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The weakly perturbed linear nonhomogeneous impulsive systems in the form ẋ = A(t)x +
εA1(t)x + f(t), t ∈ R, t /∈ T := {τi}Z

,Δx|t=τi = γi + εA1ix(τi−), τi ∈ T ⊂ R, γi ∈ R
n, and

i ∈ Z are considered. Under the assumption that the generating system (for ε = 0) does not
have solutions bounded on the entire real axis for some nonhomogeneities and using the Vishik-
Lyusternikmethod, we establish conditions for the existence of solutions of these systems bounded
on the entire real axis in the form of a Laurent series in powers of small parameter ε with finitely
many terms with negative powers of ε, and we suggest an algorithm of construction of these
solutions.

1. Introduction

In this contribution we study the problem of existence and construction of solutions of
weakly perturbed linear differential systemswith impulsive action bounded on the entire real
axis. The application of the theory of differential systems with impulsive action (developed
in [1–3]), the well-known results on the splitting index by Sacker [4] and by Palmer [5]
on the Fredholm property of bounded solutions of linear systems of ordinary differential
equations [6–9], the theory of pseudoinverse matrices [10] and results obtained in analyzing
boundary-value problems for ordinary differential equations (see [10–12]), enables us to
obtain existence conditions and to propose an algorithm for the construction of solutions
bounded on the entire real axis of weakly perturbed linear impulsive differential systems.
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2. Initial Problem

We consider the problem of existence and construction of solutions bounded on the entire
real axis of linear systems of ordinary differential equations with impulsive action at fixed
points of time

ẋ = A(t)x + f(t), t ∈ R \ T,

Δx|t=τi = γi, τi ∈ T, i ∈ Z,
(2.1)

where A ∈ BCT(R) is an n × n matrix of functions, f ∈ BCT(R) is an n × 1 vector function,
BCT(R) is the Banach space of real vector functions bounded on R and left-continuous for
t ∈ R with discontinuities of the first kind at t ∈ T := {τi}Z

with the norm: ‖x‖BCT(R) :=
supt∈R

‖x(t)‖, γi are n-dimensional column constant vectors: γi ∈ R
n; · · · < τ−2 < τ−1 < τ0 = 0 <

τ1 < τ2 < · · · , and Δx|t=τi := x(τi+) − x(τi−).
The solution x(t) of the system (2.1) is sought in the Banach space of n-

dimensional bounded on R and piecewise continuously differentiable vector functions with
discontinuities of the first kind at t ∈ T : x ∈ BC1

T(R).

Parallel with the nonhomogeneous impulsive system (2.1), we consider the corre-
sponding homogeneous system

ẋ = A(t)x, Δx|t=τi = 0, (2.2)

which is the homogeneous system without impulses, and let X(t) be the fundamental matrix
of (2.2) such that X(0) = I.

Assume that the homogeneous system (2.2) is exponentially dichotomous (e-dicho-
tomous) [5, 10] on semiaxes R− = (−∞, 0] and R+ = [0,∞), that is, there exist projectors P
and Q (P 2 = P, Q2 = Q) and constants Ki ≥ 1, αi > 0 (i = 1, 2) such that the following
inequalities are satisfied:

∥
∥
∥X(t)PX−1(s)

∥
∥
∥ ≤ K1e

−α1(t−s), t ≥ s,

∥
∥
∥X(t)(I − P)X−1(s)

∥
∥
∥ ≤ K1e

−α1(s−t), s ≥ t, t, s ∈ R+,

∥
∥
∥X(t)QX−1(s)

∥
∥
∥ ≤ K2e

−α2(t−s), t ≥ s,

∥
∥
∥X(t)(I −Q)X−1(s)

∥
∥
∥ ≤ K2e

−α2(s−t), s ≥ t, t, s ∈ R−.

