Research Article

On Asymptotic Behaviour of Solutions to n-Dimensional Systems of Neutral Differential Equations

H. Šamajová and E. Špániková

Department of Applied Mathematics, Faculty of Mechanical Engineering, University of Žilina, Univerzitná 1, 01026 Z̈ilina, Slovakia

Correspondence should be addressed to H. Šamajová, helena.samajova@fstroj.uniza.sk
Received 6 July 2011; Revised 9 September 2011; Accepted 22 September 2011
Academic Editor: Marcia Federson
Copyright © 2011 H. Šamajová and E. Špániková. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper presents the properties and behaviour of solutions to a class of n-dimensional functional differential systems of neutral type. Sufficient conditions for solutions to be either oscillatory, or $\lim _{t \rightarrow \infty} y_{i}(\mathrm{t})=0$, or $\lim _{t \rightarrow \infty}\left|y_{i}(\mathrm{t})\right|=\infty, i=1,2, \ldots, n$, are established. One example is given.

1. Introduction

The authors have investigated some properties of solutions to n-dimensional functional differential systems

$$
\begin{gather*}
{\left[y_{1}(t)-a(t) y_{1}(g(t))\right]^{\prime}=p_{1}(t) y_{2}(t),} \\
y_{i}^{\prime}(t)=p_{i}(t) y_{i+1}(t), \quad i=2,3, \ldots, n-1, \tag{1.1}\\
y_{n}^{\prime}(t)=\sigma p_{n}(t) f\left(y_{1}(h(t))\right), \quad t \geq t_{0},
\end{gather*}
$$

in [1]. We studied the properties of solutions presupposing that both functions $a(t)$ and $y_{1}(t)$ were bounded and there were presented theorems where sufficient conditions to every solution with the first component of the solution $y_{1}(t)$ to be either oscillatory, or $\lim _{t \rightarrow \infty} y_{i}(t)=0$ for $i=1,2, \ldots, n$.

The goal of this paper is to enquire about the behaviour of the solution to n-dimensional functional differential system of neutral type (1.1) under no restriction to $a(t)$ and to the first component $y_{1}(t)$ of solution $y(t)$. Results are given in theorems where sufficient conditions are stated to every solution to have the next properties: a solution to be either oscillatory, or $\lim _{t \rightarrow \infty} y_{i}(t)=0$, or $\lim _{t \rightarrow \infty}\left|y_{i}(t)\right|=\infty, i=1,2, \ldots, n$.

The system (1.1) is investigated under the assumptions $\sigma \in\{-1,1\}, n \geq 3$, and throughout this paper, the next conditions are considered:
(a) $a:\left[t_{0}, \infty\right) \rightarrow(0, \infty]$ is a continuous function;
(b) $g:\left[t_{0}, \infty\right) \rightarrow \mathbb{R}$ is a continuous and increasing function, $\lim _{t \rightarrow \infty} g(t)=\infty$;
(c) $p_{i}:\left[t_{0}, \infty\right) \rightarrow[0, \infty), i=1,2, \ldots, n$, are continuous functions; p_{n} not identically equal to zero in any neighbourhood of infinity, $\int^{\infty} p_{j}(t) \mathrm{d} t=\infty, j=1,2, \ldots, n-1$;
(d) $h:\left[t_{0}, \infty\right) \rightarrow \mathbb{R}$ is a continuous and increasing function, $\lim _{t \rightarrow \infty} h(t)=\infty$;
(e) $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function; moreover, for $u \neq 0, u f(u)>0$ and $|f(u)| \geq K|u|$ hold, where K is a positive constant.

For a function $y_{1}(t)$,

$$
\begin{equation*}
z_{1}(t)=y_{1}(t)-a(t) y_{1}(g(t)) \tag{1.2}
\end{equation*}
$$

is defined, and for $t_{1} \geq t_{0}$, we introduce

$$
\begin{equation*}
\tilde{t}_{1}=\min \left\{t_{1}, g\left(t_{1}\right), h\left(t_{1}\right)\right\} \tag{1.3}
\end{equation*}
$$

A vector function $y_{\sim}=\left(y_{1}, \ldots, y_{n}\right)$ is a solution to the system (1.1) if there is a $t_{1} \geq t_{0}$ such that y is continuous on $\left[\tilde{t}_{1}, \infty\right)$; functions $z_{1}(t), y_{i}(t), i=2,3, \ldots, n$ are continuously differentiable on $\left[t_{1}, \infty\right)$ and y satisfies (1.1) on $\left[t_{1}, \infty\right)$.
W denotes the set of all solutions $y=\left(y_{1}, \ldots, y_{n}\right)$ to the system (1.1) that exist on some interval $\left[T_{y}, \infty\right) \subset\left[t_{0}, \infty\right)$ and satisfy the condition

$$
\begin{equation*}
\sup \left\{\sum_{i=1}^{n}\left|y_{i}(t)\right|: t \geq T\right\}>0 \quad \text { for any } T \geq T_{y} \tag{1.4}
\end{equation*}
$$

A solution $y \in W$ is considered nonoscillatory if there exists a $T_{y} \geq t_{0}$ such that every component is different from zero for $t \geq T_{y}$. Otherwise a solution $y \in W$ is said to be oscillatory.

Properties of solutions to similar differential equations and systems like system (1.1) have been studied in [1-6] and in the references cited therein. Problems of existence of solutions to neutral differential systems were analysed, for example, in $[7,8]$.

It will be useful to define two types of recursion formulae. Let $i_{k} \in\{1,2, \ldots, n\}, k=$ $1,2, \ldots, n$, and $t, u \in\left[t_{0}, \infty\right)$. One has

$$
\begin{align*}
& I_{0}(u, t) \equiv 1 \\
& I_{k}\left(u, t ; p_{i_{1}}, p_{i_{2}}, \ldots, p_{i_{k}}\right)= \int_{t}^{u} p_{i_{1}}(x) I_{k-1}\left(x, t ; p_{i_{2}}, p_{i_{3}}, \ldots, p_{i_{k}}\right) \mathrm{d} x \tag{1.5}\\
& J_{0}(u, t) \equiv 1 \\
& J_{k}\left(u, t ; p_{i_{1}}, p_{i_{2}}, \ldots, p_{i_{k}}\right)=\int_{t}^{u} p_{i_{k}}(x) J_{k-1}\left(u, x ; p_{i_{1}}, p_{i_{2}}, \ldots, p_{i_{k-1}}\right) \mathrm{d} x \tag{1.6}
\end{align*}
$$

It is easy to prove that the following identities hold:

$$
\begin{equation*}
I_{k}\left(u, t ; p_{i_{1}}, p_{\mathrm{i}_{2}}, \ldots, p_{i_{k}}\right)=J_{k}\left(u, t ; p_{i_{1}}, p_{i_{2}}, \ldots, p_{i_{k}}\right) \tag{1.7}
\end{equation*}
$$

for $k=1,2, \ldots, n$.
Functions $g^{-1}(t), h^{-1}(t)$ denote the inverse functions to $g(t), h(t)$.

2. Preliminaries

Lemma 2.1 (see [9, Lemma 1]). Let $y \in W$ be a solution of (1.1) with $y_{1}(t) \neq 0$ on $\left[t_{1}, \infty\right), t_{1} \geq t_{0}$. Then y is nonoscillatory and $z_{1}(t), y_{2}(t), \ldots, y_{n}(t)$ are monotone on some ray $[T, \infty), T \geq t_{1}$.

Let $y \in W$ be a non-oscillatory solution of (1.1). By (1.1) and (c), it follows that the function $z_{1}(t)$ from (1.2) has to be eventually of constant sign, so that either

$$
\begin{equation*}
y_{1}(t) z_{1}(t)>0 \tag{2.1}
\end{equation*}
$$

or

$$
\begin{equation*}
y_{1}(t) z_{1}(t)<0 \tag{2.2}
\end{equation*}
$$

for sufficiently large t.
We mention for the comfort of proofs a classification of non-oscillatory solutions of the system (1.1) which was introduced by the authors in [1].

Assume first that (2.1) holds.
By [9, Lemma 4], the statement in Lemma 2.2 follows.
Lemma 2.2. Let $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in W$ be a non-oscillatory solution to (1.1) on $\left[t_{1}, \infty\right)$, and assume that (2.1) holds. Then there exists an integer $l \in\{1,2, \ldots, n\}$ such that $\sigma \cdot(-1)^{n+l+1}=1$ or $l=n$, and $t_{2} \geq t_{1}$ such that for $t \geq t_{2}$

$$
\begin{gather*}
y_{i}(t) z_{1}(t)>0, \quad i=1,2, \ldots, l \\
(-1)^{i+l} y_{i}(t) z_{1}(t)>0, \quad i=l+1, \ldots, n . \tag{2.3}
\end{gather*}
$$

Denote by N_{l}^{+}the set of non-oscillatory solutions to (1.1) satisfying (2.3). Now assume that (2.2) holds.

