s − ξ) is analytic for s ∈ Bδ
� ; when

s ∈ Bδ
� is fixed, K(s − ξ) is both measurable and bounded for ξ ∈ Ω′. Thus, it is not hard to

prove that F(s) is analytic and bounded in Bδ
� (see [11, Chapter 10, Exercise 16; 1, Section 3]

and [3, page 8]).

The following lemma will be crucial in our proof of Theorem 1.5.

Lemma 2.4. If for s ∈ Bδ
� , F(s) ≡ 0 where F(s) is defined by (2.12), then

∫∫
Ω
f(z)zndxdy = 0, n = 0, 1, 2, . . . . (2.13)

Proof. See [3, Lemma 2.4].

We end this section by presenting two more lemmas. The first one is the so-called
Carleman’s Theorem (see [12, page 103]).

Lemma 2.5. Let log−r = max{− log r, 0}. If g(w) is analytic and bounded in the half-plane Im(w) ≥
0 and

∫+∞
−∞

log−
∣∣g(t)∣∣

1 + t2
dt = ∞, (2.14)

then g(w) ≡ 0.
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We also need a result of M. M. Dzhrbasian (see [13, Section 10, Lemma 1]).

Lemma 2.6. Suppose α(r) be given as in (1.4), let

Mn =
∫∞
r0

e−α(r)rndr,

Φ(r) = sup
n≥1

rn√
M2n

.

(2.15)

Then there exists some constant A > 0 such that for r sufficiently large

logΦ(r) ≥ Aα(r). (2.16)

3. Proof of Theorem 1.5

Proof. Let us fix some notations. Throughout this section, A will denote positive constants,
and it may be different at each occurrence.

To prove Theorem 1.5, it suffices to show that if f ∈ L2
a(Ω) and

〈
f(z), zλn logjz

〉
= 0, j = 0, 1, 2, . . . , mn − 1, n = 1, 2, . . . , (3.1)

then f(z) ≡ 0. We claim that, by letting F(s) be the function as in (2.12), we only need to
prove F(s) ≡ 0 for s ∈ Bδ

� . Indeed by Lemma 2.4, it follows that (2.13) is satisfied, that is
〈f(z), zn〉 = 0, n = 0, 1, . . . . Since (1.24) holds, by Dzhrbasian’s result the system {zn} is
complete in L2

a(Ω)which means f(z) ≡ 0. Our claim is now justified.
For s ∈ Bδ, let {tk} be the sequence defined in Lemma 2.2, with k ≥ tk ≥ (1−λ)k where

λ is a sufficiently small positive number. Then

F(s) =
∫∫

Ω′
f
(
eξ
)∣∣∣eξ
∣∣∣2K(s − ξ)dξ1 dξ2, ξ = ξ1 + iξ2

=
∫∫

Ω′
f
(
eξ
)∣∣∣eξ
∣∣∣2
⎡
⎣K(s − ξ) −

∑
|λn|<tk

mn−1∑
m=0

an,m(s − ξ)me−λn(s−ξ)
⎤
⎦dξ1 dξ2

+
∫∫

Ω′
f
(
eξ
)∣∣∣eξ
∣∣∣2
⎛
⎝ ∑

|λn|<tk

mn−1∑
m=0

an,m(s − ξ)me−λn(s−ξ)
⎞
⎠dξ1 dξ2

=: F1,k(s) + F2,k(s).

(3.2)

Since

〈
f(z), zλn logjz

〉
= 0, j = 0, 1, 2, . . . , mn − 1, n = 1, 2, . . . , (3.3)
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we have

F2,k(s) = 0. (3.4)

Hence, for s = u + iv ∈ Bδ, F(s) = F1,k(s). By (2.5) and (2.6) in Lemma 2.2, we have

|F(s)| = |F1,k(s)|

≤ Atk

(
e−utk sin(μπ)

∫∫
Ω′⋂{Re(s−ξ)≥0}

∣∣∣f(eξ)
∣∣∣
∣∣∣eξ
∣∣∣2
∣∣∣eξ
∣∣∣tk sin(μπ)dξ1 dξ2

+e−utk
∫∫

Ω′⋂{Re(s−ξ)≤0}

∣∣∣f(eξ)
∣∣∣
∣∣∣eξ
∣∣∣2
∣∣∣eξ
∣∣∣tkdξ1 dξ2

)
,

(3.5)

where A is a constant independent of k and s. Hence, for Re s = u ≥ 0,

|F(s)| ≤ Atk

(∫∫
Ω

∣∣f(z)∣∣|z|tkdxdy

|es|tk sin(μπ)
+

∫∫
Ω

∣∣f(z)∣∣|z|tkdxdy

|es|tk

)

≤ Atk

∫∫
Ω

∣∣f(z)∣∣|z|tkdxdy

|es|tk sin(μπ)
.

