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We consider the stability of stationary solutionsw for the exterior Navier-Stokes flowswith a nonz-
ero constant velocity u∞ at infinity. For u∞ = 0 with nonzero stationary solution w, Chen (1993),
Kozono andOgawa (1994), and Borchers andMiyakawa (1995) have studied the temporal stability
in Lp spaces for 1 < p and obtained good stability decay rates. For the spatial direction, we recently
obtained some results. For u∞ /= 0, Heywood (1970, 1972) and Masuda (1975) have studied the
temporal stability in L2 space. Shibata (1999) and Enomoto and Shibata (2005) have studied the
temporal stability in Lp spaces for p ≥ 3. Then, Bae and Roh recently improved Enomoto and
Shibata’s results in some sense. In this paper, we improve Bae and Roh’s result in the spaces Lp for
p > 1 and obtain Lr -Lp stability as Kozono and Ogawa and Borchers and Miyakawa obtained for
u∞ = 0.

1. Introduction

The motion of nonstationary flow of an incompressible viscous fluid past an isolated rigid
body is formulated by the following initial boundary value problem of the Navier-Stokes
equations:

∂

∂t
u −Δu + (u · ∇)u +∇p = f, ∇ · u = 0 in Ω × (0,∞),

u|t=0 = u0, u|∂Ω = 0, lim
|x|→∞

u(x, t) = u∞,
(1.1)

where Ω is an exterior domain in Rn with a smooth boundary ∂Ω, and u∞ denotes a given
constant vector describing the velocity of the fluid at infinity. In this paper, we consider a
nonzero constant u∞. The physical model of the exterior Navier-Stokes equations with a
nonzero constant u∞ can be considered as the motion of water in the sea when a boat is
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moving with the speed −u∞, while the one with zero constant u∞ can be considered when a
boat is stopped. There are few known results for the case u∞ /= 0, while, with u∞ = 0, many
results were obtained for the temporal decay and weighted estimates of solutions of (1.1)
(refer [1–12]).

Now, we set u = u∞ + v in (1.1) and have

∂

∂t
v −Δv + (u∞ · ∇)v + (v · ∇)v +∇p1 = f, ∇ · v = 0 in Ω × (0,∞),

v|t=0 = u0 − u∞, v|∂Ω = −u∞, lim
|x|→∞

v(x, t) = 0.
(1.2)

Consider the following linear problem:

∂

∂t
u −Δu + (u∞ · ∇)u +∇p = 0, ∇ · u = 0 in Ω × (0,∞),

u|t=0 = u0, u|∂Ω = 0, lim
|x|→∞

u(x, t) = 0,
(1.3)

which is referred to as the Oseen equations; see [13].
In order to formulate the problem (1.3), Enomoto and Shibata [14] used the Helmholtz

decomposition:

Lp(Ω)n = Jp(Ω) ⊕Gp(Ω), (1.4)

where 1 < p < ∞,

Lp(Ω)n =
{
u = (u1, . . . , un) : uj ∈ Lp(Ω), j = 1, . . . , n

}
,

C∞
0,σ =

{
u = (u1, . . . , un) ∈ C∞

0 (Ω)n : ∇ · u = 0 in Ω
}
,

Jp(Ω) = the completion of C∞
0,σ(Ω), in Lp(Ω)n,

Gp(Ω) =
{
∇π ∈ Lp(Ω)n : π ∈ Lp,loc

(
Ω
)}

.

(1.5)

The Helmholtz decomposition of Lp(Ω)n was proved by Fujiwara and Morimoto [15],
Miyakawa [16], and Simader and Sohr [17]. Let P be a continuous projection from Lp(Ω)n

onto Jp(Ω)n.
By applying P into (1.3) and setting Ou∞ = P(−Δ + u∞ · ∇), one has

ut +Ou∞u = 0, for t > 0, u(0) = u0, (1.6)

where the domain of Ou∞ is given by

Dp(Ou∞) =
{
u ∈ Jp(Ω) ∩W2

p(Ω)n : u|∂Ω = 0
}
. (1.7)
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Then, Enomoto and Shibata [14] proved that Ou∞ generates an analytic semigroup {T(t)}t≥0
which is called the Oseen semigroup (one can also refer to [16, 18]) and obtained the fol-
lowing properties.