By the aid of Kiguradze's lemma, it is easy to prove Lemma 2.3.
Lemma 2.3. Let $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in W$ be a non-oscillatory solution to (1.1) on $\left[t_{1}, \infty\right)$, and assume that (2.2) holds. Then there exists an integer $l \in\{1,2, \ldots, n\}$ and $\sigma \cdot(-1)^{n+l}=1$ or $l=n$, and $t_{2} \geq t_{1}$ such that for $t \geq t_{2}$ either

$$
\begin{gather*}
y_{1}(t) z_{1}(t)<0 \\
(-1)^{i} y_{i}(t) z_{1}(t)<0, \quad i=2, \ldots, n \tag{2.4}
\end{gather*}
$$

or

$$
\begin{gather*}
y_{1}(t) z_{1}(t)<0, \\
y_{i}(t) z_{1}(t)>0, \quad i=2,3, \ldots, l \tag{2.5}\\
(-1)^{i+l} y_{i}(t) z_{1}(t)>0, \quad i=l+1, \ldots, n .
\end{gather*}
$$

Denote by N_{1}^{-}the set of nonoscillatory solutions to (1.1) satisfying (2.4), and by N_{l}^{-} the set of non-oscillatory solutions to (1.1) satisfying (2.5). Denote by N the set of all nonoscillatory solutions to (1.1). Obviously by Lemmas 2.2 and 2.3, we have the classification of non-oscillatory solutions to the system (1.1):

$$
\begin{align*}
& n \text { odd, } \sigma=1 \text { : } \\
& N=N_{2}^{+} \cup N_{4}^{+} \cup \cdots \cup N_{n-1}^{+} \cup N_{n}^{+} \cup N_{1}^{-} \cup N_{3}^{-} \cup \cdots \cup N_{n}^{-}, \tag{2.6}\\
& n \text { odd, } \sigma=-1 \text { : } \\
& N=N_{1}^{+} \cup N_{3}^{+} \cup \cdots \cup N_{n}^{+} \cup N_{2}^{-} \cup N_{4}^{-} \cup \cdots \cup N_{n-1}^{-} \cup N_{n}^{-}, \\
& n \text { even, } \sigma=1 \text { : } \\
& N=N_{1}^{+} \cup N_{3}^{+} \cup \cdots \cup N_{n-1}^{+} \cup N_{n}^{+} \cup N_{2}^{-} \cup N_{4}^{-} \cup \cdots \cup N_{n}^{-}, \\
& n \text { even, } \sigma=-1 \text { : } \\
& N=N_{2}^{+} \cup N_{4}^{+} \cup \cdots \cup N_{n}^{+} \cup N_{1}^{-} \cup N_{3}^{-} \cup \cdots \cup N_{n-1}^{-} \cup N_{n}^{-} . \tag{2.9}
\end{align*}
$$

The next lemma can be proved similarly as Lemma 2 in [9].

Lemma 2.4. Let $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in W$ be a non-oscillatory solution to (1.1) on $\left[t_{1}, \infty\right), t_{1} \geq t_{0}$, and let $\lim _{t \rightarrow \infty}\left|z_{1}(t)\right|=L_{1}, \lim _{t \rightarrow \infty}\left|y_{k}(t)\right|=L_{k}, k=2, \ldots, n$. Then

$$
\begin{gather*}
k \geq 2, \quad L_{k}>0 \Longrightarrow L_{i}=\infty, \quad i=1, \ldots, k-1 \tag{2.10}\\
1 \leq k<n, \quad L_{k}<\infty \Longrightarrow L_{i}=0, \quad i=k+1, \ldots, n
\end{gather*}
$$

Remark 2.5. If $g(t)<t$, and $0<a(t) \leq \lambda^{*}<1$, (λ^{*} is a constant), then from [9], we have $N_{k}^{-}=\emptyset, k \in\{2,3, \ldots, n\}$.

Lemma 2.6 (see [10, Lemma 2.2]). In addition to conditions (a) and (b) suppose that

$$
\begin{equation*}
1 \leq a(t), \quad t \geq t_{0} \tag{2.11}
\end{equation*}
$$

Let $y_{1}(t)$ be a continuous non-oscillatory solution to the functional inequality

$$
\begin{equation*}
y_{1}(t)\left[y_{1}(t)-a(t) y_{1}(g(t))\right]>0 \tag{2.12}
\end{equation*}
$$

defined in a neighbourhood of infinity. Suppose that $g(t)>t$ for $t \geq t_{0}$. Then $y_{1}(t)$ is bounded. If, moreover,

$$
\begin{equation*}
1<\lambda_{*} \leq a(t), \quad t \geq t_{0} \tag{2.13}
\end{equation*}
$$

for some positive constant λ_{*}, then $\lim _{t \rightarrow \infty} y_{1}(t)=0$.

3. Main Results

Theorem 3.1. Suppose that

$$
\begin{align*}
& 0<a(t) \leq \lambda^{*}<1, \quad \text { for some constant } \lambda^{*}, \quad t \geq t_{0}, \tag{3.1}\\
& g(t)<h(t)<t \quad \text { for } t \geq t_{0}, \tag{3.2}\\
& \alpha:\left[t_{0}, \infty\right) \longrightarrow \mathbb{R} \text { is a continuous function, } \alpha(t)<t, \quad \lim _{t \rightarrow \infty} \alpha(t)=\infty, \tag{3.3}\\
& \int_{p_{1}\left(x_{1}\right) \int_{x_{1}}^{\infty} p_{2}\left(x_{2}\right) \int_{x_{2}}^{\infty} p_{3}\left(x_{3}\right) \cdots \int_{x_{n-2}}^{\infty} p_{n-1}\left(x_{n-1}\right) \int_{x_{n-1}}^{\infty} p_{n}\left(x_{n}\right) \mathrm{d} x_{n} \cdots \mathrm{~d} x_{1}=\infty,}^{\limsup _{t \rightarrow \infty}^{\infty} K I_{l-2}\left(t, \alpha(t) ; p_{1}, p_{2}, \ldots, p_{l-2}(*) \times J_{n-l+1}\left((*), \alpha(t) ; p_{n-1}, p_{n-2}, \ldots, p_{l-1}\right)\right)} \tag{3.4}\\
& \times \int_{h^{-1}(t)}^{\infty} p_{n}\left(x_{n}\right) \mathrm{d} x_{n}>1
\end{align*}
$$

for $l=3,5, \ldots, n-2$,

$$
\begin{equation*}
\underset{t \rightarrow \infty}{\limsup } K I_{n-1}\left(t, \alpha(t) ; p_{1}, p_{2}, \ldots, p_{n-1}\right) \int_{h^{-1}(t)}^{\infty} p_{n}\left(x_{n}\right) \mathrm{d} x_{n}>1 \tag{3.6}
\end{equation*}
$$

If n is odd and $\sigma=-1$, then every solution $y \in W$ to (1.1) is oscillatory or $\lim _{t \rightarrow \infty} y_{i}(t)=0$, $i=1,2, \ldots, n$.

Proof. Let $y \in W$ be a non-oscillatory solution to (1.1). The Expression (2.7) holds. Taking into account Remark 2.5, one may write

$$
\begin{equation*}
N=N_{1}^{+} \cup N_{3}^{+} \cup \cdots \cup N_{n}^{+} \tag{3.7}
\end{equation*}
$$

Without loss of generality we may suppose that $y_{1}(t)$ is positive for $t \geq t_{2}$.
(I) Let $y \in N_{1}^{+}$on $\left[t_{2}, \infty\right)$. In this case, we can write for $t \geq t_{2}$

$$
\begin{equation*}
y_{1}(t)>0, z_{1}(t)>0, y_{2}(t)<0, y_{3}(t)>0, \ldots, y_{n}(t)>0 \tag{3.8}
\end{equation*}
$$

and $\lim _{t \rightarrow \infty} z_{1}(t)=L_{1} \geq 0$. We claim that $L_{1}=0$. Otherwise $L_{1}>0$. Then

$$
\begin{equation*}
L_{1} \leq z_{1}(h(t)) \leq y_{1}(h(t)) \quad \text { for } t \geq t_{3} \tag{3.9}
\end{equation*}
$$

where $t_{3} \geq t_{2}$ is sufficiently large.
Integrating the last equation of (1.1) from x_{n-1} to x_{n-1}^{*}, we get for $x_{n-1} \geq t_{3}$

$$
\begin{equation*}
y_{n}\left(x_{n-1}\right)-y_{n}\left(x_{n-1}^{*}\right)=\int_{x_{n-1}}^{x_{n-1}^{*}} p_{n}\left(x_{n}\right) f\left(y_{1}\left(h\left(x_{n}\right)\right)\right) \mathrm{d} x_{n} \tag{3.10}
\end{equation*}
$$

