
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2011, Article ID 814962, 16 pages
doi:10.1155/2011/814962

Research Article
Conjugacy of Self-Adjoint Difference Equations of
Even Order

Petr Hasil

Department of Mathematics, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
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We study oscillation properties of 2n-order Sturm-Liouville difference equations. For these
equations, we show a conjugacy criterion using the p-criticality (the existence of linear dependent
recessive solutions at ∞ and −∞). We also show the equivalent condition of p-criticality for one
term 2n-order equations.

1. Introduction

In this paper, we deal with 2n-order Sturm-Liouville difference equations and operators

L
(
y
)
k =

n∑

ν=0
(−Δ)ν

(
r
[ν]
k

Δνyk+n−ν
)
= 0, r

[n]
k

> 0, k ∈ Z, (1.1)

where Δ is the forward difference operator, that is, Δyk = yk+1 − yk, and r[ν], ν = 0, . . . , n, are
real-valued sequences. The main result is the conjugacy criterion which we formulate for the
equation L(y)k + qkyk+n = 0, that is viewed as a perturbation of (1.1), and we suppose that
(1.1) is at least p-critical for some p ∈ {1, . . . , n}. The concept of p-criticality (a disconjugate
equation is said to be p-critical if and only if it possesses p solutions that are recessive both
at∞ and −∞, see Section 3)was introduced for second-order difference equations in [1], and
later in [2] for (1.1). For the continuous counterpart of the used techniques, see [3–5] from
where we get an inspiration for our research.

The paper is organized as follows. In Section 2, we recall necessary preliminaries.
In Section 3, we recall the concept of p-criticality, as introduced in [2], and show the first
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result—the equivalent condition of p-criticality for the one term difference equation

Δn(rkΔnyk

)
= 0 (1.2)

(Theorem 3.4). In Section 4 we show the conjugacy criterion for equation

(−Δ)n
(
rkΔnyk

)
+ qkyk+n = 0, (1.3)

and Section 5 is devoted to the generalization of this criterion to the equation with the middle
terms

n∑

ν=0
(−Δ)ν

(
r
[ν]
k Δνyk+n−ν

)
+ qkyk+n = 0. (1.4)

2. Preliminaries

The proof of our main result is based on equivalency of (1.1) and the linear Hamiltonian
difference systems

Δxk = Axk+1 + Bkuk, Δuk = Ckxk+1 −ATuk, (2.1)

whereA,Bk, and Ck are n×nmatrices of which Bk and Ck are symmetric. Therefore, we start
this section recalling the properties of (2.1), which we will need later. For more details, see
the papers [6–11] and the books [12, 13].

The substitution

x
[y]
k

=

⎛

⎜⎜⎜⎜⎜⎜
⎝

yk+n−1

Δyk+n−2
...

Δn−1yk

⎞

⎟⎟⎟⎟⎟⎟
⎠

, u
[y]
k

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

n∑

ν=1

(−Δ)ν−1
(
r
[ν]
k Δνyk+n−ν

)

...

−Δ
(
r
[n]
k

Δnyk

)
+ r

[n−1]
k

Δn−1yk+1

r
[n]
k

Δnyk

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(2.2)

transforms (1.1) to linear Hamiltonian system (2.1) with the n × n matrices A,Bk, and Ck

given by

A =
(
aij

)n
i,j=1, aij =

⎧
⎨

⎩

1, if j = i + 1, i = 1, . . . , n − 1,

0, elsewhere,

Bk = diag

⎧
⎨

⎩
0, . . . , 0,

1

r
[n]
k

⎫
⎬

⎭
, Ck = diag

{
r
[0]
k

, . . . , r
[n−1]
k

}
.

(2.3)

Then, we say that the solution (x, u) of (2.1) is generated by the solution y of (1.1).
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Let us consider, together with system (2.1), the matrix linear Hamiltonian system

ΔXk = AXk+1 + BkUk, ΔUk = CkXk+1 −ATUk, (2.4)

where the matrices A,Bk, and Ck are also given by (2.3). We say that the matrix solution
(X,U) of (2.4) is generated by the solutions y[1], . . . , y[n] of (1.1) if and only if its columns
are generated by y[1], . . . , y[n], respectively, that is, (X,U) = (x[y1], . . . , x[yn], u[y1], . . . , u[yn]).
Reversely, if we have the solution (X,U) of (2.4), the elements from the first line of the
matrix X are exactly the solutions y[1], . . . , y[n] of (1.1). Now, we can define the oscillatory
properties of (1.1) via the corresponding properties of the associated Hamiltonian system
(2.1)with matricesA,Bk, and Ck given by (2.3), for example, (1.1) is disconjugate if and only
if the associated system (2.1) is disconjugate, the system of solutions y[1], . . . , y[n] is said to be
recessive if and only if it generates the recessive solution X of (2.4), and so forth. Therefore,
we define the following properties just for linear Hamiltonian systems.

