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M. Şengönül and Z. Zararsız
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Some properties of the fuzzy convergence and fuzzy boundedness of a sequence of fuzzy numbers
were studied in Choi (1996). In this paper, we have consider, some important problems on these
spaces and shown that these spaces are fuzzy complete module spaces. Also, the fuzzy α-, fuzzy
β-, and fuzzy γ-duals of the fuzzy module spaces of fuzzy numbers have been computeded, and
some matrix transformations are given.

1. Introduction

As known, the ideas of fuzzy sets and fuzzy operations were first introduced by Zadeh [1],
and after his innovation, many authors have studied different aspects of the fuzzy numbers
theory and applications. One of them is the sequence spaces of the fuzzy numbers. A major
direction in the study on sequence spaces of fuzzy numbers is the metric properties of these
spaces (see [2–4]), but this direction has been altered by Talo and Başar [5].

Some important problems on sequence spaces of fuzzy numbers can be ordered as
follows:

(1) to construct a sequence space of fuzzy numbers and compute α-, β- and γ-duals,

(2) to find some isomorphic spaces of it,

(3) to give some theorems about matrix transformation on sequence space of fuzzy
numbers,

(4) to study some inclusion problems and other properties.

By using the metric, ̂d(u, v) = supkd(uk, vk), these problems have been nicely studied
by Talo and Başar in [5]. But, as known, by defining different metrics on sequence spaces of
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fuzzy numbers, different metric spaces can be built up. By using ̂d metric, so many spaces
of fuzzy sequences have been built and many metric properties have been investigated. In
literature, one can easily reach many documents about sequence space of fuzzy numbers.

In this paper, using a fuzzy metric, we will deal with some problems about fuzzy
convergent and fuzzy bounded sequence spaces of fuzzy numbers which did not come up in
[6]. Thus, we believe that some gaps in this area will be filled.

The rest of this paper is structured as follows.
Some required definitions and consequences related with the fuzzy numbers given

in Section 2. Besides, as a proposition, the complete fuzzy module space of fuzzy numbers
is given, and the sequence spaces of fuzzy numbers with fuzzy metric are introduced in this
section. In Section 3, we have stated and proved the theorems determining the fuzzy α-, fuzzy
β-, and fuzzy γ-duals of the fuzzy sequence space of fuzzy numbers. Finally, in Section 4, the
fuzzy classes (�∞(E1) : �∞(E1)) and (c0(E1) : c0(E1)) of infinite matrix of fuzzy numbers are
characterized.

2. Preliminaries

Lets suppose that N is the set of all positive integer numbers, R is the set of all real numbers,
is the Ei be the set of all bounded and closed intervals on the real line R, that is, Ei = {a =
[a−, a+] : a− ≤ x ≤ a+, a− and a+ ∈ R}. For a, b ∈ Ei and define

d(a, b) = max
{∣

∣a− − b−
∣

∣, |a+ − b+|}. (2.1)

Then, it can be seen easily that d defines a metric on Ei and (Ei, d) is a complete metric space
[7]. Let X be nonempty set. According to Zadeh, a fuzzy subset of X is a nonempty subset
{(x, u(x)) : x ∈ X} of X × [0, 1] for some function u : X → [0, 1], [8]. Consider a function
u : R → [0, 1] as a subset of a nonempty base space R and denote the totality of all such
functions or fuzzy sets by E. A fuzzy number (FN) is a function u from R to [0, 1], which
satisfies the following properties:

FN1 u is normal, that is, there exists an x0 ∈ R such that u(x0) = 1,

FN2 u is fuzzy convex, that is, for any x, y ∈ R and μ ∈ [0, 1], u[μx + (1 − μ)y] ≥
min{u(x), u(y)},
FN3 u is upper semicontinuous,

FN4 the closure of {x ∈ R : u(x) > 0}, denoted by u0, is compact.

