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Suppose that A is a transitive subalgebra of B(X) and its norm closure A contains a nonzero
minimal left ideal I. It is shown that if δ is a bounded reflexive transitive derivation from A
into B(X), then δ is spatial and implemented uniquely; that is, there exists T ∈ B(X) such that
δ(A) = TA −AT for each A ∈ A, and the implementation T of δ is unique only up to an additive
constant. This extends a result of E. Kissin that “if A contains the ideal C(H) of all compact
operators in B(H), then a bounded reflexive transitive derivation fromA into B(H) is spatial and
implemented uniquely.” in an algebraic direction and provides an alternative proof of it. It is also
shown that a bounded reflexive transitive derivation fromA into B(X) is spatial and implemented
uniquely, if X is a reflexive Banach space andA contains a nonzero minimal right ideal I.

1. Introduction

Throughout this paper, X is a Banach space (and X will be replaced by H if it is a Hilbert
space) and A is a subalgebra of B(X), the Banach algebra of all bounded operators on X.
Suppose that A ⊆ B(X) and M ⊆ B(X) is an A-bimodule. A linear map δ from A into M is
called a derivation if

δ(AB) = δ(A)B +Aδ(B) for any A,B ∈ A. (1.1)

Then A is called the domain of δ and denoted by Dom(δ). The derivation δ is called inner
(resp., spatial) if there exists an operator T ∈ M (resp., T ∈ B(X)) such that

δ(A) = TA −AT for any A ∈ A. (1.2)
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If the operator T is not bounded, then δ is said to be quasispatial. More precisely, if there exists
a densely defined, closed operator T : Dom(T) → X such that

A(Dom(T)) ⊆ Dom(T), δ(A)x = (TA −AT)x for any A ∈ A, x ∈ Dom(T), (1.3)

then the derivation δ is called quasispatial, and the operator T is an implementation of δ.
Compared to the spatiality, the quasispatiality is a slightly weaker notion.

Given a bounded derivation δ on an operator algebra, the natural question is whether
the derivation δ is inner (or spatial). The spatiality of derivations is a classical problem when
formulated for self-adjoint algebras and non-self-adjoint reflexive operator algebras. And it
has been extensively studied in the literature in a large variety of situations, and some inter-
esting results have been obtained [1–13]. For example, every derivation of a C∗-algebra is
spatial [12], every derivation of a von Neumann algebra is inner [13], and so is the derivation
of a nest algebra [14]. Every derivation from an atom Boolean subspace lattice algebra into its
ideal is quasispatial [7]. A necessary and sufficient condition is given for a derivation on CDC
algebras to be quasispatial [6]. In [10], the quasispatiality of derivations on CSL algebras is
studied.

As to general operator algebras, it is well known that every derivation of B(X) is inner
[9] and that every derivation of a standard operator subalgebra on a normed space X is
spatial [4]. Since these operator algebras are transitive, the above question for a reflexive
transitive derivation in a Banach space X is raised naturally as follows.

Problem 1. Suppose that A is a transitive subalgebra of B(X). Let δ be a bounded reflexive
transitive derivation from A into B(X). Does there always exist T ∈ B(X) such that
δ(A) = TA − AT for each A ∈ A? Is the implementation T unique only up to an additive
constant if there is any?

In the case whenX is a Hilbert space, it is Problem 2.12 of [5]. Although the problem is
still open, some strong conditions have been found by Kissin to imply that such derivations
are spatial and implemented uniquely (Proposition 2.11, [5]). In particular, Kissin has proved
that the answer to Problem 1 is affirmative under the conditions that A is a transitive
subalgebra of B(H), and A contains the ideal C(H) of all compact operators in B(H). As
far as we know, there are no other solution to Problem 1.

The purpose of this paper is to investigate the quasispatiality of derivations and
to address the above question in a Banach space X. The paper is organized as follows.
In Section 2, we give some preliminaries. In Section 3, we investigate the quasispatiality
and spatiality of derivations. The main result (Theorem 3.1) shows that if A is a transitive
operator algebra on a Banach space X and A contains a nonzero minimal left ideal I, then
a bounded reflexive transitive derivation δ from A into B(X) is spatial and implemented
uniquely. As an application, the quasispatiality of the adjoint of a derivation is discussed in
Section 4. The main result (Theorem 4.2) in Section 4 shows that under the conditions that X
is a reflexive Banach space and A contains a nonzero minimal right ideal I, δ is also spatial
and implemented uniquely if δ is a bounded reflexive transitive derivation fromA into B(X).
As another application, Proposition 2.11 (ii) of [5] can be proved by using Theorem 3.1 of this
paper, which is Corollary 4.3. Since Theorem 2.5 and Proposition 2.11 of [5] hold in a Hilbert
space and they are not valid in a Banach space without the approximation property, Theorems
3.1 and 4.2 of this paper extend the result of Kissin to Banach spaces in an algebraic direction.
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The role of “compact operators” is replaced by that of “minimal one-sided ideals”. The proof
of our results relies on the quasispatiality of the derivation and Banach algebra techniques.

