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The existence results of positive solutions are obtained for the fourth-order periodic boundary
value problem u(4) − βu′′ + αu = f(t, u, u′′), 0 ≤ t ≤ 1, u(i)(0) = u(i)(1), i = 0, 1, 2, 3, where
f : [0, 1] × R

+ × R → R
+ is continuous, α, β ∈ R, and satisfy 0 < α < ((β/2) + 2π2)2, β > −2

π2, (α/π4) + (β/π2) + 1 > 0. The discussion is based on the fixed point index theory in cones.

1. Introduction

This paper concerns the existence of positive solutions for the fourth-order periodic boundary
value problem (PBVP)

u(4)(t) − βu′′(t) + αu(t) = f
(
t, u(t), u′′(t)

)
, 0 ≤ t ≤ 1,

u(i)(0) = u(i)(1) , i = 0, 1, 2, 3,
(1.1)

where α, β ∈ R and f : [0, 1]×R
+×R → R

+ is continuous,R+ = [0,∞). PBVP (1.1) describes the
deformations of an elastic beam in equilibrium state with periodic boundary condition. In the
equation, the u′′ denotes the bending moment term which represents bending effect. Owing
to its importance in physics, the existence of solutions to this problem has been studied by
some authors, see [1–6]. In practice, only its positive solutions are significant. In this paper,
we discuss the existence of positive solutions of PBVP (1.1).

In [1, 2], Cabada and Lois obtained the maximum principles for fourth-order operator
L4,α u = u(4) + αu in periodic boundary condition and then they proved the existence of
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solutions and the validity of the monotone method in the presence of lower and upper
solutions for the periodic boundary problem

u(4)(t) = g(t, u(t)), 0 ≤ t ≤ 1,

u(i)(0) = u(i)(1) , i = 0, 1, 2, 3.
(1.2)

In [3], the present author established a stronglymaximumprinciple for operator L4 u = u(4) −
βu′′ + αu in periodic boundary condition, and showed that if α, β satisfy the assumption

0 < α <

(
β

2
+ 2π2

)2

, β > −2π2,
α

π4
+

β

π2
+ 1 > 0, (1.3)

then L4 is strongly inverse positive in space

F4 =
{
u ∈ C4[0, 1] | u(i)(0) = u(i)(1), i = 0, 1, 2; u(3)(0) ≥ u(3)(1)

}
. (1.4)

As an application of this strongly maximum principle, the author considered the existence of
positive solutions for the special fourth-order periodic boundary problem

u(4)(t) − βu′′(t) + αu(t) = g(t, u(t)), 0 ≤ t ≤ 1,

u(i)(0) = u(i)(1), i = 0, 1, 2, 3,
(1.5)

and obtained the following result.

Theorem A. Let g : [0, 1] × R
+ → R

+ be continuous and the assumption (1.3) hold. If g satisfies
one of the following conditions

(G1) g0 < α, g∞ > α;
(G2) g0 > α, g∞ < α,

where

g0 = lim inf
u→ 0+

min
t∈[0, 1]

(
f(t, u)

u

)
, g0 = lim sup

u→ 0+
max
t∈[0, 1]

(
f(t, u)

u

)
,

g∞ = lim inf
u→+∞

min
t∈[0, 1]

(
f(t, u)

u

)
, g∞ = lim sup

u→+∞
max
t∈[0, 1]

(
f(t, u)

u

)
,

(1.6)

then PBVP (1.5) has at least one positive solution.

Based upon this strongly maximum principle, the authors of [4, 5] further consider
the existence and multiplicity of positive solutions of PBVP (1.5). In [6], Bereanu obtained
existence results for PBVP (1.5) by using the method of topological degree. However, all
of these works are on the special equation (1.5), and few people consider the existence of
positive solutions of PBVP (1.1) that nonlinearity f contains the bending moment term u′′.
The purpose of this paper is to discuss the existence of positive solutions of PBVP (1.1).