(FN1), (FN2), (FN3), and (FN4) imply that for each α ∈ [0, 1], the α-level set defined
by [u]α = {x ∈ R : u(x) ≥ α} is in Ei, as well as the support u0, that is, uα = [u−

α, u
+
α] for each

α ∈ [0, 1]. We denote the set of all fuzzy numbers by E1.
Let us suppose that [u]λ = [u−(λ), u+(λ)] for u ∈ E1 and for each λ ∈ [0, 1]. Then the

following statements are held:

(1) u−(λ) is a bounded and nondecreasing left continuous function on [0, 1),

(2) u+(λ) is a bounded and nonincreasing left continuous function on (0, 1],

(3) The functions u+(λ) and u−(λ) are right continuous at the point λ = 0,

(4) u+(λ) ≥ u−(λ).
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Conversely, if the pair of functions α and β satisfy the conditions (1)–(4), then there
exists a unique u ∈ E1 such that [u]λ = [α−(λ), β+(λ)] for each λ ∈ [0, 1], [9]. The fuzzy
number u corresponding to the pair of functions α and β is defined by u : R → [0, 1], u(x) =
sup{λ : α(x) ≤ λ ≤ β(x)}, [5].

A sequence u = (uk) of fuzzy numbers is a function u from the set N, the set of all
positive integers, into E1, and fuzzy number uk denotes the value of the function at k and is
called the kth term of the sequence.

Let u, v ∈ E1 and λ ∈ R, then the operations addition and scalar multiplication are
defined on E1 in terms of α-level sets by

u + v = w ⇐⇒ [w]α = [u]α + [v]α, [λu]α = λ[u]α ∀α ∈ [0, 1]. (2.2)

Define a map d : E1 ×E1 → R by d(u, v) = sup0≤α≤1d([u]α, [v]α). It is known that E1 is
a complete metric space with the metric d [3]. Let us suppose that w(E1), c(E1), and �∞(E1)
are set of all sequences space of all fuzzy numbers, convergent and bounded sequences of
fuzzy numbers, respectively.

Let us suppose that u, v ∈ E1 and G is the set of all nonnegative fuzzy numbers. The
function df : E1 ×E1 → G is called fuzzy metric [6]which satisfies the following properties:

(1) df(u, v) ≥ 0,

(2) df(u, v) = 0 if and only if u = v,

(3) df(u, v) = df(v, u),

(4) whenever w ∈ E1, we have df(u, v) ≤ df(u,w) + df(w,v).

In [4], Nanda has studied the spaces of bounded and convergent sequences of fuzzy
numbers and has shown that they are complete metric spaces with the metric ̂d(u, v) =
supkd(uk, vk).

By using this metric, ̂d, so many spaces of fuzzy sequences have been built and
published in famous maths journals. By reviewing the literature, one can reach them easily.
However, another important metric which is called as fuzzy metric is used for measuring
fuzzy distances among fuzzy numbers.

If df is a fuzzy metric on E1, then the pair of (E1, df) is called as a fuzzy metric space.
For any u, v ∈ E1, the fuzzy metric of Zhang is [10–12] defined by

df(u, v) = sup
λ∈[0,1]

λ
[

d1(u, v), ̂dλ(u, v)
]

, (2.3)

where ̂dλ(u, v) = supα∈[λ,1]d([u]α, [v]α) and d1(u, v) = supα=1d([u]α, [v]α).
Also, fuzzy metric spaces have been studied in [13]. But the given metric space

definition in [13] is different from our fuzzy metric space definition.

Theorem 2.1 (see [10–12]). The metric df defined by equality (2.3) is a fuzzy distance of fuzzy
numbers; thus, (E1, df) is a fuzzy metric space.

Theorem 2.2. If u, v ∈ E1, then d(u, v) is a point of the interval determined by the fuzzy metric
df(u, v).
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Proof. Clearly, if λ run from 0, then the second side of df , ̂dλ(u, v), is equal to d(u, v) since

df(u, v) = sup
λ∈[0,1]

λ
[

d1(u, v), ̂dλ(u, v)
]

. (2.4)

Theorem 2.3 (see [12]). The fuzzy metric space (E1, df) is complete metric space.