Proposition 1.1. Let σ0 > 0 and assume that |u∞| ≤ σ0. Let 1 ≤ r ≤ q ≤ ∞, then

‖T(t)a‖Lq(Ω) ≤ Cr,q,σ0t
−(3/2)(1/r−1/q)‖a‖Lr(Ω), t > 0, (1.8)

where (r, q)/= (1, 1) and (∞,∞),

‖∇T(t)a‖Lq(Ω) ≤ Cr,q,σ0t
−(3/2)(1/r−1/q)−1/2‖a‖Lr(Ω), t > 0, (1.9)

where 1 ≤ r ≤ q ≤ 3 and (r, q)/= (1, 1).

The main purpose of this paper is to discuss the temporal stability of stationary sol-
ution w of the nonlinear Navier-Stokes equation (1.2). One can note that w satisfies the fol-
lowing equations:

−Δw + (u∞ · ∇)w + (w · ∇)w +∇p2 = f, ∇ ·w = 0,

w|∂Ω = −u∞, lim
|x|→∞

w(x) = 0.
(1.10)

For suitable f, Shibata [19] proved that, for any given 0 < δ < 1/4, there exists ε such
that if 0 < |u∞| ≤ ε, then one has

‖w‖p,2 + |‖w‖|δ +
∥∥p2

∥∥
p,1 ≤ |u∞|β, (1.11)

where

‖u‖p,m = ‖∂mu‖Lp(Ω),

|‖u‖|δ = sup
x∈Ω

(1 + |x|)(1 + su∞(x))
δ|u(x)| + sup

x∈Ω
(1 + |x|)3/2(1 + su∞(x))

1/2+δ|∇u(x)|,

su∞(x) = |x| − xT · u∞
|u∞| δ < β < 1 − δ.

(1.12)

Throughout this paper, we assume that f satisfies the assumption in Shibata [19]. Now, we
consider the polar coordinate system

y1 = r cos θ, y2 = r sin θ cosφ, y3 = r sin θ sinφ, (1.13)

for 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π , and 0 ≤ r < ∞. Let S be an orthogonal matrix such that Su∞ =
|u∞|(1, 0, 0)T and put s(y) = |y| − y1. By a change of variable y = Sx,

|x| = ∣∣y
∣∣ = r, su∞(x) = s

(
y
)
= r(1 − cos θ). (1.14)
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See Shibata [19] for the detail. Now, by using the above change of variable, we can see easily
that w satisfies

‖w‖L3/(1+δ1)(Ω) + ‖w‖L3/(1−δ2)(Ω) + ‖∇w‖L3/(2+δ1)(Ω) + ‖∇w‖L3/(2−δ2)(Ω) ≤ C|u∞|1/2, (1.15)

for small δ1, δ2, where C is independent on u∞.
One can also refer to [20] for more general cases of the existence and regularity of

stationary Navier-Stokes equations.
For the stability of stationary solutionsw, by setting u = v−w and p = p1 −p2 for v, p1,

w, p2 in (1.2) and (1.10), we have the following equations in Ω:

∂

∂t
u −Δu+(u∞ · ∇)u+(u · ∇)w+(w · ∇)u +(u · ∇)u+∇p = 0,

∇ · u = 0,

u(x, 0) = u0(x) for x ∈ Ω,

u(x, t) = 0 for x ∈ ∂Ω, lim
|x|→∞

u(x, t) = 0.