From (3.10) with regard to (e), (3.8), and (3.9), we have for $x_{n-1}^{*} \rightarrow \infty$

$$
\begin{equation*}
y_{n}\left(x_{n-1}\right) \geq K L_{1} \int_{x_{n-1}}^{\infty} p_{n}\left(x_{n}\right) \mathrm{d} x_{n}, \quad x_{n-1} \geq t_{3} \tag{3.11}
\end{equation*}
$$

Multiplying (3.11) by $p_{n-1}\left(x_{n-1}\right)$ and then using the $(n-1)$ th equation of the system (1.1), we get for $x_{n-1} \geq t_{3}$

$$
\begin{equation*}
y_{n-1}^{\prime}\left(x_{n-1}\right) \geq K L_{1} p_{n-1}\left(x_{n-1}\right) \int_{x_{n-1}}^{\infty} p_{n}\left(x_{n}\right) \mathrm{d} x_{n} \tag{3.12}
\end{equation*}
$$

Integrating (3.12) from x_{n-2} to $x_{n-2}^{*} \rightarrow \infty$, and then using (3.8), we get for $x_{n-2} \geq t_{3}$

$$
\begin{equation*}
-y_{n-1}\left(x_{n-2}\right) \geq K L_{1} \int_{x_{n-2}}^{\infty} p_{n-1}\left(x_{n-1}\right) \int_{x_{n-1}}^{\infty} p_{n}\left(x_{n}\right) \mathrm{d} x_{n} \mathrm{~d} x_{n-1} \tag{3.13}
\end{equation*}
$$

Multiplying (3.13) by $p_{n-2}\left(x_{n-2}\right)$ and then using the $(n-2)$ th equation of the system (1.1), and the new inequality we integrate from x_{n-3} to $x_{n-3}^{*} \rightarrow \infty$ we employ (3.8) and for $x_{n-3} \geq t_{3}$

$$
\begin{equation*}
y_{n-2}\left(x_{n-3}\right) \geq K L_{1} \int_{x_{n-3}}^{\infty} p_{n-2}\left(x_{n-2}\right) \int_{x_{n-2}}^{\infty} p_{n-1}\left(x_{n-1}\right) \int_{x_{n-1}}^{\infty} p_{n}\left(x_{n}\right) \mathrm{d} x_{n} \mathrm{~d} x_{n-1} \mathrm{~d} x_{n-2} \tag{3.14}
\end{equation*}
$$

Similarly for $x_{1} \geq t_{3}$, we have

$$
\begin{align*}
-z_{1}^{\prime}(t) \geq & K L_{1} p_{1}\left(x_{1}\right) \int_{x_{1}}^{\infty} p_{2}\left(x_{2}\right) \int_{x_{2}}^{\infty} p_{3}\left(x_{3}\right) \cdots p_{n-1}\left(x_{n-1}\right) \\
& \times \int_{x_{n-1}}^{\infty} p_{n}\left(x_{n}\right) \mathrm{d} x_{n} \mathrm{~d} x_{n-1} \cdots \mathrm{~d} x_{2} \tag{3.15}
\end{align*}
$$

Integrating (3.15) from T to $T^{*} \rightarrow \infty$ and then using (3.8), we get for $T \geq t_{3}$

$$
\begin{equation*}
z_{1}(T) \geq K L_{1} \int_{T}^{\infty} p_{1}\left(x_{1}\right) \int_{x_{1}}^{\infty} p_{2}\left(x_{2}\right) \cdots p_{n-1}\left(x_{n-1}\right) \int_{x_{n-1}}^{\infty} p_{n}\left(x_{n}\right) \mathrm{d} x_{n} \mathrm{~d} x_{n-1} \cdots \mathrm{~d} x_{1}, \tag{3.16}
\end{equation*}
$$

which a contradiction to (3.4). Hence $\lim _{t \rightarrow \infty} z_{1}(t)=0$.
Then $z_{1}(t) \leq 1, t \geq t_{4}$, where $t_{4} \geq t_{3}$ is sufficiently large and

$$
\begin{equation*}
y_{1}(t) \leq a(t) y_{1}(g(t))+1 \leq \lambda^{*} y_{1}(g(t))+1, \quad t \geq t_{4} \tag{3.17}
\end{equation*}
$$

We prove that $y_{1}(t)$ is bounded indirectly. Let $y_{1}(t)$ be unbounded. Then there exists a sequence $\left\{\bar{t}_{n}\right\}_{n=1}^{\infty}, \bar{t}_{n} \geq t_{4}$, where $n=1,2, \ldots, \bar{t}_{n} \rightarrow \infty$ as $n \rightarrow \infty$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} y_{1}\left(\bar{t}_{n}\right)=\infty, \quad y_{1}\left(\bar{t}_{n}\right)=\max _{t_{4} \leq s \leq \bar{t}_{n}} y_{1}(s) . \tag{3.18}
\end{equation*}
$$

It follows from (3.1), (3.2), and (3.17),

$$
\begin{gather*}
y_{1}\left(\bar{t}_{n}\right) \leq \lambda^{*} y_{1}\left(g\left(\bar{t}_{n}\right)\right)+1 \leq \lambda^{*} y_{1}\left(\bar{t}_{n}\right)+1, \\
y_{1}\left(\bar{t}_{n}\right) \leq \frac{1}{1-\lambda^{*}}, \quad n=1,2, \ldots \tag{3.19}
\end{gather*}
$$

That is a contradiction to $\lim _{n \rightarrow \infty} y_{1}\left(\bar{t}_{n}\right)=\infty$, and the function $y_{1}(t)$ is bounded. We claim that $\lim _{t \rightarrow \infty} y_{1}(t)=0$ and prove it indirectly. Let $\lim \sup _{t \rightarrow \infty} y_{1}(t)=s>0$. Let $\left\{t_{n}^{*}\right\}_{n=1}^{\infty}, t_{n}^{*} \geq t_{4}, n=1,2, \ldots$, be such a kind of sequence, that $t_{n}^{*} \rightarrow \infty$ as $n \rightarrow \infty$, and $\lim \sup _{n \rightarrow \infty} y_{1}\left(t_{n}^{*}\right)=s$. Then $\lim \sup _{n \rightarrow \infty} y_{1}\left(g\left(t_{n}^{*}\right)\right) \leq s$. From (1.2) and (3.1),

$$
\begin{gather*}
z_{1}\left(t_{n}^{*}\right) \geq y_{1}\left(t_{n}^{*}\right)-\lambda^{*} y_{1}\left(g\left(t_{n}^{*}\right)\right), \quad n=1,2, \ldots, \\
y_{1}\left(g\left(t_{n}^{*}\right)\right) \geq \frac{y_{1}\left(t_{n}^{*}\right)-z_{1}\left(t_{n}^{*}\right)}{\lambda^{*}}, \quad n=1,2, \ldots \tag{3.20}
\end{gather*}
$$

follow.
From the last inequality, we have

$$
\begin{equation*}
s \geq \frac{s}{\lambda^{*}}, \quad \lambda^{*} \geq 1 \tag{3.21}
\end{equation*}
$$

That is a contradiction to condition (3.1) and $\lim \sup _{t \rightarrow \infty} y_{1}(t)=0=\lim _{t \rightarrow \infty} y_{1}(t)$. Since $\lim _{t \rightarrow \infty} z_{1}(t)=L_{1}=0$ and from Lemma 2.4, implie $\lim _{t \rightarrow \infty} y_{i}(t)=0, i=2,3, \ldots, n$.
(II) Let $y \in N_{l}^{+}$, for some $l=3,5, \ldots, n-2$, on $\left[t_{2}, \infty\right)$. In this case, one can consider for $t \geq t_{2}$

$$
\begin{equation*}
y_{1}(t)>0, z_{1}(t)>0, y_{2}(t)>0, \ldots, y_{l}(t)>0, y_{l+1}(t)<0, \ldots, y_{n}(t)>0 \tag{3.22}
\end{equation*}
$$

Integrating the first equation of the system (1.1) from $\alpha(t)$ to t and using (3.22) above, we get

$$
\begin{equation*}
z_{1}(t) \geq \int_{\alpha(t)}^{t} p_{1}\left(x_{1}\right) y_{2}\left(x_{1}\right) \mathrm{d} x_{1}, \quad t \geq t_{3} \tag{3.23}
\end{equation*}
$$

where $t_{3} \geq t_{2}$ is sufficiently large. Integrating step by step 2 nd, $3 \mathrm{rd}, \ldots,(l-1)$ th equations of the system (1.1) and subsequently substituting into (3.23) for $t \geq t_{3}$, we obtain

$$
\begin{equation*}
z_{1}(t) \geq \int_{\alpha(t)}^{t} p_{1}\left(x_{1}\right) \int_{\alpha(t)}^{x_{1}} p_{2}\left(x_{2}\right) \cdots \int_{\alpha(t)}^{x_{l-2}} p_{l-1}\left(x_{l-1}\right) y_{l}\left(x_{l-1}\right) \mathrm{d} x_{l-1} \mathrm{~d} x_{l-2} \cdots \mathrm{~d} x_{1} . \tag{3.24}
\end{equation*}
$$

