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We present a decomposition of two topologies which characterize the upper and lower
semicontinuity of the limit function to visualize their hidden and opposite roles with respect to the
upper and lower semicontinuity and consequently the continuity of the limit. We show that (from
the statistical point of view) there is an asymmetric role of the upper and lower decomposition
of the pointwise convergence with respect to the upper and lower decomposition of the sticking
convergence and the semicontinuity of the limit. This role is completely hidden if we use the whole
pointwise convergence. Moreover, thanks to this mirror effect played by these decompositions, the
statistical pointwise convergence of a sequence of continuous functions to a continuous function
in one of the two symmetric topologies, which are the decomposition of the sticking topology,
automatically ensures the convergence in the whole sticking topology.

1. Introduction

Since the end of the nineteenth century several outstanding papers appeared to formulate
a set of conditions, which are both necessary and sufficient, to be added to pointwise
convergence of a sequence of continuous functions, to preserve continuity of the limit.
Indeed, all classical kinds of convergences of sequences of functions between metric spaces
(Dini, Arzelà, Alexandroff) are based on the pointwise convergence assumption that has been
always considered a preliminary one. Recently, in [1, 2], Caserta et al. proposed a new model
to investigate convergences in function spaces: the statistical one. Actually, they obtained
results parallel to the classical ones, concerning the continuity of the limit, in spite of the
fact that statistical convergence has a minor control of the whole set of functions. In [2] they
proved that continuity of the limit of a sequence of functions is equivalent to several modes of
statistical convergence which are similar, but weaker than the classical ones. A parallel to the
classical results is expected since, after all, in [3] the authors found the statistical convergence
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to be the same as a very special regular triangular matrix summability method for bounded
(and some unbounded) sequences. Thusmany new results concerning statistical convergence
follow from the corresponding known results for matrix summability.

In 1969 Bouleau [4, 5] defined the sticking topology as the weakest topology finer than
pointwise convergence to preserve continuity. In [6], Beer presented two new topologies on
R

X , finer than the topology of pointwise convergence, which are indeed the decomposition
of the sticking topology in upper and lower halves. For its upper part the closure of C(X) is
the set of all upper semicontinuous functions, and the pointwise convergence of a sequence
in C(X) to an upper semicontinuous limit automatically ensures convergence in this finer
topology. Beer also pointed out that the pointwise convergence within the set of all upper
semicontinuous functions does not ensure this convergence, even if the limit is continuous.

We realize that the pointwise convergence is a too strong assumption to analyze
the upper and lower semicontinuous limit of functions, and as a result continuity, in fact
the whole pointwise convergence conceals the properties that functions and limits must
satisfy. We offer a decomposition of the pointwise convergence in upper and lower halves
that will enable us to visualize their hidden and opposite roles with respect to the upper
and lower semicontinuity of limits and functions. We introduce two new properties for a
sequence of functions with respect to a prospective limit function and give a characterization
of upper (resp., lower) semicontinuity of the limit in terms of this new properties of the whole
sequence.

The decomposition of the pointwise convergence is necessary to expose the salient
features of these new important properties and display the asymmetric role of the upper and
lower decomposition of the topology of pointwise convergence with respect to the upper and
lower decomposition of the sticking topology. This phenomenon is completely concealed if
we consider the whole pointwise convergence within the set of all continuous functions.

Thanks to a careful analysis of the behavior of this decomposition and its interplay
with upper and lower semicontinuity of functions and limits, we can extend the results in
[2]. We prove that whole statistical pointwise convergence in C(X) ensures convergence in
the two symmetric topologies of the decomposition of the sticking topology, and therefore
the statistical pointwise convergence of a sequence of continuous functions to a continuous
function forces the convergence in a wider class of finer topologies.