(1.16)

Here, in fact, the initial data should be u0 − u∞ −w, but for our convenience, we denote by u0

for u0 − u∞ −w if there is no confusion.
First, Heywood [21, 22] and Masuda [23] have studied the temporal stability in L2

space. Shibata [19] proved that there exists small ε such that if 0 < |u∞| ≤ ε and ‖u0‖3 ≤ ε,
then a unique solution u(x, t) of (1.16) has the following properties: for any 3 < p < ∞,

[u]3,0,t + [u]p,μ(p),t + [∇u]3,1/2,t ≤
√
ε,

lim
t→ 0+

[
‖u(t) − u0‖3 + [u]p,μ(p),t + [∇u]3,1/2,t

]
= 0,

(1.17)

where

[z]p,ρ,t = sup
0<s<t

sρ‖z(s, ·)‖p, μ
(
p
)
=

1
2
− 3
2p

. (1.18)

After that, Enomoto and Shibata [14] considered the stability for arbitrary u∞ by
deleting the smallness condition of |u∞|. But in this case, all constants in their results depend
on σ0 when |u∞| ≤ σ0. Also, they assumed the existence of stationary solution w with

‖w‖L3/(1+δ1)(Ω) + ‖w‖L3/(1−δ2)(Ω) + ‖∇w‖L3/(2+δ1)(Ω) + ‖∇w‖L3/(2−δ2)(Ω) ≤ α, (1.19)

for small δ1, δ2 and α. Then, as a result, they proved (1.16) has a unique solution u(x, t) with

lim
t→ 0+

{
‖u(t) − u0‖3 + t1/2(‖u(t)‖L∞ + ‖∇u(t)‖L3)

}
= 0,

‖u(t)‖u(t) = o
(
t−((1/2)−(3/2p))

)
, for any 3 ≤ p ≤ ∞,

‖∇u(t)‖3 = o
(
t−1/2

)
(1.20)

as t → ∞when u0 is small enough in the space L3(Ω).
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Also, Bae and Roh [24] improved Enomoto-Shibata’s result in some sense. But their
result is limited in the space Lp for 3/2 < p, while we consider all 1 < p. Moreover, their result
depends on s and r, while ours only depends on r, where w ∈ Ls and u0 ∈ Lr . Also, their
optimal decay rate is 2/3 + δ, while ours is 3/2 + δ.

Now, in the next main Theorem, we settle the temporal stability of stationary solutions
for the Navier-Stokes equations with a nonzero constant vector at infinity. The idea of the
proof is initiated by Kato [25] for w = 0 and a very well-known method. Also, for w/= 0 with
u∞ = 0, Kozono and Ogawa [12] also used similar method.

Theorem 1.2. There exists small ε(p, q, r) such that if 0 < |u∞| ≤ ε and ‖u0‖L3(Ω) < ε, then a unique
solution u(x, t) of (1.16) has the following properties:

‖u(t)‖Lp(Ω) ≤ Cεt
−3/2(1/r−1/p)‖u0‖r for 1 < r < p ≤ ∞, t > 0,

‖∇u(t)‖Lq(Ω) ≤ Cεt
−3/2(1/r−1/q)−1/2‖u0‖r for 1 < r < q ≤ 3, t > 0,

(1.21)

where u0 ∈ L3(Ω) ∩ Lr(Ω).

2. Proof of Main Theorem

First, we consider the following linear problem:

∂

∂t
u −Δu + (u∞ · ∇)u + (w · ∇)u + (u · ∇)w +∇p = 0,

∇ · u = 0,

u|t=0 = u0, u|∂Ω = 0, lim
|x|→∞

u(x, t) = 0.

(2.1)

By applying Helmholtz-Leray projection P and setting

Lu = P[−Δu + (u∞ · ∇)u + (w · ∇)u + (u · ∇)w]

= Ou∞u + P[(w · ∇)u + (u · ∇)w],
(2.2)

we have

ut +Lu = 0, for t > 0, u(0) = u0. (2.3)

And we note that the domain of L is

Dp(L) = Dp(Ou∞) =
{
u ∈ Jp(Ω) ∩W2

p(Ω)n|u|∂Ω = 0
}
. (2.4)
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Let S(t) be a semigroup generated by the linear operator L, then, by Duharmel’s
Principle, a solution u(x, t) of (2.1) can be written as in the following integral form,

u(x, t) = S(t)u0 = T(t)u0 +
∫ t

0
T(t − τ)P[(w · ∇)u + (u · ∇)w] dτ, (2.5)

where T(t) is an analytic semigroup generated by the Oseen operator Ou∞ .