Definition 2.4. Let λ(E1) be the subset of all sequence spaces of fuzzy numbers and suppose
that ‖ · ‖ : λ(E1) → G is a function. The function ‖ · ‖ is called fuzzy module or fuzzy norm if
it has the following properties:

(N1) ‖u‖ = θ ⇔ u = θ,
(N2) ‖αu‖ = |α|‖u‖E1 ,
(N3) ‖u + v‖ ≤ ‖u‖ + ‖v‖
If the function ‖ · ‖ : λ(E1) → G satisfies N1, N2, and N3, then λ(E1) is called

fuzzy module sequence space of the fuzzy numbers. And if λ(E1) is complete with respect to
the fuzzy module, then λ(E1) is called complete fuzzy module sequence space of the fuzzy
numbers.

Definition 2.5. The fuzzy module of the fuzzy number u is defined which corresponds to the
fuzzy distance from u to 0, that is,

‖u‖E1 := sup
λ∈[0,1]

λ
[

d1

(

u, 0
)

, ̂dλ

(

u, 0
)]

. (2.5)

Proposition 2.6. The set E1 of the fuzzy numbers is fuzzy complete module space with the fuzzy
module in (2.5).

Let u = (uk) be a sequence of fuzzy numbers, and let ‖ · ‖ be a fuzzy module, then the
sequence (uk) is said to converge fuzzy to u0 ∈ E1 with the fuzzy module ‖ · ‖ if for any given
ε > 0, there exists an integer n0 such that ‖uk − u0‖ < [ε, ε] = ε for k ≥ n0. The sequence (uk)
is said to be fuzzy bounded in fuzzy module ‖ · ‖ if supk‖uk‖ < ∞ for all k ∈ N.

We will write L∞(E1), C(E1), and C0(E1) for the fuzzy sets of all fuzzy bounded, fuzzy
convergent, fuzzy null sequences, respectively, that is,

L∞
(

E1
)

:=

{

u = (uk) ∈ w
(

E1
)

: sup
k

sup
λ∈[0,1]

λ
[

d1

(

uk, 0
)

, ̂dλ

(

uk, 0
)]

< ∞
}

,

C
(

E1
)

:=

{

u = (uk) ∈ w
(

E1
)

: ∃u0 ∈ E1  lim
k

sup
λ∈[0,1]

λ
[

d1(uk, u0), ̂dλ(uk, u0)
]

= θ

}

,

C0

(

E1
)

:=

{

u = (uk) ∈ w
(

E1
)

: lim
k

sup
λ∈[0,1]

λ
[

d1

(

uk, 0
)

, ̂dλ

(

uk, 0
)]

= θ

}

.

(2.6)
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In [6], Kong and Cho has proved that the fuzzy convergent sequence spaces of fuzzy numbers
C(E1) and fuzzy bounded sequence spaces of fuzzy numbers L∞(E1) are fuzzy complete
metric spaces with fuzzy metric ̂df defined by

̂df(u, v) = sup
k

sup
λ∈[0,1]

λ
[

d1(uk, vk), ̂dλ(uk, vk)
]

. (2.7)

Now, let us give some definitions that will facilitate our work.
A sequence u = (un) in E1 is said to be a fuzzy fundamental sequence if forever ε > 0,

there exists an integer n0 such that df(un, um) < ε for n,m > n0. A fuzzy metric space (E1, df)
is called the fuzzy complete metric space if every fundamental sequence converges in E1.

Theorem 2.7 (see [10–12]). The sequence u in E1 is fuzzy convergent in the metric df if and only if
u is a fuzzy fundamental sequence.

Theorem 2.8. The fuzzy metric spaces (C(E1), ̂df) and (L∞(E1), ̂df) are fuzzy complete metric
spaces.

Theorem 2.9 (see [14]). Let U ⊂ E1, and let (uk) be a sequence of fuzzy functions from U to E1.
If for each k, there exists a real number Mk such that max{|(uk(U))−λ |, |(uk(U))+λ |} ≤ Mk for all
U ∈ U and λ ∈ (0, 1], and if the series

∑

k Mk converges, then there is a fuzzy function u : U → E1

such that
∑

k uk converges uniformly to u.