(2.3)
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For getting the solution x ∈ BC1
T(R) bounded on the entire axis, we assume that t =

0 /∈ T, that is, x(0+) − x(0−) = γ0 = 0.
We use the following notation: D = P − (I −Q);D+ is a Moore-Penrose pseudoinverse

matrix toD; PD and PD∗ are n×nmatrices (orthoprojectors) projecting R
n ontoN(D) = kerD

and onto N(D∗) = kerD∗, respectively, that is, PD : R
n → N(D), P 2

D = PD = P ∗
D, and PD∗ :

R
n → N(D∗), P 2

D∗ = PD∗ = P ∗
D∗ ; H(t) = [PD∗Q]X−1(t); d = rank[PD∗Q] = rank[PD∗(I − P)]

and r = rank[PPD] = rank[(I −Q)PD].
The existence conditions and the structure of solutions of system (2.1) bounded on the

entire real axis was analyzed in [13]. Here the following theoremwas formulated and proved.

Theorem 2.1. Assume that the linear nonhomogeneous impulsive differential system (2.1) has the
corresponding homogeneous system (2.2) e-dichotomous on the semiaxes R− = (−∞, 0] and R+ =
[0,∞)with projectors P andQ, respectively. Then the homogeneous system (2.2) has exactly r linearly
independent solutions bounded on the entire real axis. If nonhomogeneities f ∈ BCT(R) and γi ∈ R

n

satisfy d linearly independent conditions

∫∞

−∞
Hd(t)f(t)dt +

∞∑

i=−∞
Hd(τi)γi = 0, (2.4)

then the nonhomogeneous system (2.1) possesses an r-parameter family of linearly independent
solutions bounded on R in the form

x(t, cr) = Xr(t)cr +

(

G

[

f

γi

])

(t), ∀cr ∈ R
r . (2.5)

Here, Hd(t) = [PD∗Q]dX
−1(t) is a d × n matrix formed by a complete system of d linearly

independent rows of matrix H(t),

Xr(t) := X(t)[PPD]r = X(t)[(I −Q)PD]r (2.6)

is an n × r matrix formed by a complete system of r linearly independent solutions bounded
on R of homogeneous system (2.2), and

(

G
[
f
γi

])

(t) is the generalized Green operator of
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the problem of finding bounded solutions of the nonhomogeneous impulsive system (2.1),
acting upon f ∈ BCT(R) and γi ∈ R

n, defined by the formula

(

G

[

f

γi

])

(t) = X(t)

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

∫ t

0
PX−1(s)f(s)ds −

∫∞

t

(I − P)X−1(s)f(s)ds

+
j
∑

i=1

PX−1(τi)γi −
∞∑

i=j+1

(I − P)X−1(τi)γi

+PD+

{∫0

−∞
QX−1(s)f(s)ds +

∫∞

0
(I − P)X−1(s)f(s)ds

+
−1∑

i=−∞
QX−1(τi)γi +

∞∑

i=1

(I − P)X−1(τi)γi

}

, t ≥ 0;

∫ t

−∞
QX−1(s)f(s)ds −

∫0

t

(I −Q)X−1(s)f(s)ds

+
−(j+1)
∑

i=−∞
QX−1(τi)γi −

−1∑

i=−j
(I −Q)X−1(τi)γi

+(I −Q)D+

{∫0

−∞
QX−1(s)f(s)ds +

∫∞

0
(I − P)X−1(s)f(s)ds

+
−1∑

i=−∞
QX−1(τi)γi +

∞∑

i=1

(I − P)X−1(τi)γi

}

, t ≤ 0,

(2.7)

with the following property

(

G

[

f

γi

])

(0−) −
(

G

[

f

γi

])

(0+) =
∫∞

−∞
H(t)f(t)dt +

∞∑

i=−∞
H(τi)γi. (2.8)

These results are required to establish new conditions for the existence of solutions of
weakly perturbed linear impulsive systems bounded on the entire real axis.