Lemma 2.1. Let u0 ∈ L3(Ω) ∩ Lr(Ω) for 1 < r < 3, then there exists a small ε(p, q, r) such that if
|u∞| ≤ ε and ‖u0‖L3(Ω) < ε, then a solution u(x, t) represented by (2.5) satisfies 1 < p ≤ ∞ with
1/r − 1/p < 2/3,

‖u(t)‖Lp(Ω) = ‖S(t)u0‖Lp(Ω) ≤ Cεt
−3/2(1/r−1/p)‖u0‖Lr(Ω), t > 0, (2.6)

and for 1 < q ≤ 3 with 1/r − 1/q < 1/3,

‖∇u(t)‖Lq(Ω) = ‖∇S(t)u0‖Lq(Ω) ≤ Cεt
−3/2(1/r−1/q)−1/2‖u0‖Lr(Ω), t > 0. (2.7)

Proof. Before we prove Lemma 2.1 note from (1.15) that we have

‖w‖L3/(1+δ1)(Ω) + ‖w‖L3/(1−δ2)(Ω) + ‖∇w‖L3/(2+δ1)(Ω) + ‖∇w‖L3/(2−δ2)(Ω) ≤ C|u∞|1/2, (2.8)

for small δ1, δ2 > 0. In fact, by straight calculations, we can choose any δ1, δ2 ≤ 3/16.

Step 1. Let 3 < p ≤ ∞ with 1/3 ≤ 1/r − 1/p < 2/3 and 3/2 < q ≤ 3 with 1/r − 1/q < 1/3. We
consider the following iteration method to obtain our estimates:

uk+1(t) = T(t)u0 +
∫ t

0
T(t − τ)P[(w · ∇)uk + (uk · ∇)w]dτ. (2.9)

We let 1/q − 1/p = 1/3 and

Mk
p = sup

t∈[0,∞)
tn/2(1/r−1/p)

∥∥∥uk(t)
∥∥∥
p
, Nk

q = sup
t∈(0,∞)

tn/2(1/r−1/q)+1/2
∥∥∥∇uk(t)

∥∥∥
q
. (2.10)

If t ≥ 2, then by Proposition 1.1, for small δ1, δ2 > 0, we have

∫ t

0
‖T(t − τ)P[(w · ∇)uk + (uk · ∇)w]‖pdτ

≤ C

[∫ t−1

0
(t − τ)−n/2(1/r1−1/p)‖(w · ∇)uk‖r1dτ +

∫ t

t−1
(t − τ)−n/2(1/r2−1/p)‖(w · ∇)uk‖r2dτ

+
∫ t−1

0
(t − τ)−n/2(1/r1−1/p)‖(uk · ∇)w‖r1dτ +

∫ t

t−1
(t − τ)−n/2(1/r2−1/p)‖(uk · ∇)w‖r2dτ

]
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≤ C|u∞|Nk
q

[∫ t−1

0
(t − τ)−1−δ1/2τ−3/2(1/r−1/q)−1/2dτ +

∫ t

t−1
(t − τ)−1+δ2/2τ−3/2(1/r−1/q)−1/2dτ

]

+ C|u∞|Mk
p

[∫ t−1

0
(t − τ)−1−δ1/2τ−3/2(1/r−1/p)dτ +

∫ t

t−1
(t − τ)−1+δ2/2τ−3/2(1/r−1/p)dτ

]

≤ C|u∞|
(
Mk

p +Nk
q

)
t−3/2(1/r−1/p),

(2.11)

where 1/r1 = 1/p + 2/3 + δ1/3 and 1/r2 = 1/p + 2/3 − δ2/3. If 0 < t < 2, then we have

∫ t

0
‖T(t − τ)P[(w · ∇)uk + (uk · ∇)w]‖pdτ

≤ C

[∫ t

0
(t − τ)−n/2(1/r3−1/p)‖(w · ∇)uk‖r3dτ +

∫ t

0
(t − τ)−n/2(1/r3−1/p)‖(uk · ∇)w‖r3dτ

]