(3.6)

By Schwarz’z inequality

|F(s)| ≤ Atk

(∫∫
Ω

∣∣f(z)∣∣2dxdy
)1/2(∫∫

Ω|z|2tkdxdy
)1/2

|es|tk sin(μπ)
, (3.7)

and, by Condition Ω(I), we have the estimate

∫∫
Ω
|z|2tkdxdy ≤ Atk

∫∞
r0

e−α(r)r2tkdr, (3.8)

where A is some positive constant independent of k and s. Thus, by k ≥ tk ≥ (1 − λ)k, we
have

|F(s)| ≤ Atk

(∫∞
r0
e−α(r)r2tkdr

)1/2
|es|tk sin(μπ)

≤ Ak

(∫∞
r0
e−α(r)r2kdr

)1/2
|es|(1−λ)k sin(μπ)

,

(3.9)
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for every k = 1, 2, . . . . Hence,

|F(s)| ≤ inf
k≥1

⎧⎪⎨
⎪⎩Ak

(∫∞
r0
e−α(r)r2kdr

)1/2
|es|(1−λ)k sin(μπ)

⎫⎪⎬
⎪⎭

= inf
k≥1

⎧⎪⎨
⎪⎩

(∫∞
r0
e−α(r)r2kdr

)1/2
(
(1/A)|es|(1−λ) sin(μπ)

)k
⎫⎪⎬
⎪⎭.

(3.10)

Let

t =
1
A
|es|(1−λ) sin(μπ),

Mn =
∫∞
r0

e−α(r)rndr.
(3.11)

Then

|F(s)| ≤ inf
n≥1

{√
M2n

tn

}
. (3.12)

If we let

Φ(t) = sup
n≥1

tn√
M2n

, (3.13)

then it follows from Lemma 2.6 that there is some constant q > 0 so that

Φ(t) > eqα(t). (3.14)

Combining (3.12) and (3.14) shows that for Rs ≥ 0

|F(s)| ≤ e−Aα(r), r =
1
A
|es|(1−λ) sin(μπ). (3.15)

In order to use Lemma 2.5, we transform the domain Bδ into the upper half-plane Im z ≥ 0.

(i) First, let z1 = es, Bδ is then transformed into an angle | arg z1| ≤ mπ , where

m = D cos β − δ − 1 +
1
2�

. (3.16)

(ii) Let z2 = z1/2m1 . The above angle domain is transformed into the right half-plane
Re z2 ≥ 0.
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(iii) Finally, let z = iz2; the right half-plane is then transformed into the upper half-plane
Im z ≥ 0.

More accurately, we have

|es| = |z1| =
∣∣∣z2m2
∣∣∣ =
∣∣∣(−iz)2m

∣∣∣ =
∣∣∣z2m
∣∣∣,

F(s) = F
(
log z1

)
= F
(
log z2m2

)
= F
(
log (−iz)2m

)
.

(3.17)

Define g(z) = F(log(−iz)2m); it is obvious that g(z) is analytic and bounded in the
upper half-plane Im z ≥ 0. By (3.15), for Im z ≥ 0 and |z| sufficiently large, we have

∣∣g(z)∣∣ ≤ e−Aα(A|z|2m(1−λ) sin(μπ)) = e−Aα(A|z|m′
), (3.18)

where A is some positive constant independent of z, m is given by (3.16), and

m′ = 2m(1 − λ) sin
(
μπ
)
= 2
(
D cos β − δ − 1 +

1
2�

)
(1 − λ) sin

(
μπ
)
. (3.19)

Let tan(μπ) → δ/(D sin β) in (2.7), then

sin
(
μπ
) −→ δ√

D2 sin2 β + δ2
. (3.20)