This paper is a continuation of [5]. Some definitions and notations can be found in [5].

2. Preliminaries

Throughout this paper, X is a complex Banach space, and X∗ is the topological dual space
of X, the Banach space of all continuous linear functionals on X. We denote by F(X) the
algebra of all finite-rank operators on X. If a subalgebra A contains F(X), then A is called
a standard operator algebra. For a bounded operator A on X, denote by LatA the lattice of all
closed invariant subspaces ofA andA∗ the adjoint operator ofA. For a subalgebraA of B(X),
denote by Lat(A) the lattice of all closed subspaces invariant under every operator inA. For
a setL of subspaces ofX, denote by AlgL the algebra of all operators in B(X)which leave all
subspaces in L invariant. An operator algebraA is transitive if LatA = {{0}, X};A is reflexive
if

A = AlgLatA, where AlgLatA = {T ∈ B(X) : LatA ⊂ Lat T}. (2.1)

For 0/=x ∈ X and 0/= f ∈ X∗, the rank-one operator x⊗f acts onX by (x⊗f)y = f(y)x
for y ∈ X. Let A be an operator on X with Dom(A) ⊆ X. If x ∈ Dom(A) and f ∈ Dom(A∗),
thenA(x ⊗ f) = Ax ⊗ f and (x ⊗ f)A = x ⊗ (A∗f). LetM be a nonempty subset of X andN a
nonempty subset ofX∗. The annihilatorM⊥ ofM and the preannihilator ⊥N ofN are defined
as follows [15]: M⊥ = {f ∈ X∗ : f(x) = 0 for all x ∈ M}, ⊥N = {x ∈ X : f(x) = 0 for all f ∈
N}. It is obvious thatM⊥ is a weak∗-closed subspace ofX∗ and ⊥N is a norm-closed subspace
of X. For a subalgebra A and a closed, densely defined operator T with domain Dom(T), we
say that Tcommutes with A, if A(Dom(T)) ⊆ Dom(T) and TAξ = ATξ for any A ∈ A and any
ξ ∈ Dom(T). For a subalgebra A of B(X), let A∗ = {A∗ : A ∈ A} in notation.

A subset I of an algebra A is a left ideal of A if AI ⊆ I, a right ideal if IA ⊆ I, and
a two-sided ideal if it is both a left and a right ideal. A left ideal I of A is minimal if every left
ideal of A included in I is either I or {0}, similarly for minimal right ideals.

A derivation δ is bounded (resp., closed) if the map Dom(δ) 	 A 
→ δ(A) ∈ B(X) is
bounded (resp., closed) in the operator norm topology. The derivation δ is transitive if its
domain Dom(δ) is a transitive operator algebra; δ is reflexive if

Aδ =

{
Â =

(
A δ(A)

0 A

)
: A ∈ Dom(δ)

}
(2.2)

is a reflexive operator algebra onX⊕X. Denote by Imp(δ) the set of all closed, densely defined
operators implementing the derivation δ as in (1.3). For a densely defined, closed operator T
with domain Dom(T), we can define the derivation ΔT with domain

Dom(ΔT ) = {A ∈ B(X) : A(Dom(T)) ⊆ Dom(T), TA −AT is bounded on Dom(T)}
(2.3)
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by

ΔT (A) = Closure(TA −AT), for any A ∈ Dom(ΔT ). (2.4)

If a densely defined, closed operator T implements a derivation δ, then the derivation
ΔT is an extension of the derivation δ. In fact, A ∈ Dom(δ) implies A ∈ Dom(ΔT ) and
ΔT (A) = δ(A) for anyA ∈ Dom(δ) by (1.3) and (2.4). For any set Λ of derivations δλ (λ ∈ Λ),
define the derivation δΛ =

⋂
λ∈Λ δλ by

Dom(δΛ) =

{
A ∈

⋂
λ∈Λ

Dom(δλ) : δλ(A) coincide for any λ ∈ Λ

}
,

δΛ(A) = δλ(A) for any A ∈ Dom(δΛ) and any λ ∈ Λ.

(2.5)

In particular,

δImp(δ) =
⋂

T∈Imp(δ)

ΔT . (2.6)

Remark 2.1. ΔT is a reflexive transitive derivation for any densely defined, closed operator T .
Indeed, Dom(ΔT ) is a subalgebra of B(X), and ΔT is a derivation.
If x ∈ Dom(T) and h ∈ Dom(T ∗), (x ⊗ h)z = h(z)x ∈ Dom(T) for any z ∈ Dom(T).