Abstract and Applied Analysis 3

The strongly maximum principle implies that the fourth-order linear boundary value
problem (LBVP)

L4 u := u(4) − βu′′ + αu = 0, 0 ≤ t ≤ 1,

u(i)(0) − u(i)(1) = 0, i = 0, 1, 2,

u(3)(0) − u(3)(1) = 1

(1.7)

has a unique positive solution Φ : [0, 1] → (0,∞), see [3, Lemma 3]. This function has been
introduced in [2, Lemma 2.1 and Remark 2.1]. Let I = [0, 1], and set

σ =
mint∈I Φ(t)
maxt∈I Φ(t)

, M =
maxt∈I |Φ′′(t)|
mint∈I Φ(t)

. (1.8)

Let f : I × R
+ × R → R

+ be continuous. To be convenient, we introduce the notations

f0 = lim inf
u→ 0+

min
|v|≤Mu,t∈I

(
f(t, u, v)

u

)
,

f0 = lim sup
u→ 0+

max
|v|≤Mu,t∈I

(
f(t, u, v)

u

)
,

f∞ = lim inf
u→+∞

min
|v|≤Mu,t∈I

(
f(t, u, v)

u

)
,

f∞ = lim sup
u→+∞

max
|v|≤Mu,t∈I

(
f(t, u, v)

u

)
.

(1.9)

Our main result is as follows.

Theorem 1.1. Let f : [0, 1] × R
+ × R → R

+ be continuous, and let the assumption (1.3) hold. If f
satisfies one of the following conditions:

(F1) f0 < α, f∞ > α,
(F2) f0 > α, f∞ < α,

then PBVP (1.1) has at least one positive solution.

Clearly, Theorem 1.1 is an extension of Theorem A. Since that α is an eigenvalue of
linear eigenvalue problem

u(4) − βu′′ + αu = λu, (1.10)

with periodic boundary condition, if one inequality in (F1) or (F2) of Theorem 1.1 is not true,
the existence of solution to PBVP (1.1) cannot be guaranteed. Hence, (F1) and (F2) are the
optimal conditions for the existence of the positive of PBVP (1.1).

In Theorem 1.1, the condition (F1) allows that f(t, u, v)may be superlinear growth on
u and v, for example, f(t, u, v) = u2 + v2, and the condition (F2) allows that f(t, u, v) may be
sublinear growth on u and v, for example, f(t, u, v) = 3

√
u2 + v2.
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The proof of Theorem 1.1 is based on the theory of the fixed point index in cones.
Since the nonlinearity f of PBVP (1.1) contains u′′, the argument of Theorem A in [3] is not
applicable to Theorem 1.1. We will prove Theorem 1.1 by choosing a proper cone of C2(I) in
Section 3. Some preliminaries to discuss PBVP (1.1) are presented in Section 2.

2. Preliminaries

LetC(I) be the Banach space of all continuous functions on the unit interval I = [0, 1]with the
norm ‖u‖C = max0≤t≤ω |u(t)|. Let C+(I) denote the cone of all nonnegative functions in C(I).
Generaly, for n ∈ N, we use Cn(I) to denote the Banach space of the nth-order continuous
differentiable functions on I with the norm ‖u‖Cn =

∑n
k=1 ‖u(k)‖C. In C2(I), we define a new

norm by

‖u‖C02 = ‖u‖C +
∥
∥u′′∥∥

C. (2.1)

Then ‖u‖C02 is equivalent to ‖u‖C2 . In fact, for every u ∈ C2(I), it is clear that ‖u‖C02 ≤ ‖u‖C2 .
On the other hand, by the Lagrange mean-value theorem, there exists ξ ∈ (0, 1) such that
u(1) − u(0) = u′(ξ). For t ∈ I, we have

∣∣u′(t)
∣∣ ≤ ∣∣u′(t) − u′(ξ)

∣∣ +
∣∣u′(ξ)

∣∣ =

∣∣∣∣∣

∫ t

ξ

u′′(s)ds

∣∣∣∣∣
+ |u(1) − u(0)|

≤
∫1

0

∣∣u′′(s)
∣∣ ds + |u(1)| + |u(0)|

≤ ∥∥u′′∥∥
C + 2‖u‖C ≤ 2‖u‖C02 .

(2.2)

Hence, ‖u′‖C ≤ 2‖u‖C02 . By this, we have

‖u‖C2 = ‖u‖C +
∥∥u′∥∥

C +
∥∥u′′∥∥

C = ‖u‖C02 +
∥∥u′∥∥

C ≤ 3‖u‖C02 . (2.3)

Therefore, the norms ‖u‖C02 and ‖u‖C2 are equivalent.
Let α, β ∈ R satisfy the assumption (1.3). For h ∈ C(I), we consider the fourth-order

linear periodic boundary value problem (LPBVP)

u(4)(t) − βu′′(t) + αu(t) = h(t), 0 ≤ t ≤ 1,

u(i)(0) = u(i)(1), i = 0, 1, 2, 3.
(2.4)