2. Preliminaries

Let (X, d) be metric space. We denote the power set of X by P(X), the nonempty (resp.,
nonempty finite) subsets of X by P0(X) (resp., F0(X)). Let X be topological space, C(X)
denotes the set of all real valued continuous functions on X. Recall that a function f ∈ R

X is
upper (resp., lower) semicontinuous at x ∈ X if for every ε > 0 there is δ > 0 such that for all
y ∈ S(x, δ) then f(y) < f(x) + ε (resp., f(y) > f(x) − ε). Also f is upper semicontinuous if it
is upper semicontinuous at every x ∈ X. By L(X) (resp., U(X)) we denote the set of all real
valued lower (resp., upper) semicontinuous functions defined onX; evidentlyU(X)∩L(X) =
C(X).

A quas-iuniformity for a setX is a collection reflexive relationsU onX that forms a filter
and such that for every U ∈ U there is V ∈ U such that V ◦ V ⊆ U. The pair (X,U) is called
quasi-uniform space. A subfamily ̂U of U is a base for the quasi-uniformity U if it is cofinal
in Uwith respect to the inclusion; that is, for every U ∈ U, there is ̂U ∈ ̂U such that ̂U ⊆ U.

If U is a quasi-uniformity for X, then U′ = {U−1 : U ∈ U} where U−1 = {(x, y) :
(y, x) ∈ U}, is also a quasi-uniformity for X. The collections U and U′ are called conjugate
quasi-uniformities [7].
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The quasi-uniform space (X,U) will always be considered to be a topological space
with the topology obtained by using as the family of all neighborhoods of a point x0 ∈ X all
sets of the formU(x0) = {x ∈ X : (x0, x) ∈ U}, whereU runs overU. Such a topology is called
topology of the quasi-uniformity. Note that each topology onX is induced by a quasi-uniformity
(see [8, 9]), the most familiar of which is the Pervin quasi-uniformity [8].

A quasi-uniform space (X,U) is said to be a uniform space, and the family U will be
called a uniformity for X, if and only if the quasi-uniformity satisfies the symmetric relation:
if U ∈ U, then U−1 ∈ U. For a quasi-uniformity U the smallest uniformity containing U has
a base all sets of the form ̂U ∩ ̂U−1 where ̂U runs over a prescribed base for U. Moreover, a
topology is induced by a uniformity if and only if the space is completely regular [7, 10].

Let us familiarize the reader with the notion of statistical convergence, that first
appeared in 1935 under the name of almost convergence in the celebrated monograph of
Zygmund [11]. The definition of statistical convergence for sequences of real numbers was
given by Fast in [12] and is based on the notion of asymptotic density of a subset of natural
numbers. Let A ⊂ N and n ∈ N. Put A(n) := {k ∈ A : k ≤ n}. Then one defines

∂(A) := lim inf
n→∞

|A(n)|
n

,

∂(A) := lim sup
n→∞

|A(n)|
n

,

(2.1)

as the lower and upper asymptotic density of A, respectively. If ∂(A) = ∂(A), then

∂(A) = lim
n→∞

|A(n)|
n

(2.2)

is the asymptotic (or natural) density of A.
All the three densities, if they exist, are in [0, 1]. We recall also that ∂(N \A) = 1− ∂(A)

forA ⊂ N. A setA ⊂ X is said to be statistically dense if ∂(A) = 1. Let us mention that the union
and intersection of two statistically dense sets in N are also statistically dense. For additional
properties of the asymptotic density, in a more general setting, the reader might consult [13].

A sequence (xn)n∈N
in a topological space X is said to converge statistically (or shortly,

st-converge) to x ∈ X, if for every neighborhood U of x, ∂({n ∈ N : xn /∈ U}) = 0. This will be
denoted by (xn)n∈N

st-τ→ x, where τ is a topology on X.
It was shown [14] (see [15, 16] for X = R) that for first countable spaces this definition

is equivalent to the statement: there exists a subset A of N with ∂(A) = 1 such that the
sequence (xn)n∈A converges to x. Recently in [17], Çakalli and Khan pointed out that the
first countability is not a necessary condition.