3. Perturbed Problems

Consider a weakly perturbed nonhomogeneous linear impulsive system in the form

ẋ = A(t)x + εA1(t)x + f(t), t ∈ R \ T,
Δx|t=τi = γi + εA1ix(τi−), τi ∈ T, γi ∈ R

n, i ∈ Z,
(3.1)

where A1 ∈ BCT(R) is an n × n matrix of functions, A1i are n × n constant matrices.
Assume that the condition of solvability (2.4) of the generating system (2.1) (obtained

from system (3.1) for ε = 0) is not satisfied for all nonhomogeneities f ∈ BCT(R) and γi ∈ R
n,

that is, system (2.1) does not have solutions bounded on the entire real axis. Therefore, we
analyze whether the system (2.1) can be made solvable by introducing linear perturbations
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to the differential system and to the pulsed conditions. Also it is important to determine
perturbations A1(t) and A1i required to make the problem (3.1) solvable in the space of
functions bounded on the entire real axis, that is, it is necessary to specify pertubations for
which the corresponding homogeneous system

ẋ = A(t)x + εA1(t)x, t ∈ R \ T,

Δx|t=τi = εA1ix(τi−), τi ∈ T, i ∈ Z,
(3.2)

turns into a system e-trichotomous or e-dichotomous on the entire real axis [10].
We show that this problem can be solved using the d × r matrix

B0 =
∫∞

−∞
Hd(t)A1(t)Xr(t)dt +

∞∑

i=−∞
Hd(τi)A1iXr(τi−), (3.3)

constructed with the coefficients of the system (3.1). The Vishik-Lyusternik method
developed in [14] enables us to establish conditions under which a solution of impulsive
system (3.1) can be represented by a function bounded on the entire real axis in the form
of a Laurent series in powers of the small fixed parameter ε with finitely many terms with
negative powers of ε.

We use the following notation: B+
0 is the unique matrix pseudoinverse to B0 in the

Moore-Penrose sense, PB0 is the r × r matrix (orthoprojector) projecting the space Rr to the
null space N(B0) of the d × r matrix B0, that is, PB0 :R

r → N(B0), and PB∗
0
is the d × d matrix

(orthoprojector) projecting the space R
d to the null space N(B∗

0) of the r × d matrix B∗
0 (B

∗
0 =

BT ), that is, PB∗
0
: R

d → N(B∗
0).

Now we formulate and prove a theorem that enables us to solve indicated problem.

Theorem 3.1. Suppose that the system (3.1) satisfies the conditions imposed above, and the
homogeneous system (2.2) is e-dichotomous on R+ and R− with projectors P and Q, respectively.
Let nonhomogeneities f ∈ BCT(R) and γi ∈ R

n be given such that the condition (2.4) is not satisfied
and the generating system (2.1) does not have solutions bounded on the entire real axis. If

PB∗
0
= 0, (3.4)

then the system (3.2) is e-trichotomous on R and, for all nonhomogeneities f ∈ BCT(R) and γi ∈ R
n,

the system (3.1) possesses at least one solution bounded on R in the form of a series

x(t, ε) =
∞∑

k=−1
εkxk(t), (3.5)

uniformly convergent for sufficiently small fixed ε ∈ (0, ε∗].
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Here, ε∗ is a proper constant characterizing the range of convergence of the series (3.5)
and the coefficients xk(t) of the series (3.5) are determined from the corresponding impulsive
systems as

xk(t) = xk(t, ck) = Xr(t)ck +

(

G

[

A1(·)xk−1(·, ck−1)
A1ix(τi−, ck−1)

])

(t) for k = 1, 2, . . . ,

ck = −B+
0

[∫∞

−∞
Hd(t)A1(t)

(

G

[

A1(·)xk−1(·, ck−1)
A1ixk−1(τi−, ck−1)

])

(t)dt

+
∞∑

i=−∞
Hd(τi)A1i

(

G

[

A1(·)xk−1(·, ck−1)
A1ixk−1(·, ck−1)

])

(τi−)
]

,

x−1(t) = x−1(t, c−1) = Xr(t)c−1, c−1 = B+
0

{∫∞

−∞
Hd(t)f(t)dt +

∞∑

i=−∞
Hd(τi−)γi

}

,

x0(t) = x0(t, c0) = Xr(t)c0 +

(

G

[

A1(·)Xr(t)c−1 + f(·)
γi +A1iXr(τi−)c−1

])

(t),

c0 = −B+
0

[∫∞

−∞
Hd(t)A1(t)

(

G

[

A1(·)x−1(·, c−1) + f(·)
A1ix−1(τi−, c−1) + γi

])

(t)dt

+
∞∑

i=−∞
Hd(τi)A1i

(

G

[

A1(·)x−1(·, c−1) + f(·)
A1ix−1(·, c−1) + γi

])

(τi−)
]

.