So (x ⊗ h)(Dom(T)) ⊆ Dom(T). Since (T(x ⊗ h) − (x ⊗ h)T)(z) = (Tx ⊗ h)z − (x ⊗ T ∗h)z,
‖T(x⊗h)− (x⊗h)T‖ ≤ ‖Tx‖‖h‖+‖x‖‖T ∗h‖ so that T(x⊗h)− (x⊗h)T is bounded on Dom(T).
It follows that x ⊗ h ∈ Dom(ΔT ) for any x ∈ Dom(T) and h ∈ Dom(T ∗).

Let M ∈ Lat(Dom(ΔT )) with 0/=x0 ∈ M. Then (x ⊗ h)(x0) = h(x0)x ∈ M for any
x ∈ Dom(T) and h ∈ Dom(T ∗). Since Dom(T ∗) is dense, there exists h0 ∈ Dom(T ∗) such
that h0(x0)/= 0 by Hahn-Banach Theorem. It follows that x ∈ M for any x ∈ Dom(T) so that
Dom(T) ⊆ M. Thus X = Dom(T) ⊆ M = M. Therefore Dom(ΔT ) is transitive.

For the derivation ΔT , AΔT = {
(

A ΔT (A)
0 A

)
: A ∈ Dom(ΔT )}. It is easy to see that X ⊕

{0} ∈ Lat(AΔT ) and G(T + tI) = {( T(x)+tx
x

)
: x ∈ Dom(T)} ∈ Lat(AΔT ) for any t ∈ C. Let

B2 =
(

B11 B12
B21 B22

)
∈ B(X ⊕ X) and B2 ∈ AlgLat(AΔT ). Then Lat(AΔT ) ⊆ Lat(B2). Since X ⊕ {0} ∈

Lat(AΔT ) ⊆ Lat(B2),
(

B11 B12
B21 B22

)
( x
0 ) =

(
B11x
B21x

)
∈ X ⊕{0} for any x ∈ X. It follows that B21X = {0}.

Thus B21 = 0 and B2 =
(

B11 B12
0 B22

)
. Since G(T + tI) ∈ Lat(AΔT ) ⊆ Lat(B2),

(
B11 B12
0 B22

)(
T(x)+tx

x

)
=(

B11Tx+tB11x+B12x
B22x

)
∈ G(T + tI) for any x ∈ Dom(T) and any t ∈ C. Then B22x ∈ Dom(T) and

B11Tx + tB11x + B12x = (T + tI)B22x for any x ∈ Dom(T) and any t ∈ C. It follows that B11x =
B22x ∈ Dom(T) and B11Tx + B12x = TB22x for all x ∈ Dom(T). Since Dom(T) is dense in X
and B11, B22 ∈ B(X), B11 = B22. So B11(Dom(T)) ⊆ Dom(T) and B12 = TB11 − B11T on Dom(T).
Therefore, B12 = TB11 − B11T is bounded on Dom(T). It follows that B11 = B22 ∈ Dom(ΔT )
and B12 = ΔT (B11). Thus B2 =

(
B11 ΔT (B11)
0 B11

)
∈ AΔT . It follows that AΔT is a reflexive algebra.

Therefore ΔT is a reflexive transitive derivation.
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3. Main Results

In this section, we discuss the quasispatiality of bounded transitive derivations on operator
algebras in a Banach space. The main result is as follows.

Theorem 3.1. Suppose that A is a transitive subalgebra of B(X) and A, the norm closure of A,
contains a nonzero minimal left ideal I. If δ is a bounded reflexive transitive derivation from A into
B(X), then δ is spatial and implemented uniquely, or, more precisely, there exists T ∈ B(X) such that
δ(A) = TA−AT for eachA ∈ A and the implementation T is unique only up to an additive constant.

The proof of Theorem 3.1 will proceed through several lemmas, in each of which we
maintain the same notation. The results similar to the following two lemmas (Lemmas 3.2
and 3.3) can be found in [5]. For the sake of completeness, we outline the proof.

Lemma 3.2. Let δ be a reflexive transitive derivation from Dom(δ)(Dom(δ) = A ⊆ B(X)) into
B(X). Then δ is quasispatial.

Proof. If Imp(δ) is nonempty, then the lemma is trivially true. Therefore, for the rest of the
argument, we assume that Imp(δ) is empty.

First, we have that if δ is a transitive derivation from Dom(δ) into B(X), then

Lat(Aδ) =
{{0} ⊕ {0}, X ⊕ {0}, X ⊕X,G(T) : T ∈ Imp(δ)

}
, (3.1)

where G(T) = {( T(x)
x

)
: x ∈ Dom(T)} is the graph of T .