For system (2.4), we have an analog of the continuous Wronskian identity. Let (X,U)
and (X̃, Ũ) be two solutions of (2.4). Then,

XT
k Ũk −UT

k X̃k ≡ W (2.5)

holds with a constant matrix W . We say that the solution (X,U) of (2.4) is a conjoined basis, if

XT
kUk ≡ UT

kXk, rank

(
X

U

)

= n. (2.6)

Two conjoined bases (X,U), (X̃, Ũ) of (2.4) are called normalized conjoined bases of (2.4) if
W = I in (2.5) (where I denotes the identity operator).

System (2.1) is said to be right disconjugate in a discrete interval [l,m], l,m ∈ Z, if the
solution

(
X
U

)
of (2.4) given by the initial condition Xl = 0, Ul = I satisfies

kerXk+1 ⊆ kerXk, XkX
†
k+1(I −A)−1Bk ≥ 0, (2.7)

for k = l, . . . , m − 1, see [6]. Here ker, †, and ≥ stand for kernel, Moore-Penrose generalized
inverse, and nonnegative definiteness of the matrix indicated, respectively. Similarly, (2.1) is
said to be left disconjugate on [l,m], if the solution given by the initial condition Xm = 0,
Um = −I satisfies

kerXk ⊆ kerXk+1, Xk+1X
†
k
Bk(I −A)T−1 ≥ 0, k = l, . . . , m − 1. (2.8)

System (2.1) is disconjugate on Z, if it is right disconjugate, which is the same as left
disconjugate, see [14, Theorem 1], on [l,m] for every l,m ∈ Z, l < m. System (2.1) is said to be
nonoscillatory at ∞ (nonoscillatory at −∞), if there exists l ∈ Z such that it is right disconjugate
on [l,m] for every m > l (there exists m ∈ Z such that (2.1) is left disconjugate on [l,m] for
every l < m).
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We call a conjoined basis
(

X̃
Ũ

)
of (2.4) the recessive solution at ∞, if the matrices X̃k are

nonsingular, X̃kX̃
−1
k+1(I − Ak)

−1Bk ≥ 0 (both for large k), and for any other conjoined basis
(
X
U

)
, for which the (constant) matrix XTŨ −UTX̃ is nonsingular, we have

lim
k→∞

X−1
k X̃k = 0. (2.9)

The solution (X,U) is called the dominant solution at ∞. The recessive solution at ∞ is
determined uniquely up to a right multiple by a nonsingular constant matrix and exists
whenever (2.4) is nonoscillatory and eventually controllable. (System is said to be eventually
controllable if there exist N,κ ∈ N such that for any m ≥ N the trivial solution ( x

u ) =
(
0
0

)

of (2.1) is the only solution for which xm = xm+1 = · · · = xm+κ = 0.) The equivalent
characterization of the recessive solution

(
X̃
Ũ

)
of eventually controllable Hamiltonian

difference systems (2.1) is

lim
k→∞

(∑
kX̃−1

j+1(I −A)−1BjX̃
T−1
j

)−1
= 0, (2.10)

see [12]. Similarly, we can introduce the recessive and the dominant solutions at −∞. For
related notions and results for second-order dynamic equations, see, for example, [15, 16].

We say that a pair (x, u) is admissible for system (2.1) if and only if the first equation in
(2.1) holds.

The energy functional of (1.1) is given by

F(
y
)
:=

∞∑

k=−∞

n∑

ν=0

r
[ν]
k

(
Δνyk+n−ν

)2
. (2.11)

Then, for admissible (x, u), we have

F(
y
)
=

∞∑

k=−∞

n∑

ν=0

r
[ν]
k

(
Δνyk+n−ν

)2

=
∞∑

k=−∞

⎡

⎣
n−1∑

ν=0

r
[ν]
k

(
Δνyk+n−ν

)2 +
1

r
[n]
k

(
r
[n]
k

Δnyk

)2

⎤

⎦

=
∞∑

k=−∞

[
xT
k+1Ckxk+1 + uT

kBkuk

]
=: F(x, u).

(2.12)

To prove our main result, we use a variational approach, that is, the equivalency of
disconjugacy of (1.1) and positivity of F(x, u); see [6].