(3.6)

Proof. We suppose that the problem (3.1) has a solution in the form of a Laurent series (3.5).
We substitute this solution into the system (3.1) and equate the coefficients at the same
powers of ε. The problem of determination of the coefficient x−1(t) of the term with ε−1 in
series (3.5) is reduced to the problem of finding solutions of homogeneous system without
impulses

ẋ−1 = A(t)x−1, t /∈ T,

Δx−1|t=τi = 0, i ∈ Z,
(3.7)

bounded on the entire real axis. According to the Theorem 2.1, the homogeneous system (3.7)
possesses r-parameter family of solutions

x−1(t, c−1) = Xr(t)c−1 (3.8)

bounded on the entire real axis, where c−1 is an r-dimensional vector column c−1 ∈ R
r and

is determined from the condition of solvability of the problem used for determining the
coefficient x0 of the series (3.5).
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For ε0, the problem of determination of the coefficient x0(t) of series (3.5) reduces to
the problem of finding solutions of the following nonhomogeneous system:

ẋ0 = A(t)x0 +A1(t)x−1 + f(t), t /∈ T,

Δx0|t=τi = A1ix−1(τi−) + γi, i ∈ Z,
(3.9)

bounded on the entire real axis. According to the Theorem 2.1, the condition of solvability of
this problem takes the form

∫∞

−∞
Hd(t)

[

A1(t)Xr(t)c−1 + f(t)
]

dt+
∞∑

i=−∞
Hd(τi)

[

A1iXr(τi−)c−1 + γi
]

= 0. (3.10)

Using the matrix B0, we get the following algebraic system for c−1 ∈ R
r :

B0c−1 = −
∫∞

−∞
Hd(t)f(t)dt +

∞∑

i=−∞
Hd(τi−)γi, (3.11)

which is solvable if and only if the condition

PB∗
0

{∫∞

−∞
Hd(t)f(t)dt +

∞∑

i=−∞
Hd(τi−)γi

}

= 0 (3.12)

is satisfied, that is, if

PB∗
0
= 0. (3.13)

In this case, this algebraic system is solvable with respect to c−1 ∈ R
r within an arbitrary

vector constant PB0c(∀c ∈ R
r) from the null space of the matrix B0, and one of its solutions

has the form

c−1 = B+
0

{∫∞

−∞
Hd(t)f(t)dt +

∞∑

i=−∞
Hd(τi−)γi

}

. (3.14)

Therefore, under condition (3.4), the nonhomogeneous system (3.9) possesses an r-parameter
set of solution bounded on R in the form

x0(t, c0) = Xr(t)c0 +

(

G

[

A1(·)x−1(·, c−1) + f(·)
γi +A1ix−1(τi−, c−1)

])

(t), (3.15)

where (G[ ∗
∗ ])(t) is the generalized Green operator (2.7) of the problem of finding bounded

solutions of system (3.9), and c0 is an r-dimensional constant vector determined in the next
step of the process from the condition of solvability of the impulsive problem for coefficient
x1(t).
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We continue this process by problem of determination of the coefficient x1(t) of the
term with ε1 in the series (3.5). It reduces to the problem of finding solutions of the system

ẋ1 = A(t)x1 +A1(t)x0, t /∈ T,

Δx1|t=τi = A1ix0(τi−), i ∈ Z,
(3.16)

bounded on the entire real axis. If the condition (3.4) is satisfied and by using the condition
of solvability of this problem, that is,

∫∞

−∞
Hd(t)A1(t)

[

Xr(t)c0 +

(

G

[

A1(·)x−1(·, c−1) + f(·)
A1ix−1(τi−, c−1) + γi

])