Denote

m′′ =
2δ√

D2 sin2 β + δ2

(
D cos β − δ − 1 +

1
2�

)
(1 − λ). (3.21)

By (3.18), for Im z ≥ 0 and |z| sufficiently large, we have

∣∣g(z)∣∣ ≤ e−A2α(A3|z|m
′′
). (3.22)

It is obvious that δ can be chosen such that 0 < δ < D cos β − 1 + 1/2� .
Denote

h′ = max
0<δ<D cos β−1+1/2�

m′′. (3.23)

By (3.22), for Im z ≥ 0 and |z| sufficiently large, we have

∣∣g(z)∣∣ ≤ e−A2α(A3|z|h
′
). (3.24)
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Since h′ = h(1 − λ), choosing λ sufficiently small yields

1
h′ <

1
h
+ ε0, (3.25)

where ε0 is defined in (1.16). Thus, by (3.24),

∫∞ log
∣∣g(t)∣∣
t2

dt ≤ −A
∫∞ α(w)

w1+1/h′ dw, (3.26)

where A is some positive constant independent of w = cth
′
. Thus, by (1.24), we have

∫∞ log
∣∣g(t)∣∣
t2

dt = −∞. (3.27)

Hence

∫∞ log
∣∣g(t)∣∣

1 + t2
dt = −∞. (3.28)

Let
∫
−∞ mean that the upper limit of the integral is a negative number with sufficiently large

magnitude. Similarly, we have

∫
−∞

log
∣∣g(t)∣∣
t2

dt ≤
∫
−∞

−A2α
(
A3|t|h

′)
t2

dt =
∫∞ −A2α

(
A3t

h′
)

t2
dt = −∞. (3.29)

Hence

∫
−∞

log
∣∣g(t)∣∣

1 + t2
dt = −∞. (3.30)

By Remark 2.3, we know that

∫b
a

log
∣∣g(t)∣∣

1 + t2
dt < +∞ (3.31)

for every finite closed interval [a, b], thus

∫∞
−∞

log
∣∣g(t)∣∣

1 + t2
dt = −∞, (3.32)

and, by Lemma 2.5, g(z) ≡ 0.
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[2] G. T. Deng, “Incompleteness and closure of a linear span of exponential system in a weighted Banach

space,” Journal of Approximation Theory, vol. 125, no. 1, pp. 1–9, 2003.
[3] A. Boivin and C. Zhu, “On the completeness of the system {zτn} in L2,” Journal of Approximation

Theory, vol. 118, no. 1, pp. 1–19, 2002.
[4] X. Shen, “On the closure {zτnlogjz} in a domain of the complex plane,” Acta MathematicaSinica, vol.

13, pp. 405–418, 1963 (Chinese).
[5] X. Shen, “On the closure {zτnlogjz} in a domain of the complex plane,” Chinese Mathematics, vol. 4,

pp. 440–453, 1963.
[6] X. Shen, “On approximation of functions in the complex plane by the system of functions {zτnlogjz},”

Acta MathematicaSinica, vol. 14, pp. 406–414, 1964 (Chinese).
[7] X. Shen, “On approximation of functions in the complex plane by the system of functions {zτnlogjz},”

Chinese Mathematics, vol. 5, pp. 439–446, 1965.
[8] M. M. Dzhrbasian, “Some questions of the theory of weighted polynomial approximation in a

complex domain,” Matematicheskii Sbornik, vol. 36, pp. 353–440, 1955 (Russian).
[9] E. Zikkos, “On a theorem of Norman Levinson and a variation of the Fabry gap theorem,” Complex

Variables. Theory and Application, vol. 50, no. 4, pp. 229–255, 2005.
[10] X. Yang, “On the Completeness of the System {tλnlogmnt} in C0(E),” CzechoslovakMathematical. In

press.
[11] W. Rudin, Real and Complex Analysis, McGraw-Hill Book Co., New York, NY, USA, 3rd edition, 1987.
[12] B. Ya. Levin, Lectures on Entire Functions, vol. 150 of Translations of Mathematical Monographs, American

Mathematical Society, Providence, RI, USA, 1996.
[13] S. M. Mergeljan, “On the completeness of systems of analytic functions,” American Mathematical

Society Translations, vol. 19, pp. 109–166, 1962.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