Indeed, it is easy to see that {0}⊕{0},X⊕{0},X⊕X, and allG(T) are invariant subspaces
of Aδ. For the converse, suppose that M ∈ LatAδ such that M/= {0} ⊕ {0}, M/=X ⊕ {0}, and
M/=X ⊕ X. If there is a vector of form ( x

0 ) ∈ M with x /= 0, then
(
Ax
0

) ∈ M for any A ∈ A. It
follows that X ⊕ {0} ⊆ M by the transitivity of Dom(δ). If M contains no vector of form

(
0
x

)
with x /= 0, thenM = X⊕{0}; otherwise, there is a vector of form

(
0
x

) ∈ Mwith x /= 0, then we
have that M = X ⊕ X. Therefore ( x

0 ) ∈ M implies that x = 0. It follows that there is a closed
operator T such that

M = G(T) =

{(
T(x)

x

)
: x ∈ Dom(T)

}
, T ∈ Imp(δ). (3.2)

As Imp(δ) = ∅, by (3.1),

Alg LatAδ =

{(
A B

0 C

)
: A,B,C ∈ B(X)

}

/=Aδ =

{(
A δ(A)

0 A

)
: A ∈ Dom(δ)

}
.

(3.3)

It is a contradiction to the assumption that δ is reflexive, which shows that

Imp(δ)/= ∅. (3.4)

Therefore δ is quasispatial.
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Lemma 3.3. Let δ be a reflexive transitive derivation from Dom(δ) into B(X). Then δ = δImp(δ).

Proof. By (3.4), Imp(δ)/= ∅. And by (2.4) of [5],

Imp(δ) = Imp
(
δImp(δ)

)
. (3.5)

As both δ and δImp(δ) are transitive derivations, LatAδ = LatAδImp(δ) by (3.1). Since both of
these derivations are reflexive,

Aδ = AlgLatAδ = AlgLatAδImp(δ) = AδImp(δ) . (3.6)

Hence

δ = δImp(δ). (3.7)

Lemma 3.4. Let A be a transitive subalgebra of B(X). If A contains a nonzero minimal left ideal I,
thenA ∩ F(X) is also a transitive subalgebra of B(X).

Proof. We complete the proof step by step.

Step 1. We have that

I2 = {B1B2 : B1, B2 ∈ I}/= {0}. (3.8)

Indeed, suppose that I2 = {0}. Let 0/=A0 ∈ I. ThenAA0 ⊆ I. It follows that (AA0)
2 ⊆

I2 and (AA0)
2
= {0}. Set X0 = {x ∈ X : A(x) = 0 for all A ∈ A}. It is obvious that X0 is anA-

invariant closed subspace of X. Hence X0 = {0} sinceA is a transitive operator algebra. Since

(AA0)
2
= {0},A0AA0(X) ⊆ X0. It follows thatA0AA0(X) = {0} so thatA0AA0 = {0}. We can

choose x0 ∈ X (x0 /= 0) such thatA0(x0)/= 0. It is obvious thatAA0(x0) is anA-invariant linear
manifold of X and AA0(x0)/= {0}. It follows that AA0(x0) is dense in X. However, AA0(x0)
is contained in the null space of A0, A0 = 0, which is a contradiction.

Step 2. Since I2 /= {0}, it follows from Lemma 2.1.5 and Corollary 2.1.6 of [16] that there exists
an idempotent P in A such that I = AP and PAP is a division algebra consisting of scalar
multiples of P (with identity P), that is,

PAP =
{
μP : μ is a complex scalar

}
. (3.9)

Then P is a rank-one operator; that is, there exist x1 ∈ X and f ∈ X∗ such that

P = x1 ⊗ f ∈ A, f(x1) = 1. (3.10)
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Indeed, let x1 : 0/=x1 ∈ X such that Px1 = x1 and letM1 = A(x1) = {A(x1) : A ∈ A}. It
is obvious that M1 /= {0} and M1 is an A-invariant linear manifold of X. Hence M1 is dense
in X. Since PA(x1) = PAP(x1) = μP(x1) = μx1 for any A ∈ A, the restriction P |M1

of P on
M1 has one-dimensional range. As P is bounded, it also has one-dimensional range. Hence
P = x1 ⊗ f , where f is a continuous functional.

Step 3. We have P = x1 ⊗ f ∈ I ⊆ A. AsA is an algebra, the set of rank-one operators

SP = {APB : A,B ∈ A} =
{
Ax1 ⊗ B∗f : A,B ∈ A}

(3.11)

lies inA ∩ F(X). For each 0/=y ∈ X, the linear manifold

My =

{
n∑
i=1

Siy : Si ∈ SP , i = 1, 2, . . . , n, n = 1, 2, . . .