(t)

]

dt

+
∞∑

i=−∞
Hd(τi−)A1i

[

Xr(τi−)c0 +
(

G

[

A1(·)x−1(·, c−1) + f(·)
A1ix−1(·, c−1) + γi

])

(τi−)
]

= 0,

(3.17)

we determine the vector c0 ∈ R
r (within an arbitrary vector constant PB0c, ∀c ∈ R

r) as

c0 = −B+
0

[∫∞

−∞
Hd(t)A1(t)

(

G

[

A1(·)x−1(·, c−1) + f(·)
A1ix−1(τi−, c−1) + γi

])

(t)dt

+
∞∑

i=−∞
Hd(τi)A1i

(

G

[

A1(·)x−1(·, c−1) + f(·)
A1ix−1(·, c−1) + γi

])

(τi−)
]

.

(3.18)

Thus, under the condition (3.4), system (3.16) possesses an r-parameter set of solutions
bounded on R in the form

x1(t, c1) = Xr(t)c1 +

(

G

[

A1(·)x0(·, c0)
A1ix(τi−, c0)

])

(t), (3.19)

where (G[ ∗
∗ ])(t) is the generalized Green operator (2.7) of the problem of finding bounded

solutions of system (3.16), and c1 is an r-dimensional constant vector determined in the next
stage of the process from the condition of solvability of the problem for x2(t).

If we continue this process, we prove (by induction) that the problem of determination
of the coefficient xk(t) in the series (3.5) is reduced to the problem of finding solutions of the
system

ẋk = A(t)xk +A1(t)xk−1, t /∈ T,

Δxk|t=τi = A1ixk−1(τi−), i ∈ Z, k = 1, 2, . . . ,
(3.20)
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bounded on the entire real axis. If the condition (3.4) is satisfied, then a solution of this
problem bounded on R has the form

xk(t) = xk(t, ck) = Xr(t)ck +

(

G

[

A1(·)xk−1(·, ck−1)
A1kxk−1(τi−, ck−1)

])

(t), (3.21)

where (G[ ∗
∗ ])(t) is the generalized Green operator of the problem of finding bounded

solutions of impulsive system (3.20) and the constant vector ck ∈ Rr is given by the formula

ck = −B+
0

[∫∞

−∞
Hd(t)A1(t)

(

G

[

A1(·)xk−1(·, ck−1)
A1ixk−1(τi−, ck−1)

])

(t)dt

+
∞∑

i=−∞
Hd(τi)A1i

(

G

[

A1(·)xk−1(·, ck−1)
A1ixk−1(·, ck−1)

])

(τi−)
]

(3.22)

(within an arbitrary vector constant PB0c, c ∈ Rr).
The fact that the series (3.5) is convergent can be proved by using the procedure of

majorization.

In the case where the number r = rankPPD = rank(I − Q)PD of linear independent
solutions of system (2.2) bounded on R is equal to the number d = rank[PD∗Q] = rank[PD∗(I−
P)], Theorem 3.1 yields the following assertion.

Corollary 3.2. Suppose that the system (3.1) satisfies the conditions imposed above, and the
homogeneous system (2.2) is e-dichotomous on R+ and R− with projectors P and Q, respectively.
Let nonhomogeneities f ∈ BCT(R) and γi ∈ R

n be given such that the condition (2.4) is not satisfied,
and the generating system (2.1) does not have solutions bounded on the entire real axis. If condition

detB0 /= 0 (r = d), (3.23)

is satisfied, then the system (3.1) possesses a unique solution bounded on R in the form of series (3.5)
uniformly convergent for sufficiently small fixed ε ∈ (0, ε∗].

Proof. If r = d, then B0 is a square matrix. Therefore, it follows from condition (3.4) that
PB0 = PB∗

0
= 0, which is equivalent to the condition (3.23). In this case, the constant vectors

ck ∈ R
r are uniquely determined from (3.22). The coefficients of the series (3.5) are also

uniquely determined by (3.21), and, for all f ∈ BCT(R) and γi ∈ R
n, the system (3.1) possesses

a unique solution bounded on R, which means that system (3.2) is e-dichotomous.