Now, let us define the sequence sets Cs(E1), Bs(E1), and Lp(E1) as the set of all fuzzy
convergent series of FNs, the set of all fuzzy bounded series of FNs, and the set of p-absolutely
fuzzy convergent series of the FNs, respectively, that is,

Cs
(

E1
)

=

{

u = (uk) ∈ w
(

E1
)

: lim
n

sup
λ∈[0,1]

λ

[

d1

(

n
∑

k=1

uk, u0

)

, ̂dλ

(

n
∑

k=1

uk, u0

)]

= 0

}

,

Bs
(

E1
)

=

{

u = (uk) ∈ w
(

E1
)

: sup
n

sup
λ∈[0,1]

λ

[

d1

(

n
∑

k=1

uk, 0

)

, ̂dλ

(

n
∑

k=1

uk, 0

)]

< ∞
}

,

Lp

(

E1
)

=

⎧

⎨

⎩

u = (uk) ∈ w
(

E1
)

:

(

∑

k

( sup
λ∈[0,1]

λ[d1(uk, 0), ̂dλ(uk, 0)])
p

)1/p

< ∞, 1 ≤ p < ∞
⎫

⎬

⎭

.

(2.8)

Let us see the following theorems which about the sets L∞(E1), C(E1), and C0(E1).

Theorem 2.10. The sets L∞(E1), C(E1), and C0(E1) are fuzzy complete module spaces defined by
fuzzy module

‖u‖ = sup
k

sup
λ∈[0,1]

λ
[

d1

(

uk, 0
)

, ̂dλ

(

uk, 0
)]

. (2.9)
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Proof. Since the proof for C(E1) and C0(E1) can be proved in a similar way, we will consider
only L∞(E1). Clearly, it is straightforward to see that ‖u‖ is a fuzzy module on L∞(E1). To
show that L∞(E1) is fuzzy complete in this fuzzy module, let us suppose that (uk) is a fuzzy
fundamental sequence in L∞(E1) where (uk) = (u(i)

0 , u
(i)
1 , u

(i)
2 , . . .), then, for any ε > 0, there

exists an integer n0 such that

∥

∥

∥ui
k − u

j

k

∥

∥

∥ = sup
k

sup
λ∈[0,1]

λ
[

d1

(

ui
k(1) − u

j

k(1), 0
)

, ̂dλ

(

ui
k(α) − u

j

k(α), 0
)]

≤ [ε, ε] = ε,

(2.10)

for i, j ≥ n0. Hence, we obtain |ui
k(1)

− − u
j

k(1)
−| < ε/λ and supα∈[λ,1] max{|ui−

k (α) −
u
j−
k (α)|, |ui+

k (α) − u
j+
k (α)|} < ε/λ. This shows that (ui

k(1)
−) is fundamental sequence of

real numbers in R, and (ui
k(α)) is fundamental sequence of fuzzy numbers in E1. Since

R and E1 are complete, so (ui
k
(1)) converges in R and (ui

k
(α)) converges in E1 for all

k ∈ N.
Let us suppose that limi u

i
k
(1)− = uk(1)

− and limi u
i
k
(α) = uk(α) for each k ∈ N.

Put u(1)− = (uk(1)
−) and u(α) = (uk(α)). Now, we shall show that limi u

i(1)− = u(1)− and
u(1)− ∈ R, limi u

i(α) = u(α) and u(α) ∈ E1. Since (ui(1)) is a fundamental sequence in R,
given ε > 0, there exists n0 ∈ N such that for i, j > n0, |ui(1) − uj(1)| < ε/λ, and if we take
limit over j, we get |ui(1) − u(1)| < ε/λ. Therefore, limi u

i(1) = u(1). Similarly, since (ui
k(α))

is a fundamental sequence in E1, given ε > 0, there exists n0 ∈ N such that for i, j > n0,
supα∈[λ,1] max{|ui−

k
(α) − u

j−
k
(α)|, |ui+

k
(α) − u

j+
k
(α)|} < ε/λ, and if we take limit over j we get

supα∈[λ,1] max{|ui−
k
(α) − u−

k
(α)|, |ui+

k
(α) − u+

k
(α)|} < ε/λ < ε. Therefore, limi u

i(α) = uk(α). Let
us show that uk(1)