≤ C|u∞|
(
Mk

p +Nk
q

)
t−3/2(1/r−1/p),

(2.12)

where 1/r3 = 1/p + 2/3 − δ2/3. So, we obtain

‖uk+1(t)‖p ≤ Ct−n/2(1/r−1/p)‖u0‖r + C|u∞|t−3/2(1/r−1/p)
[
Mk

p +Nk
q

]
, ∀t > 0, (2.13)

which implies

Mk+1
p ≤ C‖u0‖r + C|u∞|

(
Mk

p +Nk
q

)
. (2.14)

Similarly, we obtain for t ≥ 2,

‖∇uk+1(t)‖q ≤ ‖∇T(t)u0‖q +
∫ t

0
‖∇T(t − τ)P[(w · ∇)uk + (uk · ∇)w]‖qdτ

≤ Ct−n/2(1/r−1/q)−1/2‖u0‖r + C|u∞|Nk
q

∫ t−1

0
(t − τ)−1−δ1/2τ−3/2(1/r−1/q)−1/2dτ

+ C|u∞|Nk
q

∫ t

t−1
(t − τ)−1+δ2/3τ−3/2(1/r−1/q)−1/2dτ

+ C|u∞|Mk
p

∫ t

0
(t − τ)−n/2(1/r4−1/q)−1/2τ−3/2(1/r−1/p)dτ

≤ Ct−n/2(1/r−1/q)−1/2‖u0‖r + C|u∞|t−3/2(1/r−1/q)−1/2
[
Mk

p +Nk
q

]
,

(2.15)
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where 1/r4 = 2/3 + 1/p = 1/3 + 1/q. Also, for 0 < t < 2, we have

∫ t

0
‖∇T(t − τ)P[(w · ∇)uk + (uk · ∇)w]‖qdτ

≤ C|u∞|
(
Mk

p +Nk
q

)
t−3/2(1/r−1/q)−1/2+δ2/2 ≤ C|u∞|

(
Mk

p +Nk
q

)
t−3/2(1/r−1/q)−1/2.

(2.16)

Therefore, we get

Mk+1
p +Nk+1

q ≤ C‖u0‖r + C|u∞|
(
Mk

p +Nk
q

)
. (2.17)

So if C|u∞| < 1 (the constant C is bounded as |u∞| goes to zero, so we can make C|u∞| < 1 by
choosing small u∞), then we have some K such that

Mk+1
p +Nk+1

q < K, (2.18)

for all k. Hence, by taking the limit, we complete the proof.

Step 2. Now, we want to prove 1 < r < p ≤ 3. For this case, we choose 3/2 < q ≤ 3 and p1 > 3
such that

1
r
− 1
q
<

1
3
,

1
r
− 1
p1

<
2
3
. (2.19)

Then, we have

‖u(t)‖p ≤ ‖T(t)u0‖p +
∫ t

0
‖T(t − τ)P[(w · ∇)u + (u · ∇)w]‖pdτ

≤ Ct−3/2(1/r−1/p)‖u0‖r + C

∫ t

0
(t − τ)−3/2(1/r1−1/p)‖w‖3‖∇u‖qdτ

+ C

∫ t

0
(t − τ)−3/2(1/r2−1/p)‖u‖p1‖∇w‖3/2dτ

≤ Cεt
−3/2(1/r−1/p)‖u0‖r ,

(2.20)

where 1/r1 = 1/3 + 1/q and 1/r2 = 1/p1 + 2/3. One can note that 1/r1 − 1/p < 2/3 and
1/r2 − 1/p < 2/3.

Step 3. Now, we want to prove 1 < r < q ≤ 3/2. For this case, we choose 3/2 < q1 ≤ 3 and
p > 3 such that

1
r
− 1
q1

<
1
3
,

1
r
− 1
p
<

2
3
. (2.21)
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Similar to Step 2, we have

‖∇u(t)‖q ≤ ‖∇T(t)u0‖q +
∫ t

0
‖∇T(t − τ)P[(w · ∇)u + (u · ∇)w]‖qdτ

≤ Ct−3/2(1/r−1/q)−1/2‖u0‖r + C

∫ t

0
(t − τ)−3/2(1/r1−1/q)−1/2‖w‖3‖∇u‖q1dτ

+ C

∫ t

0
(t − τ)−3/2(1/r2−1/q)−1/2‖u‖p‖∇w‖3/2dτ

≤ Ct−3/2(1/r−1/q)−1/2‖u0‖r ,

(2.22)

where 1/r1 = 1/3 + 1/q1 and 1/r2 = 1/p + 2/3. One can note that 1/r1 − 1/q < 1/3 and
1/r2 − 1/q < 1/3.

