
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2011, Article ID 831730, 8 pages
doi:10.1155/2011/831730

Research Article
Positive Solutions for a Class of Fourth-Order
Boundary Value Problems in Banach Spaces

Jingjing Cai1 and Guilong Liu2

1 Department of Mathematics, Tongji University, Shanghai 200092, China
2 College of Electrical Engineering, Xinjiang University, Urumqi 830008, China

Correspondence should be addressed to Jingjing Cai, cjjing1983@163.com

Received 3 October 2010; Accepted 9 January 2011

Academic Editor: Yong Zhou

Copyright q 2011 J. Cai and G. Liu. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

Using a specially constructed cone and the fixed point index theory, this work shows existence
and nonexistence results of positive solutions for fourth-order boundary value problem with two
different parameters in Banach spaces.

1. Introduction

In this paper, we study the existence of positive solutions for the following fourth-order
boundary value problem (BVP)with singularity in Banach space (E, ‖ · ‖):

x(4)(t) + βx′′(t) = λf(t, x) + μg(t, x), t ∈ J,
x(0) = x(1) = θ, x′′(0) = x′′(1) = θ,

(1.1)

where J = [0, 1], β < π2. g, f ∈ C(J, [0,+∞)), R+ = [0,+∞), and θ is the zero element of E.
Fourth-order boundary value problems are studied not only in mathematics but also

in physics and many other fields. For example, some models for bridge, underground water
flow, and plasma physics can be reduced to fourth-order boundary value problems. In the
recent years, some authors (cf. [1–7]) studied fourth-order boundary value problems, but
these papersmainly dealt with the problems in real space or the problemswithout singularity.
As far as we know, the fourth-order ordinary differential equation with singularity has
been seldom studied in Banach spaces. Also, not so much is known about the case that the
nonlinear term has two different parameters or has two parts with different properties.
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In [7], Yao studied the following two-point boundary value problem:

u(4)(t) − λh(t)f(u(t)) = 0,

u(0) = u(1) = u′′(0) = u′′(1) = 0,
(1.2)

where λ > 0 and f ∈ C[0,+∞). The author obtained positive solutions of BVP (1.2) in real
space not abstract space.

In [4], the authors studied the following boundary value problem in real space:

x(4)(t) + βx′′(t) = λf(t, x),

x(0) = x(1) = x′′(0) = x′′(1) = 0,
(1.3)

where f ∈ C([0, 1] × [0,+∞)), β < π2, and λ > 0. With the method of monotone iterative, the
existence and uniqueness of positive solution of BVP (1.3) are obtained.

Comparing with the results in [5–7], this paper has the following features. Firstly, we
discuss positive solutions of BVP (1.1) in abstract space, not E = R as in [5, 7]. Secondly, BVP
(1.1) has two parameters which may have different domains. Fourthly, f and g may have
different properties, and the main tool we used is the fixed point theorem on cone. Thirdly,
we talk about both the existence and nonexistence of positive solutions, but [5, 9] only study
the existence of positive solutions.

Basic facts about ordered Banach space E can be found in [8]. Here we recall some
of them. The cone P in E is said to be normal if there exists a positive constant N such that
θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖. In this paper, we always suppose that P is normal in E,
and without loss of generality, suppose that the normal constant N = 1. E∗ is dual space of
E. Denote P ∗ = {ψ ∈ E∗ | ψ(x) ≥ 0, for all x ∈ P}, then P ∗ is a dual cone of cone P . The
noncompactness of Kuratowski is denoted by α(·).

We study BVP (1.1) in C(J, E). Evidently, (C(J, E), ‖ · ‖c) is a Banach space under the
norm ‖x‖c = maxt∈J‖x(t)‖. x ∈ C(J, E) is a positive solution of BVP(1.1) if it satisfies BVP
(1.1) and x(t) > θ, for all t ∈ J .

2. Preliminaries and Lemmas

In this paper, we make the following conditions.