Integrating l th, $(l+1)$ th, $\ldots,(n-1)$ th equation of the system (1.1) and using (3.22), we have

$$
\begin{gather*}
y_{l}\left(x_{l-1}\right) \geq-\int_{x_{l-1}}^{x_{l-2}} p_{l}\left(x_{l}\right) y_{l+1}\left(x_{l}\right) \mathrm{d} x_{l}, \\
-y_{l+1}\left(x_{l}\right) \geq \int_{x_{l}}^{x_{l-2}} p_{l+1}\left(x_{l+1}\right) y_{l+2}\left(x_{l+1}\right) \mathrm{d} x_{l+1} \\
y_{l+2}\left(x_{l+1}\right) \geq-\int_{x_{l+1}}^{x_{l-2}} p_{l+2}\left(x_{l+2}\right) y_{l+3}\left(x_{l+2}\right) \mathrm{d} x_{l+2} \tag{3.25}\\
\vdots \\
-y_{n-1}\left(x_{n-2}\right) \geq \int_{x_{n-2}}^{x_{l-2}} p_{n-1}\left(x_{n-1}\right) y_{n}\left(x_{n-1}\right) \mathrm{d} x_{n-1}
\end{gather*}
$$

Combining expressions (3.24) and (3.25) and using (3.22), we get for $t \geq t_{3}$

$$
\begin{align*}
z_{1}(t) \geq & y_{n}(t) \int_{\alpha(t)}^{t} p_{1}\left(x_{1}\right) \int_{\alpha(t)}^{x_{1}} p_{2}\left(x_{2}\right) \cdots \int_{\alpha(t)}^{x_{l-2}} p_{l-1}\left(x_{l-1}\right) \int_{x_{l-1}}^{x_{l-2}} p_{l}\left(x_{l}\right) \tag{3.26}\\
& \times \int_{x_{l}}^{x_{l-2}} p_{l+1}\left(x_{l+1}\right) \cdots \int_{x_{n-2}}^{x_{l-2}} p_{n-1}\left(x_{n-1}\right) \mathrm{d} x_{n-1} \mathrm{~d} x_{n-2} \cdots \mathrm{~d} x_{1} .
\end{align*}
$$

The formula above may be rewritten by (1.5) and (1.6) for $t \geq t_{3}$ to

$$
\begin{equation*}
z_{1}(t) \geq y_{n}(t) I_{l-2}\left(t, \alpha(t) ; p_{1}, p_{2}, \ldots, p_{l-2}(*) \times J_{n-l+1}\left((*), \alpha(t) ; p_{n-1}, p_{n-2}, \ldots, p_{l-1}\right)\right) \tag{3.27}
\end{equation*}
$$

Integrating the last equation of (1.1) from $t \rightarrow t^{*} \rightarrow \infty$ and using (e), (1.2), and (3.22), we obtain for $t \geq t_{4}$ where $t_{4} \geq t_{3}$ is sufficiently large,

$$
\begin{equation*}
y_{n}(t) \geq K \int_{t}^{\infty} p_{n}\left(x_{n}\right) z_{1}\left(h\left(x_{n}\right)\right) \mathrm{d} x_{n} . \tag{3.28}
\end{equation*}
$$

From (3.2), (3.27), and (3.28) and the monotonicity of $z_{1}(h)$, we have

$$
\begin{align*}
z_{1}(t) \geq & K I_{l-2}\left(t, \alpha(t) ; p_{1}, p_{2}, \ldots, p_{l-2}(*) \times J_{n-l+1}\left((*), \alpha(t) ; p_{n-1}, p_{n-2}, \ldots, p_{l-1}\right)\right) \\
& \times \int_{t}^{\infty} p_{n}\left(x_{n}\right) z_{1}\left(h\left(x_{n}\right)\right) \mathrm{d} x_{n} \\
\geq & z_{1}(t) K I_{l-2}\left(t, \alpha(t) ; p_{1}, p_{2}, \ldots, p_{l-2}(*) \times J_{n-l+1}\left((*), \alpha(t) ; p_{n-1}, p_{n-2}, \ldots, p_{l-1}\right)\right) \\
& \times \int_{h^{-1}(t)}^{\infty} p_{n}\left(x_{n}\right) \mathrm{d} x_{n}, \tag{3.29}\\
1 \geq & K I_{l-2}\left(t, \alpha(t) ; p_{1}, p_{2}, \ldots, p_{l-2}(*) \times J_{n-l+1}\left((*), \alpha(t) ; p_{n-1}, p_{n-2}, \ldots, p_{l-1}\right)\right) \\
& \times \int_{h^{-1}(t)}^{\infty} p_{n}\left(x_{n}\right) \mathrm{d} x_{n}
\end{align*}
$$

for $t \geq t_{4}$, which is a contradiction to (3.5), and it gives

$$
\begin{equation*}
N_{3}^{+} \cup N_{5}^{+} \cup \cdots \cup N_{n-2}^{+}=\emptyset . \tag{3.30}
\end{equation*}
$$

(III) Let $y \in N_{n}^{+}$on $\left[t_{2}, \infty\right)$. In this case we consider for the components of solution $y(t)$ and for function z_{1}

$$
\begin{equation*}
z_{1}(t)>0, \quad y_{i}(t)>0, \quad i=1,2, \ldots, n, \quad t \geq t_{2} . \tag{3.31}
\end{equation*}
$$

Analogically as in the previous part of the proof,

$$
\begin{equation*}
z_{1}(t) \geq y_{n}(t) I_{n-1}\left(t, \alpha(t) ; p_{1}, p_{2}, \ldots, p_{n-1}\right), \quad t \geq t_{3} \tag{3.32}
\end{equation*}
$$

holds and also (3.28), and for $t \geq t_{3}$

$$
\begin{equation*}
1 \geq K I_{n-1}\left(t, \alpha(t) ; p_{1}, p_{2}, \ldots, p_{n-1}\right) \int_{h^{-1}(t)}^{\infty} p_{n}\left(x_{n}\right) \mathrm{d} x_{n}, \tag{3.33}
\end{equation*}
$$

which is a contradiction to (3.6) and $N_{n}^{+}=\emptyset$.

Theorem 3.2. Suppose that (3.1)-(3.4) are employed and (3.5) holds for $l=3,5, \ldots, n-1$ and

$$
\begin{equation*}
\int_{s}^{\infty} p_{n}\left(x_{n}\right) \int_{h(s)}^{h\left(x_{n}\right)} p_{1}\left(x_{1}\right) \int_{h(s)}^{x_{1}} p_{2}\left(x_{2}\right) \cdots \int_{h(s)}^{x_{n-2}} p_{n-1}\left(x_{n-1}\right) \mathrm{d} x_{n-1} \cdots \mathrm{~d} x_{2} \mathrm{~d} x_{1} \mathrm{~d} x_{n}=\infty \tag{3.34}
\end{equation*}
$$

for s sufficiently large.
If n is even and $\sigma=1$, then every solution $y \in W$ to the system (1.1) is either oscillatory, or $\lim _{t \rightarrow \infty} y_{i}(t)=0, i=1,2, \ldots, n$, or $\lim _{t \rightarrow \infty}\left|y_{i}(t)\right|=\infty, i=1,2, \ldots, n$.