We now illustrate the assertions proved above.
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Example 3.3. Consider the impulsive system

ẋ = A(t)x + εA1(t)x + f(t), t ∈ R \ T,

Δx|t=τi = γi + εA1ix(τi−), γi =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

γ
(1)
i

γ
(2)
i

γ
(3)
i

⎫

⎪⎪⎪⎬

⎪⎪⎪⎭

∈ R
3, i ∈ Z,

(3.24)

where

A(t) = diag{− tanh t, − tanh t, tanh t},
f(t) = col

{

f1(t), f2(t), f3(t)
}

∈ BCT(R),

A1(t) =
{

aij(t)
}3
i,j=1 ∈ BCT(R), A1i =

{

ãij

}3
i,j=1.

(3.25)

The generating homogenous system (for ε = 0) has the form

ẋ = A(t)x, Δx|t=τi = 0 (3.26)

and is e-dichotomous (as shown in [6]) on the semiaxes R+ and R− with projectors P =
diag{1, 1, 0} and Q = diag{0, 0, 1}. The normal fundamental matrix of this system is

X(t) = diag
{

2
et + e−t

,
2

et + e−t
,
et + e−t

2

}

. (3.27)

Thus, we have

D = 0, D+ = 0, PD = PD∗ = I3,

r = rankPPD = 2, d = rankPD∗Q = 1,

Xr(t) =

⎛

⎜
⎜
⎜
⎜
⎝

2
et + e−t

0

0
2

et + e−t

0 0

⎞

⎟
⎟
⎟
⎟
⎠

,

(3.28)

Hd(t) =
(

0, 0,
2

et + e−t

)

. (3.29)

In order that the generating impulsive system (2.1) with the matrix A(t) specified
above has solutions bounded on the entire real axis, the nonhomogeneities f(t) =
col{f1(t), f2(t), f3(t)} ∈ BCT(R) and γi = col{γ (1)i , γ

(2)
i , γ

(3)
i } ∈ R

3 must satisfy condition (2.4).
In this analyzed impulsive problem, this condition takes the form

∫∞

−∞

2 f3(t)
et + e−t

dt +
∞∑

i=−∞

2
eτi + e−τi

γ
(3)
i = 0, ∀f1(t), f2(t) ∈ BCT(R), ∀γ (1)i , γ

(2)
i ∈ R. (3.30)
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Let f3 and γ
(3)
i be given such that the condition (3.30) is not satisfied and the corresponding

generating system (2.1) does not have solutions bounded on the entire real axis. The system
(3.24) will be an e-trichotomous on R if the coefficients a31(t), a32(t) ∈ BCT(R) of the
perturbing matrix A1(t) and the coefficients ã31, ã32 ∈ R of the perturbing matrix A1i satisfy
condition (3.4), that is, PB∗

0
= 0, where the matrix B0 has the form

B0 =
∫∞

−∞

[

a31(t)

(et + e−t)2
,

a32(t)

(et + e−t)2

]

dt +
∞∑

i=−∞

[

ã31

(eτi− + e−τi−)2
,

ã32

(eτi− + e−τi−)2

]

. (3.31)

Therefore, if a31(t), a32(t) ∈ BCT(R) and ã31, ã32 ∈ R are such that at least one of the following
inequalities

∫∞

−∞

a31(t)

(et + e−t)2
dt +

∞∑

i=−∞

ã31

(eτi− + e−τi−)2
/= 0,

∫∞

−∞

a32(t)

(et + e−t)2
dt +

∞∑

i=−∞

ã32

(eτi− + e−τi−)2
/= 0

(3.32)

is satisfied, then either the condition (3.4) or the equivalent condition rank B0 = d = 1
from Theorem 3.1 is satisfied and the system (3.2) is e-trichotomous on R. In this case,
the coefficients a11(t),a12(t),a13(t),a21(t), a22(t), a23(t), a33(t) are arbitrary functions from the
space BCT(R), and ã11, ã12, ã13, ã21, ã22, ã23, ã33 are arbitrary constants from R. Moreover, for
any

f(t) = col
{

f1(t), f2(t), f3(t)
}

∈ BCT(R) (3.33)

a solution of the system (3.24) bounded on R is given by the series (3.5) (within a constant
from the null space N(B0), dimN(B0) = r − rank B0 = 1).