Now, we formulate some auxiliary results, which are used in the proofs of Theorems
3.4 and 4.1. The following Lemma describes the structure of the solution space of

Δn(rkΔnyk

)
= 0, rk > 0. (2.13)
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Lemma 2.1 (see [17, Section 2]). Equation (2.13) is disconjugate on Z and possesses a system of
solutions y[j], ỹ[j], j = 1, . . . , n, such that

y[1] ≺ · · · ≺ y[n] ≺ ỹ[1] ≺ · · · ≺ ỹ[n] (2.14)

as k → ∞, where f ≺ g as k → ∞ for a pair of sequences f, g means that limk→∞(fk/gk) = 0.
If (2.14) holds, the solutions y[j] form the recessive system of solutions at ∞, while ỹ[j] form the
dominant system, j = 1, . . . , n. The analogous statement holds for the ordered system of solutions as
k → −∞.

Now, we recall the transformation lemma.

Lemma 2.2 (see [14, Theorem 4]). Let hk > 0, L(y) =
∑n

ν=0(−Δ)ν(r[ν]k Δνyk+n−ν) and consider
the transformation yk = hkzk. Then, one has

hk+nL
(
y
)
=

n∑

ν=0
(−Δ)ν

(
R

[ν]
k

Δνzk+n−ν
)
, (2.15)

where

R
[n]
k

= hk+nhkr
[n]
k

, R
[0]
k

= hk+nL(h), (2.16)

that is, y solves L(y) = 0 if and only if z solves the equation

n∑

ν=0
(−Δ)ν

(
R

[ν]
k

Δνzk+n−ν
)
= 0. (2.17)

The next lemma is usually called the second mean value theorem of summation calculus.

Lemma 2.3 (see [17, Lemma 3.2]). Let n ∈ N and the sequence ak be monotonic for k ∈ [K + n −
1, L+ n− 1] (i.e., Δak does not change its sign for k ∈ [K + n− 1, L+ n− 2]). Then, for any sequence
bk there exist n1, n2 ∈ [K,L − 1] such that

L−1∑

j=K

an+jbj ≤ aK+n−1
n1−1∑

i=K

bi + aL+n−1
L−1∑

i=n1

bi,

L−1∑

j=K

an+jbj ≥ aK+n−1
n2−1∑

i=K

bi + aL+n−1
L−1∑

i=n2

bi.

(2.18)

Now, let us consider the linear difference equation

yk+n + a
[n−1]
k yk+n−1 + · · · + a

[0]
k yk = 0, (2.19)

where k ≥ n0 for some n0 ∈ N and a
[0]
k /= 0, and let us recall the main ideas of [18] and [19,

Chapter IX].
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An integerm > n0 is said to be a generalized zero ofmultiplicity k of a nontrivial solution
y of (2.19) if ym−1 /= 0, ym = ym+1 = · · · = ym+k−2 = 0, and (−1)kym−1ym+k−1 ≥ 0. Equation (2.19)
is said to be eventually disconjugate if there exists N ∈ N such that no non-trivial solution of
this equation has n or more generalized zeros (counting multiplicity) on [N,∞).

A system of sequences u[1]
k
, . . . , u

[n]
k

is said to form the D-Markov system of sequences
for k ∈ [N,∞) if Casoratians

C
(
u[1], . . . , u[j]

)

k
=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

u
[1]
k

· · · u
[j]
k

u
[1]
k+1 · · · u

[j]
k+1

...
...

u
[1]
k+j−1 · · · u

[j]
k+j−1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, j = 1, . . . , n (2.20)

are positive on (N + j,∞).

Lemma 2.4 (see [19, Theorem 9.4.1]). Equation (2.19) is eventually disconjugate if and only if
there exist N ∈ N and solutions y[1], . . . , y[n] of (2.19) which form a D-Markov system of solutions
on (N,∞). Moreover, this system can be chosen in such a way that it satisfies the additional condition

lim
k→∞

y
[i]
k

y
[i+1]
k

= 0, i = 1, . . . , n − 1. (2.21)

3. Criticality of One-Term Equation

Suppose that (1.1) is disconjugate on Z and let ŷ[i] and ỹ[i], i = 1, . . . , n, be the recessive
systems of solutions of L(y) = 0 at −∞ and ∞, respectively. We introduce the linear space

H = Lin
{
ŷ[1], . . . , ŷ[n]

}
∩ Lin

{
ỹ[1], . . . , ỹ[n]

}
. (3.1)

Definition 3.1 (see [2]). Let (1.1) be disconjugate on Z and let dimH = p ∈ {1, . . . , n}. Then,
we say that the operator L (or (1.1)) is p-critical on Z. If dimH = 0, we say that L is subcritical
on Z. If (1.1) is not disconjugate on Z, that is, L /≥ 0, we say that L is supercritical on Z.