Proof. Let $y \in W$ be a non-oscillatory solution to (1.1). Expression (2.8) holds. Taking into account Remark 2.5,

$$
\begin{equation*}
N=N_{1}^{+} \cup N_{3}^{+} \cup \cdots \cup N_{n-1}^{+} \cup N_{n}^{+} . \tag{3.35}
\end{equation*}
$$

Without loss of generality we may suppose that $y_{1}(t)$ is positive for $t \geq t_{2}$.
(I) Let $y \in N_{1}^{+}$on $\left[t_{2}, \infty\right)$. In this case, for $t \geq t_{2}$

$$
\begin{equation*}
y_{1}(t)>0, z_{1}(t)>0, y_{2}(t)<0, y_{3}(t)>0, y_{4}(t)<0, \ldots, y_{n}(t)<0 . \tag{3.36}
\end{equation*}
$$

We may choose analogical approach as in Theorem 3.1 part (I). Equation (3.9) holds and we replace (3.11) by inequality

$$
\begin{equation*}
-y_{n}\left(x_{n-1}\right) \geq K L_{1} \int_{x_{n-1}}^{\infty} p_{n}\left(x_{n}\right) \mathrm{d} x_{n}, \quad x_{n-1} \geq t_{3} \tag{3.37}
\end{equation*}
$$

Moreover (3.15) holds and similarly as in the proof of Theorem 3.1 case (I). We prove that $\lim _{t \rightarrow \infty} y_{i}(t)=0, i=1,2, \ldots, n$.
(II) Let $y \in N_{l}^{+}$on $\left[t_{2}, \infty\right)$, for some $l=3,5, \ldots, n-1$. In this case, for $t \geq t_{2}$,

$$
\begin{equation*}
y_{1}(t)>0, z_{1}(t)>0, y_{2}(t)>0, \ldots, y_{l}(t)>0, y_{l+1}(t)<0, \ldots, y_{n}(t)<0 . \tag{3.38}
\end{equation*}
$$

The analogical approach as in Theorem 3.1 part (II) follows out.
Instead of inequality (3.27), we get for $t \geq t_{3}$

$$
\begin{equation*}
z_{1}(t) \geq-y_{n}(t) I_{l-2}\left(t, \alpha(t) ; p_{1}, p_{2}, \ldots, p_{l-2}(*) \times J_{n-l+1}\left((*), \alpha(t) ; p_{n-1}, p_{n-2}, \ldots, p_{l-1}\right)\right) \tag{3.39}
\end{equation*}
$$

and instead of (3.28) for $t \geq t_{4}$

$$
\begin{equation*}
-y_{n}(t) \geq K \int_{t}^{\infty} p_{n}\left(x_{n}\right) z_{1}\left(h\left(x_{n}\right)\right) \mathrm{d} x_{n}, \tag{3.40}
\end{equation*}
$$

and in the end we gain the contradiction to (3.5).
(III) Let $y \in N_{n}^{+}$on $\left[t_{2}, \infty\right)$. In this case (3.31) holds. Integrating the last equation of the system (1.1) and on the basis of (3.31), (3.2), (e), and (1.2), we have

$$
\begin{equation*}
y_{n}(t) \geq K \int_{s}^{t} p_{n}\left(x_{n}\right) z_{1}\left(h\left(x_{n}\right)\right) \mathrm{d} x_{n}, \quad t \geq s \geq t_{3} \tag{3.41}
\end{equation*}
$$

where $t_{3} \geq t_{2}$ is sufficiently large.
Integrating the first equation of the system (1.1) from $h(s)$ to $h\left(x_{n}\right)$ and employing (3.31), we obtain

$$
\begin{equation*}
z_{1}\left(h\left(x_{n}\right)\right) \geq \int_{h(s)}^{h\left(x_{n}\right)} p_{1}\left(x_{1}\right) y_{2}\left(x_{1}\right) \mathrm{d} x_{1}, \quad s \geq t_{3} \tag{3.42}
\end{equation*}
$$

Combining (3.41) and (3.42), we have for $t \geq s \geq t_{3}$

$$
\begin{equation*}
y_{n}(t) \geq K \int_{s}^{t} p_{n}\left(x_{n}\right) \int_{h(s)}^{h(t)} p_{1}\left(x_{1}\right) y_{2}\left(x_{1}\right) \mathrm{d} x_{1} \mathrm{~d} x_{n} \tag{3.43}
\end{equation*}
$$

Further consequently integrating the $2 \mathrm{nd}, 3 \mathrm{rd}, \ldots,(l-1)$ th equations of the system (1.1) and step by step substituting into (3.43), we get for $t \geq s \geq t_{3}$

$$
\begin{align*}
y_{n}(t) \geq & K \int_{s}^{t} p_{n}\left(x_{n}\right) \int_{h(s)}^{h\left(x_{n}\right)} p_{1}\left(x_{1}\right) \int_{h(s)}^{x_{1}} p_{2}\left(x_{2}\right) \tag{3.44}\\
& \cdots \int_{h(s)}^{x_{n-2}} p_{n-1}\left(x_{n-1}\right) y_{n}\left(x_{n-1}\right) \mathrm{d} x_{n-1} \mathrm{~d} x_{n-2} \cdots \mathrm{~d} x_{2} \mathrm{~d} x_{1} \mathrm{~d} x_{n}
\end{align*}
$$

On basis of (3.31), for $x_{n-1} \geq t_{3}$

$$
\begin{equation*}
y_{n}\left(x_{n-1}\right) \geq C, \quad 0<C=\text { const., for } x_{n-1} \geq t_{3} \tag{3.45}
\end{equation*}
$$

hold.
Combining (3.44) and (3.45) for $t \geq s \geq t_{3}$, we have

$$
\begin{align*}
y_{n}(t) \geq & K C \int_{s}^{t} p_{n}\left(x_{n}\right) \int_{h(s)}^{h\left(x_{n}\right)} p_{1}\left(x_{1}\right) \int_{h(s)}^{x_{1}} p_{2}\left(x_{2}\right) \tag{3.46}\\
& \cdots \int_{h(s)}^{x_{n-2}} p_{n-1}\left(x_{n-1}\right) \mathrm{d} x_{n-1} \mathrm{~d} x_{n-2} \cdots \mathrm{~d} x_{2} \mathrm{~d} x_{1} \mathrm{~d} x_{n}
\end{align*}
$$

From the inequality above and relation (3.34), we obtain $\lim _{t \rightarrow \infty} y_{n}(t)=\infty$. Lemma 2.4 im plies $\lim _{t \rightarrow \infty} z_{1}(t)=\infty$ and $\lim _{t \rightarrow \infty} y_{i}(t)=\infty, i=2,3, \ldots, n-1$. Since $z_{1}(t)<y_{1}(t)$ for $t \geq t_{2}$, so $\lim _{t \rightarrow \infty} y_{1}(t)=\infty$ and the final conclusion is $\lim _{t \rightarrow \infty}\left|y_{i}(t)\right|=\infty, i=1,2, \ldots, n$.

Theorem 3.3. Suppose that (3.3) holds and

$$
\begin{gather*}
1<\lambda^{*} \leq a(t) \quad \text { for some constant } \lambda^{*}, \quad t \geq t_{0}, \tag{3.47}\\
t<g(t)<h(t) \text { for } t \geq t_{0}, \tag{3.48}\\
\int_{p_{1}\left(x_{1}\right) \int_{x_{1}}^{\infty} p_{2}\left(x_{2}\right) \int_{x_{2}}^{\infty} p_{3}\left(x_{3}\right) \cdots \int_{x_{n-2}}^{\infty} p_{n-1}\left(x_{n-1}\right)}^{\limsup _{t \rightarrow \infty} K I_{l-2}\left(t, \alpha(t) ; p_{1}, p_{2}, \ldots, p_{l-2}(*) \times J_{n-l+1}\left((*), \alpha(t) ; p_{n-1}, p_{n-2}, \ldots, p_{l-1}\right)\right)} \\
\times \int_{x_{n-1}}^{\infty} \frac{p_{n}\left(x_{n}\right) \mathrm{d} x_{n} \mathrm{~d} x_{n-1} \ldots \mathrm{~d} x_{1}}{a\left(g^{-1}\left(h\left(x_{n}\right)\right)\right)}=\infty, \tag{3.49}\\
\times \int_{t}^{\infty} \frac{p_{n} x_{n} \mathrm{~d} x_{n}}{a\left(g^{-1}\left(h\left(x_{n}\right)\right)\right)}>1,
\end{gather*}
$$

for $l=3,5, \ldots, n-2$,

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} K I_{n-1}\left(t, \alpha(t) ; p_{1}, p_{2}, \ldots, p_{n-1}\right) \int_{t}^{\infty} \frac{p_{n}\left(x_{n}\right) \mathrm{d} x_{n}}{a\left(g^{-1}\left(h\left(x_{n}\right)\right)\right)}>1 \tag{3.51}
\end{equation*}
$$

If n is odd and $\sigma=1$ then every solution $y \in W$ to (1.1) is either oscillatory, or $\lim _{t \rightarrow \infty} y_{i}(t)=0$, $i=1,2, \ldots, n$.