Step 4. At last, we want to prove 3 < p < ∞ with 1/r − 1/p < 1/3. In this case, we can do
easily, by interpolation inequality, Steps 1 and 2.

Therefore, we complete the proof by Steps 1–4.

Now, by applying the Helmholtz-Leray projection P into (1.16), we can obtain

ut +Lu + P[(u · ∇)u] = 0, for t > 0, u(0) = u0, (2.23)

where

Lu = P[−Δu + (u∞ · ∇)u + (w · ∇)u + (u · ∇)w]

= Ou∞u + P[(w · ∇)u + (u · ∇)w],

Dp(L) = Dp(Ou∞) =
{
u ∈ Jp(Ω) ∩W2

p(Ω)n|u|∂Ω = 0
}
.

(2.24)

One can note from of [14, Lemma 2.6] that for 1 < p < ∞ and u ∈ Dp(L) = Dp(Ou∞),

‖u‖W2,p(Ω)≤ Cp

(
‖Ou∞u‖p + ‖u‖p

)
. (2.25)

Also, from (1.11), we have

‖(w · ∇)u + (u · ∇)w‖p ≤ (‖w‖∞ + ‖∇w‖∞)‖u‖W2,p(Ω)

≤ |u∞|‖u‖W2,p(Ω) ≤ Cp|u∞|
(
‖Ou∞u‖p + ‖u‖p

)
.

(2.26)

Since the linear operator Ou∞ generates an analytic semigroup T(t) (refer to [14, 19]), we
obtain an analytic semigroup S(t) generated by the linear operator L if |u∞| is small enough.
The proof is from perturbation theory of analytic semigroup (refer to [26, Theorem 2.4, page
499]).
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Remark 2.2. In Lemma 2.1, by the property of a semigroup, we can remove the conditions
1/r − 1/p < 2/3 for ‖u(t)‖Lp(Ω) and 1/r − 1/p < 1/3 for ‖∇u(t)‖Lp(Ω), because we have u(x, t)
= S(t)u0 = S(t/2)S(t/2)u0.

Now, we are in the position to prove Theorem 1.2. For the proof, we consider a solution
u(x, t) (1.16) as the limit of the following usual iteration method:

uk+1(t) = S(t)u0 −
∫ t

0
S(t − τ)P[(uk · ∇)uk]dτ. (2.27)

Here, we will prove by a similar method with the proof of Lemma 2.1. One can note
that we will prove without Remark 2.2.

Step 1. We prove that, for any p > 3, we have

‖∇u(t)‖3 < Ct−1/2, ‖u(t)‖p < Ct−1/2+3/2p, ∀t > 0. (2.28)

Let

Mk
p = sup

t∈[0,∞)
t1/2−3/2p

∥∥∥uk(t)
∥∥∥
p
, for p > 3,

Nk
3 = sup

t∈(0,∞)
t1/2

∥∥∥∇uk(t)
∥∥∥
3
.

(2.29)

By Lemma 2.1 and (2.27), we obtain

‖uk+1(t)‖p ≤ Ct−1/2+3/2p‖u0‖3 + C

∫ t

0
(t − τ)−1/2‖uk(t)‖p‖∇uk(t)‖3dτ

≤ Ct−1/2+3/2p‖u0‖3 + CMk
pN

k
3

∫ t

0
(t − τ)−1/2τ−1/2+3/2pτ−1/2dτ

≤ t−1/2+3/2p
[
C‖u0‖3 + CMk

pN
k
3

]
,

(2.30)

which implies

Mk+1
p ≤ C‖u0‖3 + CMk

pN
k
3 . (2.31)

Similarly, we have

‖∇uk+1(t)‖3≤Ct−1/2‖u0‖3+C
∫ t

0
(t − τ)−3/2p−1/2‖uk(t)‖p‖∇uk(t)‖3dτ ≤ t−1/2

[
C‖u0‖3+CMk

pN
k
3

]
,

(2.32)
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which implies

Nk+1
3 ≤ C‖u0‖3 + CMk

pN
k
3 . (2.33)