To prove the result in this section, we need the following statements, where we use the
generalized power function

k(0) = 1, k(i) = k(k − 1) · · · (k − i + 1), i ∈ N. (3.2)

For reader’s convenience, the first statement in the following lemma is slightly more general
than the corresponding one used in [2] (it can be verified directly or by induction).
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Lemma 3.2 (see [2]). The following statements hold.
(i) Let zk be any sequence,m ∈ {0, . . . , n}, and

yk :=
k−1∑

j=0

(
k − j − 1

)(n−1)
zj , (3.3)

then

Δmyk =

⎧
⎪⎪⎨

⎪⎪⎩

(n − 1)(m)
k−1∑

j=0

(
k − j − 1

)(n−1−m)
zj , m ≤ n − 1,

(n − 1)!zk, m = n.

(3.4)

(ii) The generalized power function has the binomial expansion

(
k − j

)(n) =
n∑

i=0
(−1)i

(
n

i

)

k(n−i)(j + i − 1
)(i)

. (3.5)

We distinguish two types of solutions of (2.13). The polynomial solutions k(i), i = 0, . . . , n − 1,
for which Δnyk = 0, and nonpolynomial solutions

k−1∑

j=0

(
k − j − 1

)(n−1)
j(i)r−1j , i = 0, . . . , n − 1, (3.6)

for which Δnyk /= 0. (Using Lemma 3.2(i) we obtain Δnyk = (n − 1)!k(i)r−1
k
.)

Now, we formulate one of the results of [20].

Proposition 3.3 (see [20, Theorem 4]). If for some m ∈ {0, . . . , n − 1}

0∑

k=−∞

[
k(n−m−1)

]2
r−1k = ∞ =

∞∑

k=0

[
k(n−m−1)

]2
r−1k , (3.7)

then

Lin
{
1, . . . , k(m)

}
⊆ H, (3.8)

that is, (2.13) is at least (m + 1)-critical on Z.

Now, we show that (3.7) is also sufficient for (2.13) to be at least (m + 1)-critical.

Theorem 3.4. Letm ∈ {0, . . . , n − 1}. Equation (2.13) is at least (m + 1)-critical if and only if (3.7)
holds.
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Proof. Let V+ and V− denote the subspaces of the solution space of (2.13) generated by the
recessive system of solutions at ∞ and −∞, respectively. Necessity of (3.7) follows directly
from Proposition 3.3. To prove sufficiency, it suffices to show that if one of the sums in (3.7) is
convergent, then {1, . . . , k(m)} /⊆ V+ ∩ V−. We show this statement for the sum

∑∞. The other
case is proved similarly, so it will be omitted. Particularly, we show

∞∑

k=0

[
k(n−m−1)

]2
r−1k < ∞ =⇒ k(m) /∈ V+. (3.9)

Let us denote p := n − m − 1, and let us consider the following nonpolynomial solutions of
(2.13):

y
[�]
k

=
k−1∑

j=0

(
k − j − 1

)(n−1)
j(p+�−1)r−1j −

p∑

i=0

⎡

⎣(−1)i
(
n − 1

i

)

(k − 1)(n−1−i)
∞∑

j=0

j(p+�−1)
(
j + i − 1

)(i)
r−1j

⎤

⎦,

(3.10)

where � = 1 − p, . . . ,m + 1. By Stolz-Cesàro theorem, since (using Lemma 3.2(i)) Δny
[�]
k

=
(n − 1)!k(p+�−1)r−1k , these solutions are ordered, that is, y[i] ≺ y[i+1], i = 1 − p, . . . ,m, as well as
the polynomial solutions, that is, k(i) ≺ k(i+1), i = 0, . . . , n − 2.

By some simple calculation and by Lemma 3.2 (at first, we use (i), and at the end, we
use (ii)), we have

Δmy
[1]
k

=
(n − 1)!

(n −m − 1)!

k−1∑

j=0

(
k − j − 1

)(n−m−1)
j(p)r−1j

−
p∑

i=0

⎡

⎣(−1)i
(
n − 1

i

)
(n − 1 − i)!