Let Φ(t) be the unique positive solution of LBVP(1.7), and set

G(t, s) =

⎧
⎨

⎩

Φ(t − s), 0 ≤ s ≤ t ≤ 1,

Φ(1 + t − s), 0 ≤ t < s ≤ 1.
(2.5)

By [3, Lemma 1], we have the following result.
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Lemma 2.1. Let α, β ∈ R satisfy the assumption (1.3). Then for every h ∈ C(I), LPBVP (2.4) has a
unique solution u(t) which is given by

u(t) =
∫1

0
G(t, s)h(s)ds := Sh(t), t ∈ R. (2.6)

Moreover, S : C(I) → C4(I) is a linear bounded operator.

Let σ and M be the positive constants given by (1.8). Choose a cone K in C2(I) by

K =
{
u ∈ C2(I) | u(t) ≥ σ‖u‖C,

∣
∣u′′(t)

∣
∣ ≤ M|u(t)|, t ∈ I

}
. (2.7)

We have the following.

Lemma 2.2. Let α, β ∈ R satisfy the assumption (1.3). Then for every h ∈ C+(I), the solution of
LPBVP (2.4) u = Sh ∈ K. Namely, S(C+(I)) ⊂ K.

Proof. Let h ∈ C+(I), u = Sh. For every t ∈ I, from (2.6) it follows that

0 ≤ u(t) =
∫1

0
G(t, s)h(s)ds ≤ max

t∈I
Φ(t)

∫1

0
h(s)ds, (2.8)

which implies that

‖u‖C ≤ max
t∈I

Φ(t)
∫1

0
h(s)ds. (2.9)

By this and (2.6), we have

u(t) =
∫1

0
G(t, s)h(s)ds ≥ min

t∈I
Φ(t)

∫1

0
h(s)ds

= σmax
t∈I

Φ(t)
∫1

0
h(s)ds ≥ σ‖u‖C.

(2.10)

For t ∈ I, by the definition of G and Φ, we have

u(t) =
∫ t

0
Φ(t − s)h(s)ds +

∫1

t

Φ(1 + t − s)h(s)ds. (2.11)

Making derivation to both sides of this equality, we have

u′′(t) =
∫ t

0
Φ′′(t − s)h(s)ds +

∫1

t

Φ′′(1 + t − s)h(s)ds, (2.12)
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from which it follows that

∣
∣u′′(t)

∣
∣ ≤ max

t∈I

∣
∣Φ′′(t)

∣
∣
∫ t

0
h(s)ds +max

t∈I

∣
∣Φ′′(t)

∣
∣
∫1

t

h(s)ds

= max
t∈I

∣
∣Φ′′(t)

∣
∣
∫1

0
h(s)ds

= Mmin
t∈I

Φ(t)
∫1

0
h(s)ds ≤ Mu(t), t ∈ I.

(2.13)

Therefore, u ∈ K. This means that S(C+(I)) ⊂ K.

For every u ∈ K, since f : I × R
+ × R → R

+ is continuous, we see that F(u) :=
f(·, u(·), u′′(·)) ∈ C+(I). By Lemma 2.2, w = S(F(u)) ∈ K. Define an operator A : K → K by

Au(t) = S(F(u)) =
∫1

0
G(t, s)f

(
s, u(s), u′′(s)

)
ds. (2.14)

We have the following.

Lemma 2.3. A : K → K is a completely continuous operator.

Proof. LetD ⊂ K be a bounded set inC2(I). By the continuity of f : I×R
+×R → R

+, F(D) is a
bounded set in C(I). By the boundedness of the operator S : C(I) → C4(I), A(D) = S(F(D))
is a bounded set in C4(I). By the compactness of the embedding C4(I) ↪→ C2(I), A(D) is a
precompact set in C2(I). So A : K → K is completely continuous.

By the definition of S and K, the positive solution of PBVP (1.1) is equivalent to the
nontrivial fixed point ofA. We will find the nonzero fixed point ofA by using the fixed point
index theory in cones.

We recall some concepts and conclusions on the fixed point index in [7, 8]. Let E be
a Banach space, and let K ⊂ E be a closed convex cone in E. Assume Ω is a bounded open
subset of Ewith boundary ∂Ω, andK∩Ω/= ∅. LetA : K∩Ω → K be a completely continuous
mapping. IfAu/=u for any u ∈ K∩∂Ω, then the fixed point index i(A,K∩Ω, K) has definition.
One important fact is that if i(A,K∩Ω, K)/= 0, thenA has a fixed point inK∩Ω. The following
two lemmas are needed in our argument.