(H1) f, g ∈ C(J ′ × P, P), f(t, Pr) = {f(t, u), u ∈ Pr} is relatively compact and g(t, Pr) is
also relatively compact, where Pr = {u ∈ P : ‖u‖ ≤ r}. For any u ∈ P , there exist
ai(t), bi(t) ∈ L(J, R+), w1(x), w2(x) ∈ C(J, R+) such that

∥
∥f(t, u)

∥
∥ ≤ a1(t) + b1(t)w1(‖u‖),

∥
∥g(t, u)

∥
∥ ≤ a2(t) + b2(t)w2(‖u‖), a.e. t ∈ J. (2.1)

(H2) There exist a function m ∈ L(J, (0,+∞)), such that ψ(f(t, u)) ≥ m(t)‖u‖ or
ψ(g(t, u)) ≥ m(t)‖u‖, for t ∈ J, u ∈ P , where ψ ∈ P ∗, ‖ψ‖ = 1.



Abstract and Applied Analysis 3

Lemma 2.1 (see [8]). Let H = {x | x : J → E, x is strong measurable} be countable, and there
existsM ∈ L[J, R+] such that ‖x(t)‖ ≤M(t), a.e. t ∈ J, x ∈ H, then α(H(t)) ∈ L[J, R+] and

α

({∫

J

x(t)dt : x ∈ H
})

≤ 2
∫

J

α(H(t))dt. (2.2)

Lemma 2.2 (see [8]). Let P be a cone in Banach space E. For r > 0, define Pr = {x ∈ P : ‖x‖ < r}.
Assume that T : Pr → P is a completely continuous map such that x /= Tx for x ∈ ∂Pr .

(i) If ‖x‖ ≤ ‖Tx‖ for x ∈ ∂Pr , then i(T, Pr, P) = 0.

(ii) If ‖x‖ ≥ ‖Tx‖ for x ∈ ∂Pr , then i(T, Pr, P) = 1.

Lemma 2.3 (see [4]). For any ϕ ∈ C(J, P), the following fourth-order boundary value problem:

x(4)(t) + βx′′(t) = ϕ(t),

x(0) = x(1) = x′′(0) = x′′(1) = θ
(2.3)

has the solution

x(t) =
∫1

0

∫1

0
G1(t, τ)G2(τ, s)ϕ(s)dsdτ, (2.4)

where G2(t, s) is defined in Proposition 2.4 and

G1(t, s) =

⎧

⎨

⎩

t(1 − s), 0 ≤ t ≤ s ≤ 1,

s(1 − t), 0 ≤ s ≤ t ≤ 1.
(2.5)

Proposition 2.4. For all t, s ∈ [0, 1] × [0, 1] one has the following properties:

t(1 − t)G1(s, s) ≤ G1(t, s) ≤ G1(s, s) = s(1 − s), G1(t, s) ≤ t(1 − t); G1(t, s) ≤ 1
4
. (2.6)

Let ω =
√

β. G2(t, s) is explicitly given by the following
If β < 0, then

G2(t, s) =

⎧

⎪⎪⎪⎪
⎨

⎪⎪⎪⎪
⎩

sinhωt sinhω(1 − s)
ω sinhω

, 0 ≤ t ≤ s ≤ 1,

sinhωs sinhω(1 − t)
ω sinhω

, 0 ≤ s ≤ t ≤ 1.

(2.7)

If β = 0, then G2(t, s) = G1(t, s).
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If 0 < β < π2, then

G2(t, s) =

⎧

⎪⎪⎪
⎨

⎪⎪⎪
⎩

sinωt sinω(1 − s)
ω sinω

, 0 ≤ t ≤ s ≤ 1,

sinωs sinω(1 − t)
ω sinω

0 ≤ s ≤ t ≤ 1.

(2.8)

Proposition 2.5. For any t, s ∈ (0, 1), one has G1(t, s) > 0, G2(t, s) > 0, and G1(t, s) ≥ δG1(u, s),
for t ∈ Jδ, s, u ∈ [0, 1], where δ ∈ (0, 1/2).

Proposition 2.6. It is easy to see that

G2(t, s) ≤

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
4
, β = 0,

e2ω

4
, β < 0,

sinω
ω

, β > 0.

(2.9)

Let d = max{1/4, e2ω/4, sinω/ω}, Q = {x ∈ C(J, E) : x(t) ≥ θ, t ∈ J}, and K =
{x ∈ Q : x(t) ≥ δx(s), t ∈ Jδ, s ∈ [0, 1]}. It is easy to know that K is a cone in C(J, E). Let
Kr = {x ∈ K : ‖x‖ ≤ r} ⊂ K, K ⊂ Q. Define T as

(Tx)(t) =
∫1

0

∫1

0
G1(t, τ)G2(τ, s)

(

λf(s, x(s)) + μg(s, x(s))
)

dsdτ, (2.10)

then x is the solution of BVP(1.1) if and only if x is the fixed point of T .