(n −m − 1 − i)!
(k − 1)(n−m−1−i)

∞∑

j=0

j(p)
(
j + i − 1

)(i)
r−1j

⎤

⎦

=
(n − 1)!

p!

k−1∑

j=0

(
k − j − 1

)(p)
j(p)r−1j

−
p∑

i=0

⎡

⎣(−1)i (n − 1)!(n − 1 − i)!
(n − 1 − i)!i!

(
p − i

)
!
(k − 1)(p−i)

∞∑

j=0

j(p)
(
j + i − 1

)(i)
r−1j

⎤

⎦

=
(n − 1)!

p!

⎧
⎨

⎩

k−1∑

j=0

(
k − j − 1

)(p)
j(p)r−1j −

p∑

i=0

⎡

⎣(−1)i
(
p

i

)

(k − 1)(p−i)
∞∑

j=0

j(p)
(
j + i − 1

)(i)
r−1j

⎤

⎦

⎫
⎬

⎭

=
(n − 1)!

p!

⎡

⎣
k−1∑

j=0

(
k − j − 1

)(p)
j(p)r−1j −

∞∑

j=0

(
k − j − 1

)(p)
j(p)r−1j

⎤

⎦



Abstract and Applied Analysis 9

= − (n − 1)!
p!

∞∑

j=k

(
k − j − 1

)(p)
j(p)r−1j

= (−1)p+1 (n − 1)!
p!

∞∑

j=k

(
j + 1 − k

)(p)
j(p)r−1j ,

∞∑

j=k

(
j + 1 − k

)(p)
j(p)r−1j ≤

∞∑

j=k

[
j(p)

]2
r−1j .

(3.11)

Hence, from this and by Stolz-Cesàro theorem, we get

lim
k→∞

y
[1]
k

k(m)
=

1
m!

lim
k→∞

Δmy
[1]
k

= 0, (3.12)

thus y[1]
k ≺ k(m). We obtained that {1, k, . . . , k(m−1), y[1−p], . . . , y[1]} ≺ k(m), which means that

we have n solutions less than k(m), therefore k(m) /∈ V+ and (2.13) is at most m-critical.

4. Conjugacy of Two-Term Equation

In this section, we show the conjugacy criterion for two-term equation.

Theorem 4.1. Let n > 1, qk be a real-valued sequence, and let there exist an integerm ∈ {0, . . . , n−1}
and real constants c0, . . . , cm such that (2.13) is at least (m + 1)-critical and the sequence hk :=
c0 + c1k + · · · + cmk

(m) satisfies

lim sup
K↓−∞, L↑∞

L∑

k=K

qkh
2
k+n ≤ 0. (4.1)

If q /≡ 0, then

(−Δ)n
(
rkΔnyk

)
+ qkyk+n = 0 (4.2)

is conjugate on Z.

Proof. We prove this theorem using the variational principle; that is, we find a sequence y ∈
�20(Z) such that the energy functional F(y) =

∑∞
k=−∞[rk(Δ

nyk)
2 + qky

2
k+n] < 0.

At first, we estimate the first term of F(y). To do this, we use the fact that this term is
an energy functional of (2.13). Let us denote it by F̃ that is,

F̃
(
y
)
=

∞∑

k=−∞
rk
(
Δnyk

)2
. (4.3)
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Using the substitution (2.2), we find out that (2.13) is equivalent to the linear Hamiltonian
system (2.1)with the matrix Ck ≡ 0; that is,

Δxk = Akxk+1 + Bkuk, Δuk = −ATuk, (4.4)

and to the matrix system

ΔXk = AkXk+1 + BkUk, ΔUk = −ATUk. (4.5)

Now, let us denote the recessive solutions of (4.5) at −∞ and ∞ by (X−, U−) and (X+, U+),
respectively, such that the first m + 1 columns of X+ and X− are generated by the sequences
1, k, . . . , k(m). LetK,L,M, andN be arbitrary integers such thatN −M > 2n,M−L > 2n, and
L −K > 2n (some additional assumptions on the choice ofK,L,M,N will be specified later),
and let (x[f], u[f]) and (x[g], u[g]) be the solutions of (4.4) given by the formulas