Lemma 2.4 (see [8]). Let Ω be a bounded open subset of E with θ ∈ Ω, and let A : K ∩ Ω →
Kbe a completely continuous mapping. If λAu/=u for every u ∈ K ∩ ∂Ω and 0 < λ ≤ 1, then
i(A,K ∩Ω, K) = 1.

Lemma 2.5 (see [8]). LetΩ be a bounded open subset of E, and let A : K ∩Ω → Kbe a completely
continuous mapping. If there exists an e ∈ K \ {θ} such that u −Au/= τe for every u ∈ K ∩ ∂Ω and
τ ≥ 0, then i(A,K ∩Ω, K) = 0.
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3. Proof of the Main Result

Proof of Theorem 1.1. Choose the working space E = C2(I) with the norm ‖u‖C02 . Let K be the
closed convex cone in C2(I) defined by (2.7), and let A : K → K be the operator defined
by (2.14). By Lemma 2.3 and the definition of K, the nonzero fixed of the operator A is the
positive solution of PBVP (1.1). Let 0 < r < R < +∞, and set

Ω1 =
{
u ∈ C2(I) | ‖u‖C02 < r

}
, Ω2 =

{
u ∈ C2(I) | ‖u‖C02 < R

}
. (3.1)

We show that, if r is small enough and R large enough, the operator A has a fixed point in
K ∩ (Ω2 \Ω1) in either case that (F1) holds or (F2) holds.

Case 1. Assume that (F1) holds.

Since f0 < α, by the definition of f0, we may choose ε ∈ (0, α) and δ > 0, such that

f(t, u, v) ≤ (α − ε)u, t ∈ I, |v| ≤ Mu, 0 ≤ u ≤ δ. (3.2)

Let r ∈ (0, δ). We prove that A satisfies the condition of Lemma 2.4 in K ∩ ∂Ω1; namely,
λAu/=u, for every u ∈ K∩∂Ω1 and 0 < λ ≤ 1. In fact, if there exist u0 ∈ K∩∂Ω1 and 0 < λ0 ≤ 1
such that λ0Au0 = u0, then by the definition of A and Lemma 2.1, u0 ∈ C4(I) satisfies the
differential equation

u0
(4)(t) − βu0

′′(t) + αu0(t) = λ0f
(
t, u0(t), u0

′′(t)
)
, t ∈ I, (3.3)

and the periodic boundary condition

u(i)(0) = u(i)(1), i = 0, 1, 2, 3. (3.4)

Since u0 ∈ K ∩ ∂Ω1, by the definitions of K and Ω1, we have

∣∣u0
′′(t)

∣∣ ≤ Mu0(t), 0 < σ‖u0‖C ≤ u0(t) ≤ ‖u0‖C02 = r < δ, t ∈ R. (3.5)

From this and (3.2), it follows that

f
(
t, u0(t), u0

′′(t)
) ≤ (α − ε)u0(t), t ∈ R. (3.6)

By this inequality and (3.3), we have

u0
(4)(t) − βu0

′′(t) + αu0(t) ≤ λ0(α − ε)u0(t) ≤ (α − ε) u0(t), ∈ I. (3.7)



8 Abstract and Applied Analysis

Integrating this inequality from 0 to 1 and using the periodic boundary condition (3.4), we
obtain that

α

∫1

0
u0(t)dt ≤ (α − ε)

∫1

0
u0(t)dt. (3.8)

Since
∫1
0 u0(t)dt ≥ σ‖u0‖C > 0, form this inequality it follows that α ≤ α − ε, which is a

contradiction. Hence, A satisfies the condition of Lemma 2.4 in K ∩ ∂Ω1. By Lemma 2.4 we
have

i(A,K ∩Ω1, K) = 1. (3.9)

On the other hand, since f∞ > α, by the definition of f∞, there exist ε1 > 0 and H > 0
such that

f(t, u, v) ≥ (α + ε1)x, t ∈ I, |v| ≤ Mu, u ≥ H. (3.10)