Lemma 2.7. Suppose that condition (H1) holds, then T : K → K is completely continuous.

Proof. By the continuity of G1(t, s) and (H1), we have Tx ∈ Q. And for any t ∈ Jδ, x ∈ K, by
Proposition 2.5, we get

(Tx)(t) = δ(Tx)(u). (2.11)

Next we prove that T is compact. Let V = {xn}∞n=1 ⊂ K be any bounded set, and we
suppose that ‖xn‖ ≤ r, for some r > 0. LetMr = max0≤v≤r{wi(v), i = 1, 2}, then by condition
(H1),

f(t, xn(t)) ≤ a1(t) + b1(t)Mr, g(t, xn(t)) ≤ a2(t) + b2(t)Mr, a.e. t ∈ J, xn ∈ V. (2.12)
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We obtain from Lemma 2.1

α{(Txn)(t) : xn ∈ V }

= α

{∫∫1

0
G1(t, τ)G2(τ, s)

(

λf(s, xn(s)) + μg(s, xn(s))
)

dsdτ : xn ∈ V
}

≤ 2d
∫1

0
α
((

λf(s, xn(s)) + μg(s, xn(s))
)

: xn ∈ V )ds

= 0.

(2.13)

Hence, TV is relatively compact, so there exists a subsequence {xni} of {xn} such that {Txni}
converges to some v ∈ C(J, E). So T : K → K is completely continuous.

In this paper, for u ∈ P we denote

(

ψf
)

ν = lim inf
‖u‖→ ν

min
t∈J

ψ
(

f(t, u)
)

‖u‖ ,
(

ψg
)

ν = lim inf
‖u‖→ ν

min
t∈J

ψ
(

g(t, u)
)

‖u‖ , (2.14)

where ν denotes 0 or ∞, ψ ∈ P ∗, ‖ψ‖ = 1.

3. Main Results

Theorem 3.1. Assume that (H1) holds and the following conditions are satisfied:

(

ψf
)

∞ = ∞,
(

ψg
)

0 = ∞. (3.1)

Then BVP(1.1) has at least two positive solutions when λ and μ are sufficiently small.

Proof. T is completely continuous by Lemma 2.7. For any l > 0, set

F(l) =
d

4
max

x∈K, ‖x‖c=l

∫1

0

∥
∥f(s, x(s))

∥
∥ds, G(l) =

d

4
max

x∈K, ‖x‖c=l

∫1

0

∥
∥g(s, x(s))

∥
∥ds. (3.2)

Since (ψf)∞ = ∞, there exists r1 > 0 such that F(r1) > 0. If G(r1) = 0, let λ1 = r1/F(r1); then
for any λ ∈ (0, λ1) and x ∈ K, ‖x‖c = r1, we have

‖(Tx)(t)‖ ≤ d

4

∫1

0

∥
∥λf(s, x(s)) + μg(s, x(s))

∥
∥ds

≤ d

4

∫1

0

∥
∥λf(s, x(s))

∥
∥ds +

d

4

∫1

0

∥
∥μg(s, x(s))

∥
∥ds

≤ λ1F(r1)
= r1 = ‖x‖c.

(3.3)
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If G(r1)/= 0, let μ1 = r1/2G(r1) and λ1 = r1/2F(r1). For λ ∈ (0, λ1), μ ∈ (0, μ1), and
x ∈ K, ‖x‖c = r1, we get

‖(Tx)(t)‖ ≤ d

4

∫1

0

∥
∥λf(s, x(s))

∥
∥ds +

d

4

∫1

0

∥
∥μg(s, x(s))

∥
∥ds

≤ d

4
λ1

∫1

0

∥
∥λf(s, x(s))

∥
∥ds +

d

4
μ1

∫1

0

∥
∥g(s, x(s))

∥
∥ds

≤ r1F(r1) + μ1G(r1)

≤ r1
2

+
r1
2

= r1 = ‖x‖c,

(3.4)

which means that ‖Tx‖c < r1 = ‖x‖c, for x ∈ K, ‖x‖c = r1, and Lemma 2.2 implies that
i(T,Kr1 , K) = 1.