x
[f]
k

= X−
k

⎛

⎝
k−1∑

j=K

B−
j

⎞

⎠

⎛

⎝
L−1∑

j=K

B−
j

⎞

⎠

−1
(
X−

L

)−1
x
[h]
L ,

u
[f]
k

= U−
k

⎛

⎝
k−1∑

j=K

B−
j

⎞

⎠

⎛

⎝
L−1∑

j=K

B−
j

⎞

⎠

−1
(
X−

L

)−1
x
[h]
L +

(
X−

k

)T−1
⎛

⎝
L−1∑

j=K

B−
j

⎞

⎠

−1
(
X−

L

)−1
x
[h]
L ,

x
[g]
k

= X+
k

⎛

⎝
N−1∑

j=k

B+
j

⎞

⎠

⎛

⎝
N−1∑

j=M

B+
j

⎞

⎠

−1
(
X+

M

)−1
x
[h]
M ,

u
[g]
k

= U+
k

⎛

⎝
N−1∑

j=k

B+
j

⎞

⎠

⎛

⎝
N−1∑

j=M

B+
j

⎞

⎠

−1
(
X+

M

)−1
x
[h]
M − (

X+
k

)T−1
⎛

⎝
N−1∑

j=M

B+
j

⎞

⎠

−1
(
X+

M

)−1
x
[h]
M ,

(4.6)

where

B−
k =

(
X−

k+1

)−1(I −A)−1Bk

(
X−

k

)T−1
,

B+
k =

(
X+

k+1

)−1(I −A)−1Bk

(
X+

k

)T−1
,

(4.7)

and (x[h], u[h]) is the solution of (4.4) generated by h. By a direct substitution, and using the
convention that

∑k−1
k = 0, we obtain

x
[f]
K = 0, x

[f]
L = x

[h]
L , x

[g]
M = x

[h]
M , x

[g]
N = 0. (4.8)

Now, from (4.1), together with the assumption q /≡ 0, we have that there exist k̃ ∈ Z and ε > 0
such that qk̃ ≤ −ε. Because the numbers K,L,M, and N have been “almost free” so far, we
may choose them such that L < k̃ < M − n − 1.



Abstract and Applied Analysis 11

Let us introduce the test sequence

yk :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, k ∈ (−∞, K − 1],

fk, k ∈ [K,L − 1],

hk(1 +Dk), k ∈ [L,M − 1],

gk, k ∈ [M,N − 1],

0, k ∈ [N,∞),

(4.9)

where

Dk =

⎧
⎨

⎩

δ > 0, k = k̃ + n,

0, otherwise.
(4.10)

To finish the first part of the proof, we use (4.4) to estimate the contribution of the term

F̃
(
y
)
=

∞∑

k=−∞
rk
(
Δnyk

)2 =
∞∑

k=−∞
u
[y]T
k

Bku
[y]
k

=
N−1∑

k=K

u
[y]T
k

Bku
[y]
k

. (4.11)

Using the definition of the test sequence y, we can split F̃ into three terms. Now, we estimate
two of them as follows. Using (4.4), we obtain

L−1∑

k=K

u
[f]T
k

Bku
[f]
k

=
L−1∑

k=K

[
u
[f]T
k

(
Δx

[f]
k

−Ax
[f]
k+1

)]
=

L−1∑

k=K

[
u
[f]T
k

Δx
[f]
k

− u
[f]T
k

Ax
[f]
k+1

]

=
L−1∑

k=K

[
Δ
(
u
[f]T
k

x
[f]
k

)
−Δu

[f]T
k

x
[f]
k+1 − u

[f]T
k

Ax
[f]
k+1

]

=
L−1∑

k=K

[
Δ
(
u
[f]T
k

x
[f]
k

)
− x

[f]T
k+1

(
Δu

[f]
k

+ATu
[f]
k

)]
= u

[f]T
k

x
[f]
k

∣∣∣
L

K
= x

[f]T
L u

[f]
L

= x
[h]T
L

⎡

⎢
⎣U−

L

(
X−

L

)−1
x
[h]
L +

(
X−

L

)T−1
⎛

⎝
L−1∑

j=K

B−
j

⎞

⎠

−1
(
X−

L

)−1
x
[h]
L

⎤

⎥
⎦

= x
[h]T
L

(
X−

L

)T−1
⎛

⎝
L−1∑

j=K

B−
j

⎞

⎠

−1
(
X−

L

)−1
x
[h]
L =: G,

(4.12)
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where we used the fact that x[h]T
L U−

L(X
−
L)

−1x[h]
L ≡ 0 (recall that the last n − m − 1 entries of

x
[h]
L are zeros and that the first m + 1 columns of X− and U− are generated by the solutions

1, . . . , k(m)). Similarly,

N−1∑

k=M

u
[g]T
k Bku

[g]
k = −x[g]T

M u
[g]
M = x

[h]T
M

(
X+

M

)T−1
⎛

⎝
N−1∑

j=M

B+
j

⎞

⎠

−1
(
X+

M

)−1
x
[h]
M =: H. (4.13)

Using property (2.10) of recessive solutions of the linear Hamiltonian difference systems, we
can see that G → 0 as K → −∞ and H → 0 as N → ∞. We postpone the estimation of the
middle term of F̃ to the end of the proof.