Choose R > max{(1 + M/σ)H, δ}, and let e(t) ≡ 1. Clearly, e ∈ K \ {θ}. We show that A
satisfies the condition of Lemma 2.5 in K ∩ ∂Ω2; namely, u − Au/= τe, for every u ∈ K ∩ ∂Ω2

and τ ≥ 0. In fact, if there exist u1 ∈ K ∩ ∂Ω2 and τ1 ≥ 0 such that u1 − Au1 = τ1e, since
u1 − τ1e = Au1, by definition of A and Lemma 2.1, u1(t) ∈ C4(I) satisfies the differential
equation

u1
(4)(t) − βu1

′′(t) + α(u1(t) − τ1) = f
(
t, u1(t), u1

′′(t)
)
, t ∈ I, (3.11)

and the periodic boundary condition (3.4). Since u1 ∈ K ∩ ∂Ω2, by the definition of K, we
have

u1(t) ≥ σ‖u1‖C,
∣∣u1

′′(t)
∣∣ ≤ Mu1(t), t ∈ I. (3.12)

By the second inequality of (3.12), we have

‖u1‖C02 = ‖u1‖C +
∥∥u1

′′∥∥
C ≤ ‖u1‖C +M‖u1‖C = (1 +M)‖u1‖C. (3.13)

Consequently,

‖u1‖C ≥ 1
1 +M

‖u1‖C02 . (3.14)

By (3.14) and the first inequality of (3.12), we have

u1(t) ≥ σ‖u1‖C ≥ σ

1 +M
‖u1‖C02 =

σ

1 +M
R > H, t ∈ I. (3.15)
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From this, the second inequality of (3.12), and (3.10), it follows that

f
(
t, u1(t), u1

′′(t)
) ≥ (α + ε1)u1(t), t ∈ I. (3.16)

By this and (3.11), we have

u1
(4)(t) − βu1

′′(t) + α(u1(t) − τ1) ≥ (α + ε1)u1(t), t ∈ I. (3.17)

Integrating this inequality on I and using the periodic boundary condition (3.4), we get that

α

∫1

0
u1(t)dt − ατ1 ≥ (α + ε1)

∫1

0
u1(t)dt. (3.18)

Since
∫1
0 u1(t)dt ≥ σ‖u1‖C > 0, from this inequality it follows that α ≥ α + ε1, which is

a contradiction. This means that A satisfies the condition of Lemma 2.5 in K ∩ ∂Ω2. By
Lemma 2.4,

i(A,K ∩Ω2, K) = 0. (3.19)

Now, by the additivity of fixed point index, (3.9), and (3.19), we have

i
(
A,K ∩

(
Ω2 \Ω1

)
, K

)
= i(A,K ∩Ω2, K) − i(A,K ∩Ω1, K) = −1. (3.20)

Hence, A has a fixed point in K ∩ (Ω2 \Ω1), which is the positive solution of PBVP (1.1).

Case 2. Assume that (F2) holds.

By the assumption of f0 > α and the definition of f0, there exist ε > 0 and δ > 0, such
that

f(t, u, v) ≥ (α + ε)u, t ∈ I, |v| ≤ Mu, 0 ≤ u ≤ δ. (3.21)

Let r ∈ (0, δ), and let e(t) ≡ 1. We prove that A satisfies the hypothesis of Lemma 2.5 in
K∩∂Ω1; namely, u−Au/= τe for every u ∈ K∩∂Ω1 and τ ≥ 0. In fact, if there exist u0 ∈ K∩∂Ω1

and τ0 ≥ 0 such that u0−Au0 = τ0e, since u0−τ0e = Au0, by the definition ofA and Lemma 2.1,
u0(t) ∈ C4(I) satisfies the differential equation

u0
(4)(t) − βu0

′′(t) + α(u0(t) − τ0) = f
(
t, u0(t), u0

′′(t)
)
, t ∈ I, (3.22)

and the periodic boundary condition (3.4). Since u0 ∈ K ∩ ∂Ω1, by the definitions of K and
Ω1, u0 satisfies (3.5). From (3.5) and (3.22), it follows that

f
(
t, u0(t), u0

′(t)
) ≥ (α + ε)u0(t), t ∈ I. (3.23)
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By this inequality and (3.22), we have

u0
(4)(t) − βu0

′′(t) + α(u0(t) − τ0) ≥ (α + ε) u0(t), t ∈ I. (3.24)

Integrating this inequality on I and using the periodic boundary condition (3.4), we have

α

∫1

0
u0(t)dt − ατ0 ≥ (α + ε)

∫1

0
u0(t)dt. (3.25)