− ∈ R and uk(α) ∈ E1. Also, since |u(1)−| ≤ |u(1)− − ui
k(1)

−| + |ui
k(1)

−| < ∞
and supα∈[λ,1] max{|u−

k
(α)|, |u+

k
(α)|} ≤ supα∈[λ,1] max{|u−

k
(α) − ui−

k
(α)|, |u+

k
(α) − ui+

k
(α)|} +

supα∈[λ,1] max{|ui−
k
(α)|, |ui+

k
(α)|} < ∞, this shows that u ∈ L∞(E1).

Theorem 2.11. The space Lp(E1) is fuzzy complete module space defined by module

‖u‖Lp(E1) =

(

∑

k

(

sup
λ∈[0,1]

λ
[

d1

(

uk, 0
)

, ̂dλ

(

uk, 0
)]

)p)1/p

< ∞, 1 ≤ p < ∞. (2.11)

Proof. Since the proof is similar to the proof of the Theorem 2.10, we omit it.

3. Construction of the Fuzzy Duals of the Fuzzy Module
Sequence Spaces

For the fuzzy sequence spaces λ(E1) and μ(E1), define the set S(λ(E1), μ(E1)) by

S
(

λ
(

E1
)

, μ
(

E1
))

=
{

u ∈ w
(

E1
)

: uv = (ukvk) ∈ μ
(

E1
)

∀u = (uk) ∈ λ
(

E1
)}

.

(3.1)
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With the notation of (3.1), the fuzzy α-, fuzzy β-, and fuzzy γ-duals of a fuzzy sequence space
λ(E1), which are, respectively, denoted by λα(E1), λβ(E1), and λγ(E1), are defined by

λα
(

E1
)

= S
(

λ
(

E1
)

,L1

(

E1
))

,

λβ
(

E1
)

= S
(

λ
(

E1
)

,Cs
(

E1
))

,

λγ
(

E1
)

= S
(

λ
(

E1
)

,Bs
(

E1
))

.

(3.2)

Definition 3.1. Let us suppose that λ(E1), μ(E1) are sets of the fuzzy sequences of FNs and
λ(E1) ⊂ μ(E1), then λ(E1) is called fuzzy cofinal in μ(E1) if for (uk) ∈ λ(E1) there is (vk) ∈
μ(E1) such that ‖uk‖ ≤ ‖vk‖ for all k ∈ N.

If λ(E1) is fuzzy cofinal in μ(E1), then λα(E1) = μα(E1); the converse of this assertion is
not true.

Now, wemay give results concerning the fuzzy α-dual, fuzzy β-dual, and fuzzy γ-dual
of the sets C0(E1), C(E1), L∞(E1), and Lp(E1).

Theorem 3.2. The fuzzy α-dual of the set L∞(E1) of sequence spaces of FNs is the set L1(E1).

Proof. Let (uk) ∈ Lα
∞(E

1). If we consider (vk) = ([1, 1]) ∈ L∞(E1), then the series

∑

k

(

sup
λ∈[0,1]

λ
[

d1

(

ukvk, 0
)

, ̂dλ

(

ukvk, 0
)]

)

=
∑

k

(

sup
λ∈[0,1]

λ

[

∣

∣u−
k(1)v

−
k(1)
∣

∣, sup
α∈[λ,1]

max
{∣

∣u−
k(α)v

−
k(α)

∣

∣,
∣

∣u+
k(α)v

+
k(α)

∣

∣

}

])

≤
∑

k

(

sup
λ∈[0,1]

λ

[

∣

∣u−
k(1)
∣

∣, sup
α∈[λ,1]

max
{∣

∣u−
k(α)

∣

∣,
∣

∣u+
k(α)

∣

∣

}

]

sup
λ∈[0,1]

λ

[

∣

∣v−
k(1)
∣

∣, sup
α∈[λ,1]

max
{∣

∣v−
k(α)

∣

∣,
∣

∣v+
k(α)

∣

∣

}

])