To estimate the second term of F(y), we estimate at first its terms

L−1∑

k=K

qkf
2
k+n,

N−1∑

k=M

qkg
2
k+n. (4.14)

For this estimation, we use Lemma 2.3. To do this, we have to show the monotonicity of the
sequences

fk
hk

for k ∈ [K + n − 1, L + n − 1],

gk
hk

for k ∈ [M + n − 1,N + n − 1].

(4.15)

Let x[1], . . . , x[2n] be the ordered system of solutions of (2.13) in the sense of Lemma 2.1. Then,
again by Lemma 2.1, there exist real numbers d1, . . . , dn such that h = d1x

[1] + · · · + dnx
[n].

Because h/≡ 0, at least one coefficient di is nonzero. Therefore, we can denote p := max{i ∈
[1, n] : di /= 0}, and we replace the solution x[p] by h. Let us denote this new system again
x[1], . . . , x[2n] and note that this new system has the same properties as the original one.

Following Lemma 2.2, we transform (2.13) via the transformation yk = hkzk, into

n∑

ν=0
(−Δ)ν

(
R

[ν]
k

Δνzk+n−ν
)
= 0, (4.16)

that is,

(−Δ)n
(
rkhkhk+nΔn−1wk

)
+ · · · −Δ

(
R

[1]
k wk+n−1

)
= 0 (4.17)
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possesses the fundamental system of solutions

w[1] = −Δ
(

x[1]

h

)

, . . . , w[p−1] = −Δ
(

x[p−1]

h

)

,

w[p] = Δ

(
x[p+1]

h

)

, . . . , w[2n−1] = Δ

(
x[2n]

h

)

.

(4.18)

Now, let us compute the Casoratians

C
(
w[1]

)
= w[1] = −Δ

(
x[1]

h

)

=
C
(
x[1], h

)

hkhk+1
> 0,

C
(
w[1], w[2]

)
=

C
(
x[1], x[2], h

)

hkhk+1hk+2
> 0,

...

C
(
w[1], . . . , w[2n−1]

)
=

C
(
x[1], . . . , x[p−1], x[p+1], . . . , x[2n], h

)

hk · · ·hk+2n−1
> 0.

(4.19)

Hence,w[1], . . . , w[2n−1] form theD-Markov system of sequences on [M,∞), forM sufficiently
large. Therefore, by Lemma 2.4, (4.17) is eventually disconjugate; that is, it has at most 2n − 2
generalized zeros (counting multiplicity) on [M,∞). The sequence Δ(g/h) is a solution of
(4.17), and we have that this sequence has generalized zeros of multiplicity n − 1 both at M
and at N; that is,

Δ
(
gM+i

hM+i

)
= 0 = Δ

(
gN+i

hN+i

)
, i = 0, . . . , n − 2. (4.20)

Moreover, gM/hM = 1 and gN/hN = 0. Hence, Δ(gk/hk) ≤ 0, k ∈ [M,N + n − 1]. We can
proceed similarly for the sequence f/h.

Using Lemma 2.3, we have that there exist integers ξ1 ∈ [K,L − 1] and ξ2 ∈ [M,N − 1]
such that

L−1∑

k=K

qkf
2
k+n =

L−1∑

k=K

[

qkh
2
k+n

(
fk+n
hk+n

)2
]

≤
L−1∑

k=ξ1

qkh
2
k+n,

N−1∑

k=M

qkg
2
k+n =

N−1∑

k=M

[

qkh
2
k+n

(
gk+n
hk+n

)2
]

≤
ξ2−1∑

k=M

qkh
2
k+n.