Proof. Let $y \in W$ be a non-oscillatory solution to (1.1). Expression (2.6) holds. Without loss of generality we may suppose that $y_{1}(t)$ is positive for $t \geq t_{2}$.
(I) Let $y \in N_{2}^{+} \cup N_{4}^{+} \cup \cdots \cup N_{n-1}^{+} \cup N_{n}^{+}$on $\left[t_{2}, \infty\right)$. Lemma 2.6 implies $\lim _{t \rightarrow \infty} y_{1}(t)=0$. In this case, for $t \geq t_{2}$,

$$
\begin{equation*}
0<z_{1}(t)<y_{1}(t) \tag{3.52}
\end{equation*}
$$

and so $\lim _{t \rightarrow \infty} z_{1}(t)=0$ which is a contradiction to the fact that the $z_{1}(t)$ is positive and a nondecreasing function on the interval $\left[t_{2}, \infty\right)$ and

$$
\begin{equation*}
N_{2}^{+} \cup N_{4}^{+} \cup \cdots \cup N_{n-1}^{+} \cup N_{n}^{+}=\emptyset \tag{3.53}
\end{equation*}
$$

(II) Let $y \in N_{1}^{-}$on $\left[t_{2}, \infty\right)$. In this case, we can write for $t \geq t_{2}$

$$
\begin{equation*}
y_{1}(t)>0, z_{1}(t)<0, y_{2}(t)>0, y_{3}(t)<0, \ldots, y_{n}(t)<0 . \tag{3.54}
\end{equation*}
$$

We indirectly prove $\lim _{t \rightarrow \infty} z_{1}(t)=0$.
Since $z_{1}(t)$ is nondecreasing $\lim _{t \rightarrow \infty} z_{1}(t)=-L_{1}, L_{1}>0, L_{1}=$ const., and

$$
\begin{equation*}
z_{1}(t) \leq-L_{1} \quad \text { for } t \geq t_{2} \tag{3.55}
\end{equation*}
$$

Because $z_{1}(t)>-a(t) y_{1}(g(t))$,

$$
\begin{align*}
& z_{1}\left(g^{-1}(h(t))\right)>-a\left(g^{-1}(h(t))\right) y_{1}(h(t)) \tag{3.56}\\
& \quad-y_{1}(h(t))<\frac{z_{1}\left(g^{-1}(h(t))\right)}{a\left(g^{-1}(h(t))\right)}, \quad t \geq t_{2} \tag{3.57}
\end{align*}
$$

follows.
From (3.55) and (3.57), we get

$$
\begin{equation*}
-L_{1} \geq z_{1}\left(g^{-1}\left(h\left(x_{n}\right)\right)\right) \geq-a\left(g^{-1}\left(h\left(x_{n}\right)\right)\right) y_{1}\left(h\left(x_{n}\right)\right), \quad x_{n}>t_{2} \tag{3.58}
\end{equation*}
$$

By (c), (e), the last equation of (1.1), and (3.58), we get for $x_{n}>t_{2}$

$$
\begin{equation*}
\frac{K L_{1} p_{n}\left(x_{n}\right)}{a\left(g^{-1}\left(h\left(x_{n}\right)\right)\right)} \leq K p_{n}\left(x_{n}\right) y_{1}\left(h\left(x_{n}\right)\right) \leq p_{n}\left(x_{n}\right) f\left(y_{1}\left(h\left(x_{n}\right)\right)\right)=y_{n}^{\prime}\left(x_{n}\right) \tag{3.59}
\end{equation*}
$$

Integrating (3.59) from x_{n-1} to $x_{n-1}^{*} \rightarrow \infty$, we get

$$
\begin{equation*}
K L_{1} \int_{x_{n-1}}^{\infty} \frac{p_{n}\left(x_{n}\right) \mathrm{d} x_{n}}{a\left(g^{-1}\left(h\left(x_{n}\right)\right)\right)} \leq-y_{n}\left(x_{n-1}\right) \quad \text { for } x_{n-1} \geq t_{2} \tag{3.60}
\end{equation*}
$$

Multiplying (3.60) by $p_{n-1}\left(x_{n-1}\right)$ and then using the ($n-1$) th equation of system (1.1), we get for $x_{n-1} \geq t_{2}$

$$
\begin{equation*}
K L_{1} p_{n-1}\left(x_{n-1}\right) \int_{x_{n-1}}^{\infty} \frac{p_{n}\left(x_{n}\right) \mathrm{d} x_{n}}{a\left(g^{-1}\left(h\left(x_{n}\right)\right)\right)} \leq-y_{n-1}\left(x_{n-1}\right) \tag{3.61}
\end{equation*}
$$

Integrating (3.61) from x_{n-2} to $x_{n-2}^{*} \rightarrow \infty$, we get for $x_{n-2} \geq t_{2}$

$$
\begin{equation*}
K L_{1} \int_{x_{n-2}}^{\infty} p_{n-1}\left(x_{n-1}\right) \int_{x_{n-1}}^{\infty} \frac{p_{n}\left(x_{n}\right) \mathrm{d} x_{n} \mathrm{~d} x_{n-1}}{a\left(g^{-1}\left(h\left(x_{n}\right)\right)\right)} \leq y_{n-1}\left(x_{n-2}\right) \tag{3.62}
\end{equation*}
$$

Similarly we continue by the same way until we derive for $x_{1} \geq t_{2}$

$$
\begin{gather*}
K L_{1} p_{1}\left(x_{1}\right) \int_{x_{1}}^{\infty} p_{2}\left(x_{2}\right) \int_{x_{2}}^{\infty} p_{3}\left(x_{3}\right) \cdots \int_{x_{n-2}}^{\infty} p_{n-1}\left(x_{n-1}\right) \tag{3.63}\\
\quad \times \int_{x_{n-1}}^{\infty} \frac{p_{n}\left(x_{n}\right) \mathrm{d} x_{n} \mathrm{~d} x_{n-1} \cdots \mathrm{~d} x_{2}}{a\left(g^{-1}\left(h\left(x_{n}\right)\right)\right)} \leq z_{1}^{\prime}\left(x_{1}\right)
\end{gather*}
$$

Integrating (3.63) from T to $T^{*} \rightarrow \infty$, we get for $T \geq t_{2}$

$$
\begin{align*}
& K L_{1} \int_{T}^{\infty} p_{1}\left(x_{1}\right) \int_{x_{1}}^{\infty} p_{2}\left(x_{2}\right) \int_{x_{2}}^{\infty} p_{3}\left(x_{3}\right) \cdots \int_{x_{n-2}}^{\infty} p_{n-1}\left(x_{n-1}\right) \\
& \quad \times \int_{x_{n-1}}^{\infty} \frac{p_{n}\left(x_{n}\right) \mathrm{d} x_{n} \mathrm{~d} x_{n-1} \cdots \mathrm{~d} x_{2} \mathrm{~d} x_{1}}{a\left(g^{-1}\left(h\left(x_{n}\right)\right)\right)} \leq-z_{1}(T) \tag{3.64}
\end{align*}
$$

That contradicts (3.49), and consequently $\lim _{t \rightarrow \infty} z_{1}(t)=0$ holds.
We prove that $y_{1}(t)$ is bounded and $\lim _{t \rightarrow \infty} y_{1}(t)=0$. There is some positive constant $B>0, z_{1}(t) \geq-B$ for $t \geq t_{2}$, and by (1.2) and (3.47), one has for $t \geq t_{2}$

$$
\begin{equation*}
y_{1}(t)=a(t) y_{1}(g(t))+z_{1}(t) \geq a(t) y_{1}(g(t))-B \geq \lambda^{*} y_{1}(g(t))-B . \tag{3.65}
\end{equation*}
$$

We prove indirectly that $y_{1}(t)$ is bounded. Let us suppose that $y_{1}(t)$ is unbounded. Then $y_{1}(g(t))$ is unbounded, and there is a sequence

$$
\begin{gather*}
\left\{\bar{t}_{n}\right\}_{n=1}^{\infty}, \quad \bar{t}_{n} \geq t_{2}, \quad n=1,2, \ldots, \quad \bar{t}_{n} \longrightarrow \infty \quad \text { as } n \longrightarrow \infty, \\
\lim _{n \rightarrow \infty} y_{1}\left(\bar{t}_{n}\right)=\infty, \quad y_{1}\left(g\left(\bar{t}_{n}\right)\right)=\max _{t_{2} \leq s \leq g\left(\bar{t}_{n}\right)} y_{1}(s) . \tag{3.66}
\end{gather*}
$$

By (3.65)

$$
\begin{gather*}
\lambda^{*} y_{1}\left(g\left(\bar{t}_{n}\right)\right) \leq y_{1}\left(\bar{t}_{n}\right)+B \leq y_{1}\left(g\left(\bar{t}_{n}\right)\right)+B \\
y_{1}\left(g\left(\bar{t}_{n}\right)\right) \leq \frac{B}{\lambda^{*}-1}, \quad n=1,2, \ldots \tag{3.67}
\end{gather*}
$$

That is a contradiction to $\lim _{n \rightarrow \infty} y_{1}\left(g\left(\bar{t}_{n}\right)\right)=\infty$, and the function $y_{1}(t)$ is bounded. We claim that $\lim _{t \rightarrow \infty} y_{1}(t)=0$, and we will prove it indirectly.