}
(3.12)

is dense in X. Indeed, if My is not dense in X, by Hahn-Banach theorem, there exists 0/= g ∈
X∗ such that g(z) = 0 for all z ∈ My. Hence

0 = g
((
Ax1 ⊗ B∗f

)
y
)
= g

((
B∗f

(
y
))
Ax1

)
= f

(
By

)
g(Ax1) for any A,B ∈ A. (3.13)

If f(By) = 0 for all B ∈ A, then f vanishes on the linear manifold Ay = {By : B ∈ A}.
However, as A is transitive, the manifold Ay is dense in X, so that f = 0. This contradiction
shows that there is B1 ∈ A such that f(B1y)/= 0. Then (3.13) implies that g(Ax1) = 0 for all
A ∈ A. Repeating the above argument, we obtain that g = 0. This contradiction shows that
any manifold My is dense in X. Therefore the algebra A ∩F(X) is transitive.

Lemma 3.5. Suppose that A is a transitive subalgebra of B(X) and A contains a nonzero minimal
left ideal I. Then the operators commuting withA are scalars. More precisely, if T is a closed, densely
defined operator such that A(Dom(T)) ⊆ Dom(T) and ATξ = TAξ for any A ∈ A and any ξ ∈
Dom(T), then T = μI for some complex scalar μ.

Proof. For any y ∈ X, there exists a net of operators {Aλ} ⊆ A such that limλAλ(x1) = y by

the transitivity of A. Then A 	 Aλ(x1 ⊗ f) = Aλ(x1) ⊗ f
‖·‖−−→ y ⊗ f , since P = x1 ⊗ f ∈ A as in

(3.10). It follows that

y ⊗ f ∈ A for any y ∈ X. (3.14)

Suppose that T is a closed, densely defined operator commuting with A. As S = (y ⊗
f) ∈ A for any y ∈ X, then (y⊗f)(ξ) ∈ Dom(T) and (y⊗f)Tξ = T(y⊗f)ξ for any ξ ∈ Dom(T).
Since Dom(T) is dense in X and f /= 0, there is ξ0 ∈ Dom(T) such that f(ξ0)/= 0. So

(
y ⊗ f

)
(ξ0) = f(ξ0)y ∈ Dom(T), f(Tξ0)y = f(ξ0)T

(
y
)
, for any y ∈ X. (3.15)

It follows that Dom(T) = X. Set μ = f(Tξ0)/f(ξ0). Then T = μI, as required.
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Lemma 3.6. Suppose that A is a subalgebra of B(X) and A is its norm closure. Then Lat(A) =
Lat(A).

Proof. Clearly, Lat(A) ⊆ Lat(A). Conversely, letM ∈ Lat(A). For any B ∈ A, there exists a net

of operators {Aλ} ⊆ A such that Aλ
‖·‖−−→ B. Then Aλx ∈ M for any x ∈ M. Since Aλx → Bx

and M is a closed subspace of X, Bx ∈ M. It follows that M ∈ Lat(B) so that M ∈ Lat(A).
Therefore Lat(A) ⊆ Lat(A). The Lemma follows.

Let A be a subalgebra of B(X) and δ be a bounded derivation from A (A = Dom(δ))

into B(X). For any B ∈ A, there exists a net of operators {Aλ} ⊆ A such thatAλ
‖·‖−−→ B. If {Aλ}

is a uniformly convergent net in A; then {δ(Aλ)} is also a uniformly convergent net in B(X)
since ‖δ(Aλ1) − δ(Aλ2)‖ ≤ ‖δ‖‖Aλ1 −Aλ2‖ for any indexes λ1, λ2. Also, if two nets of operators
{A(1)

λ
}, {A(2)

λ
} in A converge uniformly to the same limit, then {δ(A(1)

λ
)}, {δ(A(2)

λ
)} converge

uniformly to the same limit, since ‖δ(A(1)
λ
) − δ(A(2)

λ
)‖ ≤ ‖δ‖‖A(1)

λ
− A

(2)
λ
‖. Therefore a linear

map δ can be unambiguously defined by

Dom
(
δ
)
= Dom(δ) = A, δ(B) = lim

λ
δ(Aλ) (3.16)

for any B ∈ A and any net {Aλ} in A such that Aλ
‖·‖−−→ B, where δ(B) is the limit of δ(Aλ) in

the operator norm topology. It is obvious that ‖δ‖ = ‖δ‖ if δ is bounded.