Since
∫1
0 u0(t)dt ≥ σ‖u0‖C > 0, from this inequality, it follows that α ≥ α + ε, which is a

contradiction. Hence A satisfies the hypothesis of Lemma 2.5 in K ∩ ∂Ω1. By Lemma 2.5,

i(A,K ∩Ω1, K) = 0. (3.26)

Since f∞ < α, by the definition of f∞, there exist ε1 ∈ (0, α) and H > 0 such that

f(t, u, v) ≤ (α − ε1) u, t ∈ I, |v| ≤ Mu, u ≥ H. (3.27)

Choosing R > max{(1 + M/σ)H, δ}, we show that A satisfies the condition of Lemma 2.4
in K ∩ ∂Ω2; namely, λAu/=u, for every u ∈ K ∩ ∂Ω2 and 0 < λ ≤ 1. In fact, if there exist
u1 ∈ K∩∂Ω2 and 0 < λ1 ≤ 1 such that λ1Au1 = u1, then by the definition ofA and Lemma 2.1,
u1 ∈ C4(I) satisfies the differential equation

u1
(4)(t) − βu1

′′(t) + αu1(t) = λ1f
(
t, u1(t), u1

′′(t)
)
, t ∈ I, (3.28)

and the periodic boundary condition (3.4). Since u1 ∈ K ∩ ∂Ω2, by the definition of K,
u1 satisfies (3.12). From (3.12), we can show that u1 satisfies (3.14). By (3.14) and the first
inequality of (3.12), we have

u1(t) ≥ σ‖u1‖C ≥ σ

1 +M
‖u1‖C02 =

σ

1 +M
R > H, t ∈ R. (3.29)

From this, the second inequality of (3.12), and (3.27), it follows that

f
(
t, u1(t), u1

′′(t)
) ≤ (α − ε1)u1(t), t ∈ I. (3.30)

By this inequality and (3.28), we have

u1
(4)(t) − βu1

′′(t) + αu1(t) ≤ λ1(α − ε1)u1(t) ≤ (α − ε1)u1(t), t ∈ I. (3.31)

Integrating this inequality on I and using the periodic boundary condition (3.4), we obtain
that

α

∫1

0
u1(t)dt ≤ (α − ε1)

∫1

0
u1(t)dt. (3.32)
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Since
∫1
0 u1(t)dt ≥ σ‖u1‖C > 0, form this inequality it follows that α ≤ α − ε1, which is

a contradiction. This means that A satisfies the condition of Lemma 2.4 in K ∩ ∂Ω2. By
Lemma 2.4,

i(A,K ∩Ω2, K) = 1. (3.33)

From (3.26) and (3.33), it follows that

i
(
A,K ∩

(
Ω2 \Ω1

)
, K

)
= i(A,K ∩Ω2, K) − i(A,K ∩Ω1, K) = 1. (3.34)

Hence, A has a fixed point in K ∩ (Ω2 \Ω1), which is the positive solution of PBVP (1.1).
The proof of Theorem 1.1 is completed.

Example 3.1. Consider the superlinear fourth-order periodic boundary problem

u(4) − u′′ + u = a1(t)u2 + a2(t)
(
u′′)2, 0 ≤ t ≤ 1,

u(i)(0) = u(i)(1), i = 0, 1, 2, 3,
(3.35)

where a1, a2 ∈ C(I) and a1(t), a2(t) > 0 for t ∈ I. It is easy to verify that α = 1 and β = 1
satisfy the assumption (P). f(t, u, v) = a1(t)u2 + a2(t)v2 satisfies the condition (F1), in which
f0 = 0 and f∞ = +∞. Hence, by Theorem 1.1, (3.35) has at least one positive solution.

Example 3.2. Consider the sublinear fourth-order periodic boundary problem

u(4) + u′′ + u = b1(t)
√
u + b2

√
|u′′|, 0 ≤ t ≤ 1,

u(i)(0) = u(i)(1), i = 0, 1, 2, 3,
(3.36)

where b1, b2 ∈ C(I) and b1(t), b2(t) > 0 for t ∈ I. For PBVP (3.36), it is easy to verify that
α = 1 and β = −1 satisfy the assumption (1.3), and f(t, u, v) = b1(t)

√
u+ b2(t)

√
|v| satisfies the

condition (F2) with f0 = +∞ and f∞ = 0. By Theorem 1.1, (3.36) has a positive solution.
Since (3.35) and (3.36) have nonlinear terms of u′′, which are not in the range

considered by [1–6], the existence results in Example 3.1, and Example 3.2 cannot be obtained
from [1–6].
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