Let $\lim \sup _{t \rightarrow \infty} y_{1}(g(t))=s, 0<s, s=$ const. Then $\limsup \sup _{t \rightarrow \infty} y_{1}(t)=s$.
Let $\left\{t_{n}^{*}\right\}_{n=1}^{\infty}, t_{n}^{*} \geq t_{2}, n=1,2, \ldots$, be such a kind of sequence that $\lim _{n \rightarrow \infty} t_{n}^{*}=\infty$ and $\lim \sup _{n \rightarrow \infty} y_{1}\left(g\left(t_{n}^{*}\right)\right)=s$.

Then, $\lim \sup _{n \rightarrow \infty} y_{1}\left(t_{n}^{*}\right) \leq s$.
By (1.2) and (3.47),

$$
\begin{array}{ll}
z_{1}\left(t_{n}^{*}\right) \leq y_{1}\left(t_{n}^{*}\right)-\lambda^{*} y_{1}\left(g\left(t_{n}^{*}\right)\right), & n=1,2, \ldots \\
y_{1}\left(g\left(t_{n}^{*}\right)\right) \leq \frac{y_{1}\left(t_{n}^{*}\right)-z_{1}\left(t_{n}^{*}\right)}{\lambda^{*}}, & n=1,2, \ldots \tag{3.68}
\end{array}
$$

follows.
By the last inequality, we have

$$
\begin{equation*}
s=\limsup _{t \rightarrow \infty} y_{1}\left(g\left(t_{n}^{*}\right)\right) \leq \frac{\lim \sup _{t \rightarrow \infty} y_{1}\left(t_{n}^{*}\right)}{\lambda^{*}} \leq \frac{s}{\lambda^{*}} \tag{3.69}
\end{equation*}
$$

$1 \geq \lambda^{*}$ holds. That is a contradiction to (3.47). It means $\lim \sup _{t \rightarrow \infty} y_{1}(g(t))=0$ and also $\lim \sup _{t \rightarrow \infty} y_{1}(t)=0$. Moreover, $y_{1}(t)>0$ holds, so $\lim _{\inf }^{t \rightarrow \infty}$ (im$t_{t \rightarrow \infty} y_{1}(t)=0$ and this leads to $\lim _{t \rightarrow \infty} y_{1}(t)=0$.

By Lemma 2.4 it follows that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} y_{i}(t)=0, \quad i=2,3, \ldots, n . \tag{3.70}
\end{equation*}
$$

(III) Let $y \in N_{l}^{-}, l=3,5, \ldots, n-2$, on $\left[t_{2}, \infty\right)$. In this case for, $t \geq t_{2}$,

$$
\begin{equation*}
y_{1}(t)>0, z_{1}(t)<0, y_{2}(t)<0, \ldots, y_{l}(t)<0, y_{l+1}(t)>0, \ldots, y_{n}(t)<0 . \tag{3.71}
\end{equation*}
$$

Integrating the first equation of (1.1) from $\alpha(t)$ to t and using (3.71), we get

$$
\begin{equation*}
z_{1}(t) \geq \int_{\alpha(t)}^{t} p_{1}\left(x_{1}\right) y_{2}\left(x_{1}\right) \mathrm{d} x_{1}, \quad t \geq t_{3} \tag{3.72}
\end{equation*}
$$

where $t_{3} \geq t_{2}$ is sufficiently large.
Integrating the 2 nd, $3 \mathrm{rd}, \ldots,(l-1)$ th equations of the system (1.1), and substituting into (3.72), we get for $t \geq t_{3}$

$$
\begin{equation*}
z_{1}(t) \leq \int_{\alpha(t)}^{t} p_{1}\left(x_{1}\right) \int_{\alpha(t)}^{x_{1}} p_{2}\left(x_{2}\right) \cdots \int_{\alpha(t)}^{x_{l-2}} p_{l-1}\left(x_{l-1}\right) y_{l}\left(x_{l-1}\right) \mathrm{d} x_{l-1} \mathrm{~d} x_{l-2} \cdots \mathrm{~d} x_{1} . \tag{3.73}
\end{equation*}
$$

Integrating l th,$(l+1)$ th, $\ldots,(n-1)$ th equations of the system (1.1) we gain the syste

$$
\begin{gather*}
y_{l}\left(x_{l-1}\right) \leq-\int_{x_{l-1}}^{x_{l-2}} p_{l}\left(x_{l}\right) y_{l+1}\left(x_{l}\right) \mathrm{d} x_{l}, \\
-y_{l+1}\left(x_{l}\right) \leq \int_{x_{l}}^{x_{l-2}} p_{l+1}\left(x_{l+1}\right) y_{l+2}\left(x_{l+1}\right) \mathrm{d} x_{l+1}, \\
y_{l+2}\left(x_{l+1}\right) \leq-\int_{x_{l+1}}^{x_{l-2}} p_{l+2}\left(x_{l+2}\right) y_{l+3}\left(x_{l+2}\right) \mathrm{d} x_{l+2}, \tag{3.74}\\
\vdots \\
-y_{n-1}\left(x_{n-2}\right) \leq \int_{x_{n-2}}^{x_{l-2}} p_{n-1}\left(x_{n-1}\right) y_{n}\left(x_{n-1}\right) \mathrm{d} x_{n-1} .
\end{gather*}
$$

We combine the formulae (3.73) and (3.74), and with regard to (3.71), we get for $t \geq t_{3}$

$$
\begin{align*}
z_{1}(t) \leq & y_{n}(t) \int_{\alpha(t)}^{t} p_{1}\left(x_{1}\right) \int_{\alpha(t)}^{x_{1}} p_{2}\left(x_{2}\right) \cdots \int_{\alpha(t)}^{x_{l-2}} p_{l-1}\left(x_{l-1}\right) \int_{x_{l-1}}^{x_{l-2}} p_{l}\left(x_{l}\right) \tag{3.75}\\
& \times \int_{x_{l}}^{x_{l-2}} p_{l+1}\left(x_{l+1}\right) \cdots \int_{x_{n-2}}^{x_{l-2}} p_{l-1}\left(x_{l-1}\right) \mathrm{d} x_{n-1} \mathrm{~d} x_{n-2} \cdots \mathrm{~d} x_{1}
\end{align*}
$$

Employing (1.5) and (1.6) the equation above may be rewritten to

$$
\begin{equation*}
z_{1}(t) \leq y_{n}(t) I_{l-2}\left(t, \alpha(t) ; p_{1}, p_{2}, \ldots, p_{l-2}(*) \times J_{n-l+1}\left((*), \alpha(t) ; p_{n-1}, \ldots, p_{l-1}\right)\right) \tag{3.76}
\end{equation*}
$$

for $t \geq t_{3}$.
Integrating the last equation of (1.1) from t to $t^{*} \rightarrow \infty$ and using (e) and (3.71),

$$
\begin{equation*}
y_{n}(t) \leq-K \int_{t}^{\infty} p_{n}\left(x_{n}\right) y_{1}\left(h\left(x_{n}\right)\right) \mathrm{d} x_{n}, \quad t \geq t_{3} . \tag{3.77}
\end{equation*}
$$

From (3.2), (3.57) in regard to (3.76), (3.77) and monotonicity of $z_{1}\left(g^{-1}(h)\right)$, we get for $t \geq t_{3}$

$$
\begin{align*}
z_{1}(t) \leq & K I_{l-2}\left(t, \alpha(t) ; p_{1}, p_{2}, \ldots, p_{l-2}(*) \times J_{n-l+1}\left((*), \alpha(t) ; p_{n-1}, \ldots, p_{l-1}\right)\right) \\
& \times \int_{t}^{\infty} \frac{p_{n}\left(x_{n}\right) z_{1}\left(g^{-1}\left(h\left(x_{n}\right)\right)\right) \mathrm{d} x_{n}}{a\left(g^{-1}\left(h\left(x_{n}\right)\right)\right)} \tag{3.78}\\
\leq & z_{1}(t) K I_{l-2}\left(t, \alpha(t) ; p_{1}, p_{2}, \ldots, p_{l-2}(*) \times J_{n-l+1}\left((*), \alpha(t) ; p_{n-1}, \ldots, p_{l-1}\right)\right) \\
& \times \int_{t}^{\infty} \frac{p_{n}\left(x_{n}\right) \mathrm{d} x_{n}}{a\left(g^{-1}\left(h\left(x_{n}\right)\right)\right)}
\end{align*}
$$

which means for $t \geq t_{3}$

$$
\begin{align*}
1 \geq & K I_{l-2}\left(t, \alpha(t) ; p_{1}, p_{2}, \ldots, p_{l-2}(*) \times J_{n-l+1}\left((*), \alpha(t) ; p_{n-1}, \ldots, p_{l-1}\right)\right) \\
& \times \int_{t}^{\infty} \frac{p_{n}\left(x_{n}\right) \mathrm{d} x_{n}}{a\left(g^{-1}\left(h\left(x_{n}\right)\right)\right)} . \tag{3.79}
\end{align*}
$$

This is a contradiction to (3.50) and

$$
\begin{equation*}
N_{3}^{-} \cup N_{5}^{-} \cup \cdots \cup N_{n-2}^{-}=\emptyset \tag{3.80}
\end{equation*}
$$

(IV) Let $y \in N_{n}^{-}$, on $\left[t_{2}, \infty\right)$.