Proposition 3.7. Let δ be a bounded transitive derivation from A(A = Dom(δ)) into B(X). Then
δ is a bounded transitive derivation fromA into B(X) and

Imp
(
δ
)
= Imp(δ). (3.17)

Proof. Since A is transitive, A is also transitive. It is obvious that δ is a linear map. For any

B1, B2 ∈ A, there are two nets of operators {A(1)
λ
}, {A(2)

λ
} in A such that A(i)

λ

‖·‖−−→ Bi(i = 1, 2).

Then A
(1)
λ A

(2)
λ

‖·‖−−→ B1B2 and

δ(B1B2) = lim
λ

δ
(
A

(1)
λ
A

(2)
λ

)
= lim

λ
δ
(
A

(1)
λ

)
A

(2)
λ

+ lim
λ

A
(1)
λ
δ
(
A

(2)
λ

)
= δ(B1)B2 + B1δ(B2).

(3.18)

It follows that the linear map δ is a transitive derivation from A into B(X).
By (2.2), Aδ = {

(
A δ(A)
0 A

)
: A ∈ A} and Aδ = {

(
B δ(B)
0 B

)
: B ∈ A}. So that Aδ = Aδ by

(3.16) and Lat(Aδ) = Lat(Aδ) by Lemma 3.6. By (3.1),

Lat(Aδ) =
{{0} ⊕ {0}, X ⊕ {0}, X ⊕X,G(F) : F ∈ Imp(δ)

}
,

Lat
(Aδ

)
=
{
{0} ⊕ {0}, X ⊕ {0}, X ⊕X,G(F1) : F1 ∈ Imp

(
δ
)}

.
(3.19)

It follows that Imp(δ) = Imp(δ).
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Proof of Theorem 3.1. By (3.4), Imp(δ)/= ∅. Suppose that T ∈ Imp(δ). Then T is a closed, densely
defined operator on X and

{(
T + μI

)
: μ is a complex scalar

} ⊆ Imp(δ). (3.20)

Let δ0 = 0 be the derivation (with the same domain A of δ) from A into B(X), that is,
δ0(A) = 0 for any A ∈ A. If T0 ∈ Imp(δ0) with domain Dom(T0), then T0 ∈ Imp(δ0) by (3.17),
and

A(Dom(T0)) ⊆ Dom(T0), δ0(A)x = (T0A −AT0)x for any A ∈ A, x ∈ Dom(T0),
(3.21)

that is, T0Ax = AT0x for any x ∈ Dom(T0). Then T0 = μI for some scalar μ by Lemma 3.5. It
follows that

Imp(δ0) =
{
μI : μ is a complex scalar

}
. (3.22)

Let T1 ∈ Imp(δ) be any closed, densely defined operators implementing δ. Then T1 ∈
Imp(δ) by (3.17). Then Dom(T1) is a nonzero Dom(δ)-invariant linear manifold ofX by (1.3);
that is, Dom(T1) is a nonzero A-invariant linear manifold of X. Therefore A(Dom(T1)) ⊆
Dom(T1) for any A ∈ A. If y ∈ X, y ⊗ f ∈ A by (3.14) and (y ⊗ f)ξ = f(ξ)y ∈ Dom(T1)
for any ξ ∈ Dom(T1). Since Dom(T1) is dense in X and f /= 0, there is ξ0 ∈ Dom(T1) such that
f(ξ0)/= 0. So y ∈ Dom(T1). Since y is arbitrary chosen, it follows that Dom(T1) = X, the whole
space. Then Dom(T) = X also holds since T1 is an arbitrary implementation of δ. It is obvious
that Dom(T1 − T) = (Dom(T) ∩ Dom(T1)) = X. Therefore the operator T1 − T is everywhere
defined.

Set T2 = T1 − T . Then T2 is closable.
Indeed, suppose that ξn ∈ X, ξn → 0 and T2(ξn) → η. Since T, T1 ∈ Imp(δ), δ(A)x =

(T1A−AT1)x and δ(A)x = (TA−AT)x for anyA ∈ Dom(δ) and any x ∈ X. So T2Aξn = AT2ξn
for anyA ∈ A. As P = x1⊗f ∈ A by (3.10) andA is an algebra, T2PAξn = PAT2ξn for any A ∈
A. Then

f
(
Aη

)
x1 =

(
x1 ⊗ f

)
Aη = PAη = lim

n→∞
PAT2ξn = lim

n→∞
T2PAξn

= lim
n→∞

T2
(
x1 ⊗ f

)
Aξn = lim

n→∞
f(Aξn)T2x1 = 0

(3.23)

for anyA ∈ A. Since x1 /= 0, f(Aη) = 0 for anyA ∈ A. Thus f vanishes on the linear manifold
Aη = {Aη : A ∈ A}. The transitivity of A assures that Aη = {0} or Aη is dense in X. Since
f /= 0,Aη = {0} and η = 0.