Hence, we have

Mk+1
p +Nk+1

3 < C‖u0‖3 + C
(
Mk

p +Nk
3

)2
. (2.34)

Now, we have a sequence of the form

xk+1 ≤ α + βx2
k, (2.35)

and we know that such sequence satisfies

xk ≤ M ≡ 1 − (
1 − 4αβ

)1/2

2β
<

1
2β

, if α <
1
4β

. (2.36)

Therefore, by recurrence estimates, smallness of ‖u0‖3 implies

Mk+1
p +Nk+1

3 < K, (2.37)

for some constant K. Finally, we obtain

‖∇u(t)‖3 < Ct−1/2, ‖u(t)‖p < Ct−1/2+3/2p, ∀t > 0. (2.38)

Step 2. We prove that if 3/2 < p with 1/r − 1/p < 1/3 and u0 ∈ Lr(Ω) ∩ L3(Ω), then we have

‖u(t)‖p ≤ Ct−3/2(1/r−1/p), ∀t > 0. (2.39)

Let

Mp = sup
t∈(0,∞)

t3/2(1/r−1/p)‖u(t)‖p. (2.40)

From estimates of Step 1, one can note that we have

‖∇u(t)‖3 ≤ Ct−1/2‖u0‖3, ∀t > 0. (2.41)
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So, we have

‖u(t)‖p ≤ Ct−3/2(1/r−1/p)‖u0‖r + C

∫ t

0
(t − τ)−n/2(1/r8−1/p)‖u(t)‖p‖∇u(t)‖3dτ

≤ Ct−n/2(1/r−1/p)‖u0‖r + C‖u0‖3
∫ t

0
(t − τ)−1/2τ−n/2(1/r−1/p)τ−1/2dτ

≤ t−n/2(1/r−1/p)
[
C‖u0‖r + C‖u0‖3Mp

]
,

(2.42)

which implies

Mp < C‖u0‖r + C‖u0‖3Mp, (2.43)

where 1/r8 = 1/3 + 1/p.
Hence, we complete the proof with C‖u0‖3 < 1.

Step 3. We prove that if 3/2 < q ≤ 3 with 1/r − 1/q < 1/3 and u0 ∈ Lr(Ω) ∩ L3(Ω), then we
have

‖∇u(t)‖q ≤ Ct−3/2(1/r−1/q)−1/2, ∀t > 0. (2.44)

Let

Nq = sup
t∈(0,∞)

tn/2(1/r−1/q)+1/2‖∇u(t)‖q. (2.45)

We choose some p1 ≈ 3 with p1 > 3 such that

‖∇u‖q ≤ Ct−n/2(1/r−1/q)−1/2‖u0‖r + C

∫ t

0
(t − τ)−n/2(1/r7−1/q)−1/2‖u‖p1‖∇u‖qdτ

≤ Ct−n/2(1/r−1/q)−1/2‖u0‖r + C‖u0‖3Nq

∫ t

0
(t − τ)−1/2−3/2pτ−1/2+3/2p1τ−n/2(1/r−1/q)−1/2dτ

≤ t−n/2(1/r−1/q)−1/2
[
C‖u0‖r + C‖u0‖3Nq

]
.

(2.46)

So we complete the proof with C‖u0‖3 < 1.

Step 4. We prove that if 1 < r < p < ∞, 1 < r < 3, and u0 ∈ Lr(Ω) ∩ L3(Ω), then we have

‖u(t)‖p ≤ Ct−3/2(1/r−1/p), ∀t > 0. (2.47)

Case 1 (let p > 3/2). Since we proved for 1/r − 1/p < 1/3 in Step 2, we can assume that
1/3 ≤ 1/r − 1/p. One notes that we can rewrite solutions u(t) in the form

u(t) = S

(
t

2

)
u
(
t

2

)
−
∫ t

t/2
S(t − τ)P[(u · ∇)u]dτ. (2.48)
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For any r > 1, we choose l > 3/2 such that 1/r − 1/l < 1/3 and 1/l − 1/p < 2/3. Also, for any
1 < r < p ≤ ∞ with 1 < r < 3, we choose s1 > 3 and 3/2 < s2 < 3 such that