In this case, we can write for $t \geq t_{2}$

$$
\begin{equation*}
y_{1}(t)>0, \quad z_{1}(t)<0, \quad y_{i}(t)<0, \quad i=2,3, \ldots, n \tag{3.81}
\end{equation*}
$$

We may lead the proof analogically as in the previous part of the proof and we will prove that (3.77), (3.57), and

$$
\begin{equation*}
z_{1}(t) \leq y_{n}(t) I_{n-1}\left(t, \alpha(t) ; p_{1}, p_{2}, \ldots, p_{n-1}\right) \tag{3.82}
\end{equation*}
$$

hold and also

$$
\begin{equation*}
1 \geq K I_{n-1}\left(t, \alpha(t) ; p_{1}, p_{2}, \ldots, p_{n-1}\right) \int_{t}^{\infty} \frac{p_{n}\left(x_{n}\right) \mathrm{d} x_{n}}{a\left(g^{-1}\left(h\left(x_{n}\right)\right)\right)}, \quad t \geq t_{3} \tag{3.83}
\end{equation*}
$$

which is a contradiction to (3.51) and $N_{n}^{-}=\emptyset$.

Theorem 3.4. Suppose that (3.3), (3.47)-(3.49) hold and condition (3.50) is fulfilled for $l=3,5, \ldots$, $n-1$, and

$$
\begin{align*}
& \int_{s}^{\infty} \frac{p_{n}\left(x_{n}\right)}{a\left(g^{-1}\left(h\left(x_{n}\right)\right)\right)} \int_{g^{-1}(h(s))}^{g^{-1}\left(h\left(x_{n}\right)\right)} p_{1}\left(x_{1}\right) \int_{g^{-1}(h(s))}^{x_{1}} p_{2}\left(x_{2}\right) \tag{3.84}\\
& \quad \cdots \int_{g^{-1}(h(s))}^{x_{n-2}} p_{n-1}\left(x_{n-1}\right) \mathrm{d} x_{n-1} \mathrm{~d} x_{n-2} \cdots \mathrm{~d} x_{1} \mathrm{~d} x_{n}=\infty
\end{align*}
$$

for $s \geq t_{0}$.
If n is even and $\sigma=-1$, then every solution $y \in W$ to (1.1) is either oscillatory, or $\lim _{t \rightarrow \infty} y_{i}(t)=0, i=1,2, \ldots, n$, or $\lim _{t \rightarrow \infty}\left|z_{1}(t)\right|=\infty \quad$ and $\lim _{t \rightarrow \infty}\left|y_{i}(t)\right|=\infty, i=2, \ldots, n$.

Proof. Let $y \in W$ be a non-oscillatory solution to (1.1). Expression (2.9) holds.
(I) Let $y \in N_{2}^{+} \cup N_{4}^{+} \cup \cdots \cup N_{n}^{+}$. Analogically as in the proof of Theorem 3.3 (I), we prove that

$$
\begin{equation*}
N_{2}^{+} \cup N_{4}^{+} \cup \cdots \cup N_{n}^{+}=\emptyset . \tag{3.85}
\end{equation*}
$$

(II) Let $y \in N_{1}^{-}$on $\left[t_{2}, \infty\right)$. Similarly to the proof of Theorem 3.3 (II), we prove $\lim _{t \rightarrow \infty} y_{i}(t)=0, i=1,2, \ldots, n$.
(III) Let $y \in N_{l}^{-}$, for some $l=3,5, \ldots, n-1$, for $t \in\left[t_{2}, \infty\right)$. Likewise as proof of Theorem 3.3 (III), for sets N_{l}^{-}we prove that $N_{3}^{-} \cup N_{5}^{-}, \ldots, N_{n-1}^{-}=\emptyset$.
(IV) Let $y \in N_{n}^{-}$for $t \in\left[t_{2}, \infty\right)$. Analogically to the proof of case (III) of Theorem 3.2, we claim $\lim _{t \rightarrow \infty}\left|z_{1}(t)\right|=\infty, \lim _{t \rightarrow \infty}\left|y_{i}(t)\right|=\infty, i=2, \ldots, n$.

Example 3.5. We consider system (1.1) as follows:

$$
\begin{gather*}
\left(y_{1}(t)-\frac{1}{2} y_{1}\left(\frac{t}{4}\right)\right)^{\prime}=\mathrm{e}^{\frac{t}{2}} y_{2}(t), \\
y_{2}^{\prime}(t)=\frac{1}{2} \mathrm{e}^{\frac{t}{4}} y_{3}(t) \tag{3.86}\\
y_{3}^{\prime}(t)=\frac{1}{2} \mathrm{e}^{\frac{t}{8}} y_{4}(t), \\
y_{4}^{\prime}(t)=\frac{1}{16}\left(\mathrm{e}^{-3 t / 8}+\frac{5}{8} \mathrm{e}^{-9 t / 8}\right) y_{1}\left(\frac{t}{2}\right), \quad t \geq 1
\end{gather*}
$$

All assumptions of Theorem 3.2 are satisfied, and every solution $y \in W$ to (3.86) is either oscillatory or

$$
\begin{equation*}
\lim _{t \rightarrow \infty} y_{i}(t)=0, \quad i=1,2,3,4, \quad \text { or } \quad \lim _{t \rightarrow \infty}\left|y_{i}(t)\right|=\infty, \quad i=1,2,3,4 \tag{3.87}
\end{equation*}
$$

One of the solutions has particular components as follows:

$$
\begin{gather*}
y_{1}(t)=\mathrm{e}^{t}, \quad y_{2}(t)=\mathrm{e}^{t / 2}-\frac{1}{8} \mathrm{e}^{-t / 4}, \\
y_{3}(t)=\mathrm{e}^{t / 4}+\frac{1}{16} \mathrm{e}^{-t / 2}, \quad y_{4}(t)=\frac{1}{2}\left(\mathrm{e}^{t / 8}-\frac{1}{8} \mathrm{e}^{-5 t / 8}\right), \quad t \geq 1, \tag{3.88}
\end{gather*}
$$

and in this case

$$
\begin{equation*}
\lim _{t \rightarrow \infty} y_{i}(t)=\infty, \quad i=1,2,3,4 \tag{3.89}
\end{equation*}
$$

Acknowledgments

The authors gratefully acknowledge the Scientific Grant Agency (VEGA) of the Ministry of Education of Slovak Republic and the Slovak Academy of Sciences for supporting this work under Grant no. 2/0215/09.

References

[1] E. Špániková and H. Šamajová, "Asymptotic properties of solutions to n-dimensional neutral differential systems," Nonlinear Analysis, Theory, Methods \& Applications, vol. 71, no. 7-8, pp. 28772885, 2009.
[2] B. Mihalíková and J. Džurina, "On the oscillation of bounded solutions of systems of neutral differential equations," in Proceedings of the International Scientific Conference of Mathematics, pp. 189194, University of Žilina, Slovakia, 1998.
[3] T. Mihály, "On the oscillatory and asymptotic properties of solutions of systems of neutral differential equations," Nonlinear Analysis, Theory, Methods \& Applications, vol. 66, no. 9, pp. 2053-2063, 2007.
[4] R. Olach and H. Šamajová, "Oscillatory properties of nonlinear differential systems with retarded arguments," Mathematica Slovaca, vol. 55, no. 3, pp. 307-316, 2005.
[5] H. Šamajová, "Neutral two-dimensional functional differential systems-asymptotic properties of solutions," Studies of the University of Žilina, Mathematical Series, vol. 19, no. 1, pp. 49-56, 2005.
[6] S. Staněk, "Oscillation behaviour of solutions of neutral delay differential equations," Časopis Pro Pěstování Matematiky, vol. 115, no. 1, pp. 92-99, 1990.
[7] L. H. Erbe, Q. Kong, and B. G. Zhang, Oscillation Theory for Functional-Differential Equations, vol. 190 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 1995.
[8] J. Diblík, "A criterion for existence of positive solutions of systems of retarded functional-differential equations," Nonlinear Analysis, Theory, Methods \& Applications, vol. 38, no. 3, pp. 327-339, 1999.
[9] P. Marušiak, "Oscillatory properties of functional-differential systems of neutral type," Czechoslovak Mathematical Journal, vol. 43, no. 4, pp. 649-662, 1993.
[10] J. Jaroš and T. Kusano, "On a class of first order nonlinear functional-differential equations of neutral type," Czechoslovak Mathematical Journal, vol. 40, no. 3, pp. 475-490, 1990.