It follows that T2 is a closable operator with domain Dom(T2) = X, the whole space. So
that T2 is a closed operator. Clearly, T2 = T1 − T ∈ Imp(δ0). Then T1 − T = μI for some scalar μ
by (3.22), that is, T1 = T + μI. It follows that

Imp(δ) =
{(

T + μI
)
: μ is a complex scalar

}
. (3.24)
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Since ΔT = ΔT+μI , by (3.7),

δ = δImp(δ) = ΔT . (3.25)

Since T is closed and Dom(T) = X, T is bounded by the closed graph theorem. It follows from
(2.4), (3.24), and (3.25) that δ(A) = TA − AT for each A ∈ A and the implementation T is
unique only up to an additive constant.

4. Applications

Suppose that A is a subalgebra of B(X) and δ is a derivation from A (A = Dom(δ)) into
B(X). We can define the adjoint δ∗ of δ by

Dom(δ∗) = (A)∗ = {A∗ : A ∈ A}, δ∗(A∗) = (δ(A))∗ for any A ∈ A. (4.1)

Lemma 4.1. Let δ be a derivation fromA(A = Dom(δ)) into B(X).

(1) The adjoint δ∗ of δ is a derivation fromA∗ into B(X∗).

(2) Furthermore, suppose that X is a reflexive Banach space and A is a subalgebra of B(X).
Then δ∗ is a reflexive (resp., transitive) derivation from A∗ into B(X∗) if and only if δ is
a reflexive (resp., transitive) derivation from A into B(X). And Imp(δ∗) = {−T ∗ : T ∈
Imp(δ)}.

Proof. (1) It is obvious that δ∗ is a linear map fromA∗ into B(X∗). If A∗
1, A

∗
2 ∈ Dom(δ∗), then

δ∗(A∗
1A

∗
2
)
= δ∗((A2A1)∗

)
= (δ(A2A1))

∗ = (δ(A2)A1 +A2δ(A1))
∗

= A∗
1(δ(A2))

∗ + (δ(A1))
∗A∗

2 = A∗
1

(
δ∗(A∗

2
))

+
(
δ∗(A∗

1

))
A∗

2.
(4.2)

It follows that δ∗ is a derivation.
(2) Suppose that δ is transitive. Then A is transitive and LatA = {X, {0}}. Since M ∈

LatA if and only if M⊥ ∈ Lat(A∗) for any A ∈ B(X),

Lat(Dom(δ∗)) = Lat(A∗) =
{
M⊥ : M ∈ LatA

}
=
{
{0}⊥, X⊥

}
= {X∗, {0}}. (4.3)

We have that Dom(δ∗) is transitive, that is, δ∗ is transitive.
Conversely, suppose that δ∗ is transitive. We obtain, as above, that δ∗∗ is transitive.

Since X is a reflexive Banach space, A∗∗ = A for any bounded operator A ∈ B(X). It follows
from (4.1) that δ = δ∗∗ is transitive by the definition of δ∗.
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Set J =
(
0 I
I 0

)
, where I is the identity operator on X∗ and 0 is the zero operator on X∗.

Since

Aδ∗ =

{(
A∗ δ∗(A∗)

0 A∗

)
: A ∈ A

}
=

{
J

(
A∗ 0

δ(A)∗ A∗

)
J : A ∈ A

}

=

{
J

(
A δ(A)

0 A

)∗

J : A ∈ A
}

= J(Aδ)∗J = J−1(Aδ)∗J,

(4.4)

the two operator algebras Aδ∗ and (Aδ)
∗ are similar. We have that

Lat(Aδ∗) = J
(
Lat

(
(Aδ)∗

))
= J(Lat(Aδ))⊥. (4.5)

It is obvious that

(X ⊕X)⊥ = {0} ⊕ {0}, ({0} ⊕ {0})⊥ = X∗ ⊕X∗,

(X ⊕ {0})⊥ = {0} ⊕X∗, J({0} ⊕X∗) = X∗ ⊕ {0}.
(4.6)

If T ∈ Imp(δ),
(

g
−T∗(g)

)
∈ (G(T))⊥ for any g ∈ Dom(T ∗), since

G(T) =

{(
T(x)

x

)
: x ∈ Dom(T)

}
, g(T(x)) +

(−T ∗(g))(x) = 0 for any x ∈ Dom(T).