=
∑

k

(

sup
λ∈[0,1]

λ
[

d1

(

uk, 0
)

, ̂dλ

(

uk, 0
)]

)

(3.3)

converges, that is to say, (uk) ∈ L1(E1). Therefore, we have

Lα
∞
(

E1
)

⊆ L1

(

E1
)

. (3.4)



8 Abstract and Applied Analysis

Conversely, let us suppose that (uk) ∈ L∞(E1) and (vk) ∈ L1(E1), then there exists a
0 < K ∈ E1 such thatK = supksupλ∈[0,1]λ[|d1(uk(1), 0), ̂dλ(uk(α), 0)] < ∞. From here, we have

∑

k

(

sup
λ∈[0,1]

λ
[

d1

(

uk(1)vk(1), 0
)

, ̂dλ

(

uk(α)vk(α), 0
)]

)

=
∑

k

(

sup
λ∈[0,1]

λ
[

d1

(

vk(1), 0
)

, ̂dλ

(

vk(α), 0
)]

)

‖u‖

≤ K
∑

k

(

sup
λ∈[0,1]

λ
[

d1

(

vk(1), 0
)

, ̂dλ

(

vk(α), 0
)]

)

= K‖v‖L1(E1) < ∞,

(3.5)

which gives that

L1

(

E1
)

⊆ Lα
∞
(

E1
)

. (3.6)

From (3.4) and (3.6), we see that L1(E1) = Lα
∞(E

1).

Theorem 3.3. The fuzzy sequence spaces C0(E1), C(E1) are cofinal in L1(E1).

Proof. Denote any of the spaces C0(E1) and C(E1) by λ(E1), and suppose that ‖uk‖ ≤ ‖vk‖
holds for some (vk) ∈ L1(E1), then we can easily see that supk‖uk‖ ≤ supk‖vk‖, limk‖uk‖ ≤
supk‖vk‖ which lead us to the desired results.

Theorem 3.4. The fuzzy α-dual of the sets C0(E1) and C(E1) of sequence spaces of FNs is the set
L1(E1).

Proof. Since the sets C0(E1) and C(E1) are cofinal in L∞(E1) (see Theorem 3.3), the proof is
clear.

Theorem 3.5. The fuzzy β-dual of the sets C(E1) and L∞(E1) of sequence spaces of FNs is the set
L1(E1).

Proof. We give the proof only for the set L∞(E1). Let us suppose that (uk) ∈ L∞(E1) and
(vk) ∈ w(E1), then there is a K > 0 such that K = [K1, K2] = supksupλ∈[0,1]λ[d1(uk(1), 0),
̂dλ(uk(α), 0)] < ∞, also since

∣

∣u−
k(1)v

−
k(1)
∣

∣ = d1

(

ukvk, 0
)

≤ d1

(

uk, 0
)

d1

(

vk, 0
)

≤ K1d1

(

vk, 0
)

,

∣

∣u−
k(α)v

−
k(α)

∣

∣ ≤ dλ

(

ukvk, 0
)

≤ dλ

(

uk, 0
)

dλ

(

vk, 0
)

≤ K1dλ

(

vk, 0
)

,

∣

∣u+
k(α)v

+
k(α)

∣

∣ ≤ dλ

(

ukvk, 0
)

≤ dλ

(

uk, 0
)

dλ

(

vk, 0
)

≤ K1dλ

(

vk, 0
)

.

(3.7)

The series
∑

k(u
−
k(α)v

−
k(α)),

∑

k(u
+
k(α)v

+
k(α)), and

∑

k(u
−
k(1)v

−
k(1)) are convergent

uniformly from Theorem 2.9; therefore,
∑

k ukvk converges whenever
∑

k d1(vk, 0) and
∑

k dλ(vk, 0) converge. From here, we can write L1(E1) ⊆ L
β
∞(E1).