Since (ψf)∞ = ∞, there exists r2 > 0 such that ψ(f(t, u)) ≥ ε1‖u‖, u ∈ P, t ∈ J, ‖u‖ ≥ r2,
where ε1 > 0 satisfies ε1λδ

∫∫1−δ
δ G1(1/2, τ)G2(τ, s)dsdτ > 1. Let r2 = max{2r1, r2/δ}, then for

any t ∈ Jδ, x ∈ K, ‖x‖c = r2, by the definition of K we get ‖x(t)‖ ≥ δ‖x‖c ≥ r2, and we have

∥
∥
∥
∥
(Tx)

(
1
2

)∥
∥
∥
∥
≥ ψ
(

(Tx)
(
1
2

))

≥ λ
∫1

0

∫1

0
G1

(
1
2
, τ

)

G2(τ, s)ψ
(

f(s, x(s))
)

dsdτ

≥ λ
∫1

0

∫1−δ

δ

G1

(
1
2
, τ

)

G2(τ, s)ψ
(

f(s, x(s))
)

dsdτ

≥ λε1
∫1

0

∫1−δ

δ

G1

(
1
2
, τ

)

G2(τ, s)‖x(s)‖dsdτ

≥ λε1δ‖x‖c
∫1

0

∫1−δ

δ

G1

(
1
2
, τ

)

G2(τ, s)dsdτ

> ‖x‖c,

(3.5)

which implies that ‖Tx‖c > r2, x ∈ Kr2 . By Lemma 2.2 we have i(T,Kr2 , K) = 0.
On the other hand, since (ψg)0 = ∞, there exists r3 : 0 < r3 < r1 such that ψ(g(t, u)) ≥

ε2‖u‖, for t ∈ J, u ∈ P, ‖u‖ ≤ r3, where ε2 > 0 and satisfies

ε2μδ

∫1

0

∫1−δ

δ

G1

(
1
2
, τ

)

G2(τ, s)dsdτ > 1. (3.6)
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Accordingly, 0 < r3 < r3. Then for x ∈ K, ‖x‖c = r3, similar to (3.5) we get ‖Tx‖c > r3.
By Lemma 2.2 we have i(T,Kr3 , K) = 0. Hence, from the additivity of fixed point index, we
obtain

i

(

T,
Kr2

Kr1

, K

)

= −1, i

(

T,
Kr1

Kr3

, K

)

= 1. (3.7)

Hence, T has two fixed points x1 ∈ Kr2/Kr1 and x2 ∈ Kr1/Kr3 . Therefore, BVP(1.1) has at
least two fixed points x1 and x2.

Corollary 3.2. If (H1), (ψg)∞ = ∞, and (ψf)0 = ∞ hold, then BVP(1.1) has at least two positive
solutions when λ and μ are sufficiently small.

Theorem 3.3. Suppose that (H1) and (H2) hold, and if λ is sufficiently large, then BVP(1.1) has no
positive solutions.

Proof. First by (H2) we can suppose that ψ(f(t, u)) ≥ m(t)‖u‖, for t ∈ J . suppose
that BVP(1.1) has a positive solution x, and choose λ sufficiently large satisfying
λδ
∫∫1−δ

δ G1(1/2, τ)G2(τ, s)m(s)dsdτ > 1. Then we have

‖x‖c ≥
∥
∥
∥
∥
x

(
1
2

)∥
∥
∥
∥
≥ ψ
(

x

(
1
2

))

≥ λ
∫1

0

∫1

0
G1

(
1
2
, τ

)

G2(τ, s)ψ
(

f(s, x(s))
)

dsdτ

≥ λ
∫1

0

∫1−δ

δ

G1

(
1
2
, τ

)

G2(τ, s)m(s)‖x(s)‖dsdτ

≥ λδ
∫1

0

∫1−δ

δ

G1

(
1
2
, τ

)

G2(τ, s)m(s)dsdτ‖x‖c

> ‖x‖c,

(3.8)

which is a contradiction; so BVP(1.1) has no positive solutions. Similarly, if ψ(g(t, u)) ≥
m(t)‖u‖, for t ∈ J , and μ is sufficiently large, then BVP(1.1) has no positive
solutions.
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