(4.7)

Conversely, if g, h ∈ X∗ such that
( g
h

) ∈ (G(T))⊥, then

g(Tx) + h(x) = 0 for any x ∈ Dom(T). (4.8)

So that the functional x 
→ g(Tx)(= −h(x)) is a bounded functional on Dom(T). Therefore
g ∈ Dom(T ∗) and h = (−T ∗(g)) holds on Dom(T) by (4.8). As (−T ∗(g)) and h are bounded
functionals on X and Dom(T) is dense in X, h = (−T ∗(g)) on X. It follows that

(G(T))⊥ =

{(
g

−T ∗(g)
)

: g ∈ Dom(T ∗)

}
,

J(G(T))⊥ =

{(−T ∗(g)
g

)
: g ∈ Dom(T ∗)

}
= G(−T ∗).

(4.9)

Hence

Lat(Aδ∗) =
{{0} ⊕ {0}, X∗ ⊕ {0}, X∗ ⊕X∗, G(−T ∗) : T ∈ Imp(δ)

}
. (4.10)
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It follows from (3.4) that

Imp(δ∗) =
{−T ∗ : T ∈ Imp(δ)

}
. (4.11)

Suppose that δ is reflexive. Then Aδ is a reflexive operator algebra on X ⊕ X. Since
Aδ∗ = J−1(Aδ)

∗J , the two operator algebras Aδ∗ and (Aδ)
∗ are similar. It follows that Aδ∗ is

reflexive if and only if (Aδ)
∗ is reflexive. Since Aδ is reflexive, (Aδ)

∗ is also reflexive by the
reflexivity of the Banach space X ⊕X. ThusAδ∗ is reflexive, that is, δ∗ is reflexive.

Conversely, suppose that δ∗ is reflexive. We obtain, as above, that δ∗∗ is reflexive. It
follows that δ = δ∗∗ is reflexive.

Theorem 4.2. Suppose that X is a reflexive Banach space. Let A be a transitive subalgebra of B(X)
and letA contain a nonzero minimal right ideal I. If δ is a bounded reflexive transitive derivation from
A into B(X), then δ is spatial and implemented uniquely, or more precisely, there exists T ∈ B(X)
such that δ(A) = TA−AT for eachA ∈ A, and the implementation T is unique only up to an additive
constant.

Proof. Consider the derivation δ∗. δ∗ is a bounded reflexive transitive derivation from A∗ =
{A∗ : A ∈ A} into B(X∗) by Lemma 4.1.

Set I∗ = {B∗ : B ∈ I}. Since I is a right ideal ofA, BA ∈ I for any B ∈ I andA ∈ A. For
any A∗ ∈ (A)∗, B∗ ∈ I∗, that is, A ∈ A, B ∈ I, we have that BA ∈ I. Then A∗B∗ = (BA)∗ ∈ I∗.
It follows that I∗ is a left ideal of (A)∗. If there exists a nonzero left ideal I1 of (A)∗ included
in I∗, then I∗

1 is a nonzero right ideal of A included in I. Thus I∗
1 = I and I1 = I∗. It follows

that I∗ is a minimal left ideal of (A)∗ = A∗.
By (3.24), there exists a bounded operator T1 ∈ B(X∗) such that

Imp(δ∗) =
{(

T1 + μI
)
: μ is a complex scalar

}
, (4.12)

where I is the identity operator on X∗. By (4.11),

Imp(δ) = Imp(δ∗∗) =
{(−T ∗

1 − μI
)
: μ is a complex scalar

}
, (4.13)

where I is the identity operator on X. Set T = −T ∗
1 . Then T is bounded with Dom(T) = X. By

(3.7) and (4.13), δ = δImp(δ) = ΔT . It follows from (2.4) that δ(A) = TA −AT for each A ∈ A,
and the implementation T is unique only up to an additive constant.

Corollary 4.3 (Proposition 2.11, [5]). Suppose thatA is a transitive subalgebra of B(H). Let δ be a
bounded reflexive transitive derivation fromA into B(H). If C(H) ⊆ A, then there exists T ∈ B(H)
such that δ(A) = TA−AT for eachA ∈ A, and the implementation T is unique only up to an additive
constant.

Proof. Since C(H) ⊆ A, for a fixed vector f ∈ H,

I =
{
x ⊗ f | x ∈ H

}
(4.14)
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is a minimal left ideal ofA, where x⊗f is the rank-one operator onH with (x⊗f)h = (h, f)x
for h ∈ H. By Theorem 3.1, there exists T ∈ B(H) such that δ(A) = TA −AT for each A ∈ A,
and the implementation T is unique only up to an additive constant.

Remark 4.4. In a Banach space without the approximation property (there exists such space
as this, e.g., [17]), not all compact operators can be approximated by finite-rank operators
in the norm operator topology. Therefore, Theorems 3.1 and 4.2 of this paper improve [5,
Proposition 2.11].
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