Abstract and Applied Analysis 9

Finally, we will show that the inclusion L
β
∞(E1) ⊆ L1(E1) is held. Let us suppose that

(vk) ∈ L
β
∞(E1), then we have

∑

k(supλ∈[0,1]λ[d1(uk(1)vk(1), 0), ̂dλ(uk(α)vk(α), 0)]) < ∞ for all

(uk) ∈ L∞(E1). This holds for the sequence (uk) = ([1, 1]) ∈ L∞(E1), then we can write

∑

k

(

sup
λ∈[0,1]

λ
[

d1

(

uk(1)vk(1), 0
)

, ̂dλ

(

uk(α)vk(α), 0
)]

)

= K
∑

k

(

sup
λ∈[0,1]

λ
[

d1

(

vk(1), 0
)

, ̂dλ

(

vk(α), 0
)]

)

= ‖v‖L1(E1).

(3.8)

This shows that v ∈ L1(E1).

Proposition 3.6. The γ-dual of the set L∞(E1) of sequence spaces fuzzy numbers is the set L1(E1).

4. Fuzzy Matrix Transformations

Let λ(E1) and μ(E1) be two sequence spaces of fuzzy numbers, and letA = (ank) be an infinite
matrix of fuzzy numbers ank and u = (uk) ∈ λ(E1), where n, k ∈ N = {0, 1, 2, . . .}, then we
can say that A defines a matrix mapping from λ(E1) to μ(E1), and we denote it by writing
A : λ(E1) → μ(E1) if for every sequence u = (uk) ∈ λ(E1), the sequence Au = {(Au)n}, the
A-transform of u, is in μ(E1), where

Au =
∑

k

ankuk. (4.1)

For simplicity in notation, here and in what follows, the summation without limits runs from
0 to ∞. By (λ(E1) : μ(E1)), we denote the class of matrices A such that A : λ(E1) → μ(E1).
Thus, A ∈ (λ(E1) : μ(E1)) if and only if the series on the right side of (4.1) converges for each
n ∈ N.

When doesA ∈ (L∞(E1) : L∞(E1))? It is obvious that sufficient and efficient conditions
for this are in following theorem.

Theorem 4.1. A ∈ (L∞(E1) : L∞(E1)) if and only if

‖A‖ = sup
n

∑

k

sup
λ∈[0,1]

λ
[

d1

(

ank(1), 0
)

, ̂dλ

(

ank(α), 0
)]

< ∞. (4.2)

Proof. Let us suppose that (4.2) holds and u ∈ L∞(E1), then

‖Au‖L∞(E1) = sup
n

sup
λ∈[0,1]

λ

[

d1

(

∑

k

ankuk(1), 0

)

, ̂dλ

(

∑

k

ankuk(α), 0

)]

≤ sup
n

∑

k

sup
λ∈[0,1]

λ
[

d1

(

ankuk(1), 0
)

, ̂dλ

(

ankuk(α), 0
)]

≤ M‖u‖L∞(E1) < ∞,

(4.3)

that is, Au ∈ �∞(E1).
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Conversely, let us suppose that A ∈ (L∞(E1) : L∞(E1)) and u ∈ L∞(E1), then, since
Au ∈ L∞(E1) exists, the series

∑

k ankuk converges for each fixed n ∈ N, and hence A ∈
L
β
∞(E1). This holds for the sequence (uk) = ([1, 1]) ∈ L∞(E1), then, we can write

‖Au‖L∞(E1) = sup
n

sup
λ∈[0,1]

λ

[

d1

(

∑

k

ankuk(1), 0

)

, ̂dλ

(

∑

k

ankuk(α), 0

)]

≤ sup
n

sup
λ∈[0,1]

λ

[

d1

(

∑

k

ank(1), 0

)

, ̂dλ

(

∑

k

ank(α), 0

)]

sup
n

sup
λ∈[0,1]

λ
[

d1

(

un(1), 0
)

, ̂dλ

(

un(α), 0
)]

≤ M sup
n

sup
λ∈[0,1]

λ

[

d1

(

∑

k

ank(1), 0

)

, ̂dλ

(

∑

k

ank(α), 0

)]

< ∞

(4.4)

which means that (4.2) holds.