1
r
− 1
s2

<
1
3
,

1
s1

+
1
s2

− 1
p
<

2
3
. (2.49)

Then, by Steps 1–3, we have

‖u(t)‖p ≤ Ct−3/2(1/l−1/p)
∥
∥
∥
∥u

(
t

2

)∥
∥
∥
∥
l

+ C

∫ t

t/2
(t − τ)−3/2(1/s−1/p)‖(u · ∇)u‖sdτ

≤ Ct−3/2(1/r−1/p)‖u0‖r + C‖u0‖r
∫ t

t/2
(t − τ)−3/2(1/s−1/p)τ−1/2−3/2(1/r−1/s2)τ−1/2+3/2s1dτ

≤ Ct−3/2(1/r−1/p)‖u0‖r , ∀t > 0.
(2.50)

Case 2 (let 1 < p ≤ 3/2). By Step 1–3, we have

‖u(t)‖p ≤ Ct−3/2(1/r−1/p)‖u0‖r + C

∫ t

0
(t − τ)−3/2(1/s−1/p)‖(u · ∇)u‖sdτ

≤ Ct−3/2(1/r−1/p)‖u0‖r + C‖u0‖r
∫ t

0
(t − τ)−3/2(1/s−1/p)τ−3/2(1/r−1/s1)τ−1/2dτ

≤ Ct−3/2(1/r−1/p)‖u0‖r , ∀t > 0,

(2.51)

where s1 > 3/2, 1/r − 1/s1 < 1/3, 1/s = 1/s1 + 1/3.

Step 5. We prove that if 1 < r < q ≤ 3 and u0 ∈ Lr(Ω) ∩ L3(Ω), then

‖∇u(t)‖q ≤ Ct−3/2(1/r−1/q)−1/2. (2.52)

Case 1 (let 3/2 < q ≤ 3). Since we proved 1/r − 1/q < 1/3 in Step 3, we can assume that
1/3 ≤ 1/r − 1/q. Now, we choose l > 3/2 such that 1/r − 1/l < 1/3 and 1/l − 1/q < 1/3. We
also can have s1 > 3 and 3/2 < s2 < 3 with

1
s
=

1
s1

+
1
s2
,

1
r
− 1
s2

<
1
3
,

1
s
− 1
q
<

1
3
. (2.53)
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So, by Step 1–4, we obtain

‖∇u(t)‖q ≤ Ct−3/2(1/l−1/q)−1/2
∥
∥
∥
∥u

(
t

2

)∥
∥
∥
∥
l

+ C

∫ t

t/2
(t − τ)−3/2(1/s−1/q)−1/2‖u(t)‖s1‖∇u(t)‖s2dτ

≤ Ct−3/2(1/r−1/q)−1/2‖u0‖r + C‖u0‖r

×
∫ t

t/2
(t − τ)−3/2(1/s−1/q)−1/2τ−1/2+3/2s1τ−3/2(1/r−1/s2)−1/2dτ

≤ Ct−3/2(1/r−1/q)−1/2‖u0‖r .
(2.54)

Case 2 (Let 1 < q ≤ 3/2). By Step 1-Step 3, we have

‖∇u(t)‖q ≤ Ct−3/2(1/r−1/q)−1/2‖u0‖r + C

∫ t

0
(t − τ)−3/2(1/s−1/q)−1/2‖(u · ∇)u‖sdτ

≤ Ct−3/2(1/r−1/q)−1/2‖u0‖r + C‖u0‖r
∫ t

0
(t − τ)−3/2(1/s−1/q)−1/2τ−3/2(1/r−1/s1)τ−1/2dτ

≤ Ct−3/2(1/r−1/q)−1/2‖u0‖r , ∀t > 0,
(2.55)

where s1 > 3/2, 1/r − 1/s1 < 1/3, 1/s = 1/s1 + 1/3, and 1/s − 1/q < 1/3.
Therefore, by Step 1–5, we complete the proof of Theorem 1.2.
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