Another Perturbed Problem

In this part, we show that the problem of finding bounded solutions of nonhomogeneous
system (2.1), in the case if the condition (2.4) is not satisfied, can be made solvable by
introducing linear perturbations only to the pulsed conditions.

Therefore, we consider the weakly perturbed nonhomogeneous linear impulsive
system in the form

ẋ = A(t)x + f(t), t ∈ R \ T, A, f ∈ BCT(R),

Δx|t=τi = γi + εA1ix(τi−), γi ∈ R
n, i ∈ Z,

(3.34)

where A1i are n × n constant matrices. For ε = 0, we obtain the generating system (2.1).
We assume that this generating system does not have solutions bounded on the entire
real axis, which means that the condition of solvability (2.4) is not satisfied (for some
nonhomogeneities f ∈ BCT(R) and γi ∈ R

n). Let us show that it is possible to make this
problem solvable by adding linear perturbation only to the pulsed conditions. In the case, if
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this is possible, it is necessary to determine perturbations A1i for which the corresponding
homogeneous system

ẋ = A(t)x, t ∈ R \ T,

Δx|t=τi = εA1ix(τi−), i ∈ Z,
(3.35)

turns into the system e-trichotomous or e-dichotomous on the entire real axis.
This problem can be solved with help of the d × r matrix

B0 =
∞∑

i=−∞
Hd(τi)A1iXr(τi−) (3.36)

constructed with the coefficients from the impulsive system (3.34).
By using Theorem 3.1, we seek a solution in the form of the series (3.5). Thus, we have

the following corollary.

Corollary 3.4. Suppose that the system (3.34) satisfies the conditions imposed above and the
generating homogeneous system (2.2) is e-dichotomous on R+ and R− with projectors P and Q,
respectively. Let nonhomogeneities f ∈ BCT(R) and γi ∈ R

n be given such that the condition (2.4)
is not satisfied, and the generating system (2.1) does not have solutions bounded on the entire real
axis. If the condition (3.4) is satisfied, then the system (3.35) is e-trichotomous on R, and the system
(3.34) possesses at least one solution bounded on R in the form of series (3.5) uniformly convergent
for sufficiently small fixed ε ∈ (0, ε∗].
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[2] S. Schwabik, M. Tvrdý, and O. Vejvoda, Differential and Integral Equations, Academia, Prague, Czech
Republic, 1979.

[3] A. A. Boichuk, N. A. Perestyuk, and A. M. Samoilenko, “Periodic solutions of impulse differential
systems in critical cases,” Differents. Uravn., vol. 27, no. 9, pp. 1516–1521, 1991.

[4] R. J. Sacker, “The splitting index for linear differential systems,” Journal of Differential Equations, vol.
33, no. 3, pp. 368–405, 1979.

[5] K. J. Palmer, “Exponential dichotomies and transversal homoclinic points,” Journal of Differential
Equations, vol. 55, no. 2, pp. 225–256, 1984.

[6] A. M. Samoilenko, A. A. Boichuk, and An. A. Boichuk, “Solutions, bounded on the whole axis, of
linear weakly perturbed systems,”Ukrainian Mathematical Journal, vol. 54, no. 11, pp. 1517–1530, 2002.

[7] A. A. Boichuk, “Solutions of weakly nonlinear differential equations bounded on the whole line,”
Nonlinear Oscillations, vol. 2, no. 1, pp. 3–10, 1999.

[8] A. Boichuk and A. Pokutnyi, “Bounded solutions of linear perturbed differential equations in a
Banach space,” Tatra Mountains Mathematical Publications, vol. 39, pp. 1–12, 2007.
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