Theorem 4.2. Let limn supλ∈[0,1]λ[d1(ank(1), 0), ̂dλ(ank(α), 0)] = 0 (k fixed), and suppose that
(4.2) is held, then A = (ank) defines a bounded operator on C0(E1) into itself, where ank ∈ E1 for all
n, k ∈ N.

Proof. Let u = (uk) ∈ C0(E1). If u = (uk) = 0, then An(u) =
∑

k ankuk = 0, for all n ∈ N.
Hence, A(u) ∈ C0(E1). Now, we suppose that u/= 0. Then, under conditions of hypothesis,
since u ∈ C0(E1) and

∑

k supλ∈[0,1]λ[d1(ank(1), 0), ̂dλ(ank(α), 0)] < ∞, for all n ∈ N, the series
∑

k ankuk is fuzzy absolute convergent for all n ∈ N,

‖An(u)‖C0(E1) = sup
n

sup
λ∈[0,1]

λ

[

d1

(

∑

k

ank(1)uk(1), 0

)

, ̂dλ

(

∑

k

ank(α)uk(α), 0

)]

≤ sup
n

∑

k

sup
λ∈[0,1]

λ
[

d1

(

ank(1)uk(1), 0
)

, ̂dλ

(

ank(α)uk(α), 0
)]

= sup
n

m
∑

k=0

sup
λ∈[0,1]

λ
[

d1

(

ank(1)uk(1), 0
)

, ̂dλ

(

ank(α)uk(α), 0
)]

+ sup
n

∑

k≥m+1

sup
λ∈[0,1]

λ
[

d1

(

ank(1)uk(1), 0
)

, ̂dλ

(

ank(α)uk(α), 0
)]

≤ sup
n

m
∑

k=0

sup
λ∈[0,1]

λ
[

d1

(

ank(1), 0
)

, ̂dλ

(

ank(α), 0
)]

sup
λ∈[0,1]

λ
[

d1

(

uk(1), 0
)

, ̂dλ

(

uk(α), 0
)]
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+ sup
n

∑

k≥m+1

sup
λ∈[0,1]

λ
[

d1

(

ank(1), 0
)

, ̂dλ

(

ank(α), 0
)]

sup
λ∈[0,1]

λ
[

d1

(

uk(1), 0
)

, ̂dλ

(

uk(α), 0
)]

≤ ‖u‖sup
n

m
∑

k=0

sup
λ∈[0,1]

λ
[

d1

(

ank(1), 0
)

, ̂dλ

(

ank(α), 0
)]

+M sup
λ∈[0,1]

λ
[

d1

(

uk(1), 0
)

, ̂dλ

(

uk(α), 0
)]

.

(4.5)

Since u ∈ C0(E1), for enough big k > n0, we can write

sup
λ∈[0,1]

λ
[

d1

(

uk(1), 0
)

, ̂dλ

(

uk(α), 0
)]

<
ε

2M, (4.6)

and from limn supλ∈[0,1]λ[d1(ank(1), 0), ̂dλ(ank(α), 0)] = 0 (k fixed), we can choose n so large
that

m
∑

k=0

sup
λ∈[0,1]

λ
[

d1

(

ank(1), 0
)

, ̂dλ

(

ank(α), 0
)]

≤ ε

2 supksupλ∈[0,1]λ
[

d1

(

uk(1), 0
)

, ̂dλ

(

uk(α), 0
)] .

(4.7)

From (4.6) and (4.7), we see that Au ∈ C0(E1). Finally, we will show that A is bounded as
follows:

‖Au‖C0(E1) = sup
n

sup
λ∈[0,1]

λ

[

d1

(

∑

k

ank(1)uk(1), 0

)

, ̂dλ

(

∑

k

ank(α)uk(α), 0

)]

≤ sup
n

∑

k

sup
λ∈[0,1]

λ
[

d1

(

ank, 0
)

, ̂dλ

(

ank(α), 0
)]

sup
n

sup
λ∈[0,1]

λ
[

d1

(

uk(1), 0
)

, ̂dλ

(

uk(α), 0
)]

≤ M‖u‖C0(E1).

(4.8)

The above theorem shows that a certain type of matrix defines a linear operator on
C0(E1) into itself.
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