(4.21)
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Finally, we estimate the remaining term of F(y). By (4.9), we have

M−1∑

k=L

[
rk
(
Δnyk

)2 + qky
2
k+n

]

=
M−1∑

k=L

{
rk[Δnhk + Δn(hkDk)]

2 + qk(hk+n + hk+nDk+n)
2
}

=
M−1∑

k=L

{
rk[Δn(hkDk)]

2 + qkh
2
k+n + 2qkh2

k+nDk+n + qkh
2
k+nD

2
k+n

}

=
k̃+n∑

k=k̃

{
rk[Δn(hkDk)]

2
}
+

M−1∑

k=L

[
qkh

2
k+n

]
+ 2qk̃h

2
k̃+n

Dk̃+n + qk̃h
2
k̃+n

D2
k̃+n

=
k̃+n∑

k=k̃

⎧
⎨

⎩
rk

[

(−1)k−k̃
(

n

k − k̃

)

hk̃+nδ

]2
⎫
⎬

⎭
+

M−1∑

k=L

[
qkh

2
k+n

]
+ 2δqk̃h

2
k̃+n

+ δ2qk̃h
2
k̃+n

≤ δ2h2
k̃+n

k̃+n∑

k=k̃

⎡

⎣rk

(
n

k − k̃

)2⎤

⎦ +
M−1∑

k=L

[
qkh

2
k+n

]
− 2δεh2

k̃+n
− δ2εh2

k̃+n

< δ2h2
k̃+n

k̃+n∑

k=k̃

⎡

⎣rk

(
n

k − k̃

)2⎤

⎦ +
M−1∑

k=L

[
qkh

2
k+n

]
− 2δεh2

k̃+n
.

(4.22)

Altogether, we have

F
(
y
)
< δ2h2

k̃+n

k̃+n∑

k=k̃

⎡

⎣rk

(
n

k − k̃

)2⎤

⎦ +
M−1∑

k=L

[
qkh

2
k+n

]
− 2δεh2

k̃+n
+ G +H +

L−1∑

k=ξ1

qkh
2
k+n +

ξ2−1∑

k=M

qkh
2
k+n

= δ2h2
k̃+n

k̃+n∑

k=k̃

⎡

⎣rk

(
n

k − k̃

)2⎤

⎦ − 2δεh2
k̃+n

+ G +H +
ξ2−1∑

k=ξ1

qkh
2
k+n,

(4.23)

where for K sufficiently small is G < δ2/3, for N sufficiently large is H < δ2/3, and, from
(4.1),

∑ξ2−1
k=ξ1

qkh
2
k+n < δ2/3 for ξ1 < L and ξ2 > M. Therefore,

F
(
y
)
< δ2 + δ2h2

k̃+n

k̃+n∑

k=k̃

⎡

⎣rk

(
n

k − k̃

)2⎤

⎦ − 2δεh2
k̃+n

= δ

⎧
⎨

⎩
δ

⎡

⎣1 + h2
k̃+n

k̃+n∑

k=k̃

⎡

⎣rk

(
n

k − k̃

)2⎤

⎦

⎤

⎦ − εh2
k̃+n

⎫
⎬

⎭
,

(4.24)

which means that F(y) < 0 for δ sufficiently small, and (4.2) is conjugate on Z.
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5. Equation with the Middle Terms

Under the additional condition qk ≤ 0 for large |k|, and by combining of the proof of
Theorem 4.1 with the proof of [2, Lemma 1], we can establish the following criterion for the
full 2n-order equation.

Theorem 5.1. Let n > 1, qk be a real-valued sequence, and let there exist an integerm ∈ {0, . . . , n−1}
and real constants c0, . . . , cm such that (1.1) is at least (m + 1)-critical and the sequence hk := c0 +
c1k + · · · + cmk

(m) satisfies

lim sup
K↓−∞,L↑∞

L∑

k=K

qkh
2
k+n ≤ 0. (5.1)

If qk ≤ 0 for large |k| and q /≡ 0, then

L
(
y
)
k + qkyk+n =

n∑

ν=0
(−Δ)ν

(
r
[ν]
k Δνyk+n−ν

)
+ qkyk+n = 0 (5.2)

is conjugate on Z.

Remark 5.2. Using Theorem 3.4, we can see that the statement of Theorem 4.1 holds if and
only if (3.7) holds. Finding a criterion similar to Theorem 3.4 for (1.1) is still an open question.

Remark 5.3. In the view of the matrix operator associated to (1.1) in the sense of [21], we can
see that the perturbations in Theorem 4.1 affect the diagonal elements of the associatedmatrix
operator. A description of behavior of (1.1), with regard to perturbations of limited part of
the associated matrix operator (but not only of the diagonal elements), is given in [2].
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[7] M. Bohner, O. Došlý, andW. Kratz, “A Sturmian theorem for recessive solutions of linear Hamiltonian
difference systems,” Applied Mathematics Letters, vol. 12, no. 2, pp. 101–106, 1999.
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[15] M. Bohner and S. Stević, “Trench’s perturbation theorem for dynamic equations,” Discrete Dynamics
in Nature and Society, vol. 2007, Article ID 75672, 11 pages, 2007.
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