3. Decomposition of Pointwise Convergence and
Weakly Exhaustiveness in R

X

Given F ∈ F0(X) and ε > 0, a base for the standard uniformity for the topology of pointwise
convergence τp on R

X consists of all entourages of the form

[F; ε]p :=
{(

f, g
)

: ∀x ∈ F
∣

∣f(x) − g(x)
∣

∣ < ε
}

. (3.1)
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In what follows, we offer a decomposition of the pointwise convergence in upper and lower
part to better visualize their hidden and opposite roles with respect to the lower and upper
semicontinuity of limits and functions.

Definition 3.1. Let (X, d) be metric space, F ∈ F0(X), and ε > 0. Consider the quasi-uniformity
on R

X having as a base all sets of the form

[F; ε]up :=
{(

f, g
)

: ∀x ∈ F f(x) < g(x) + ε
}

. (3.2)

The induced upper pointwise topology on R
X is denoted by τup .

The conjugate quasi-uniformity has as a base all sets

[F; ε]lp :=
{(

f, g
)

: ∀x ∈ F f(x) > g(x) − ε
}

. (3.3)

We denote the induced lower pointwise topology on R
X by τlp. Clearly the topology of pointwise

convergence τp can be written as τp = τup ∨ τlp.
In the next definition we also give a decomposition of the statistical weakly exhaustive

property for a sequence of functions. Statistical weakly exhaustiveness is a variation of the
classical definition of weakly exhaustiveness [18] and has been deeply investigated in [1, 2].

Definition 3.2. A sequence (fn)n∈ω in R
X is said to be cofinally upper (resp., lower) weakly

exhaustive at x0 ∈ X, simply cf-upper (resp., lower) weakly exhaustive at x0, if for every ε > 0
there is δ > 0 such that for all y ∈ S(x0, δ) there exists a cofinal subset {nyk}k of N such that
for all n ∈ {nyk}k we have fn(y) < fn(x0) + ε (resp., fn(y) > fn(x0) − ε). The sequence (fn)n∈ω
is cf-upper weakly exhaustive if it is cf-upper weakly exhaustive at every x0 ∈ X.

In case {nyk}k is statistically dense in N we say that (fn)n∈ω is statistically upper (resp.,
lower) weakly exhaustive at x0 ∈ X, shortly st-upper (resp., lower) weakly exhaustive at x0.

We point out that upper (resp., lower) weakly exhaustiveness are weaker notion than
what is called equisemicontinuity, in that the cofinal set of indexes depends on the point y.

We now introduce two new properties for a sequence of real valued functions (fn)n∈ω
with respect to a prospective limit function f at a point that play a significant role in our
investigation (see Theorem 4.9).

Definition 3.3. Let (fn)n∈ω, f in YX , and x0 ∈ X. The sequence (fn)n∈ω is said to be cofinally
almost below (resp., above) f around x0 ∈ X, shortly cf-almost below (resp., above) f around x0;
if for every ε > 0 there is δ > 0 such that for all y ∈ S(x0, δ) there exists a cofinal subset {nyk}k
of N such that for all n ∈ {nyk}k we have fn(y) < f(x0) + ε (resp., fn(y) > f(x0) − ε).

When {nyk}k is statistically dense in N we say that (fn)n∈ω is statistically almost below
(resp., above) f around x0 ∈ X, shortly st-almost below (resp., above) f around x0.

In the next propositions we show that each of the notions cf-weakly exhaustive at x0

and cf-almost below f around x0 are forced by one of the τup -convergence and τu
l
-convergence

and the other property.

Proposition 3.4. Let (fn)n∈ω be a sequence of functions in R
X that is τup -convergent to f ∈ R

X . If
the sequence (fn)n∈ω is cf-almost below f around x0, then
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(i) (fn)n∈ω is cf-upper weakly exhaustive at x0, and

(ii) f is upper semicontinuous at x0.

Proof. (i) Let ε > 0 be fixed. Since (fn)n∈ω is τup -convergent to f at x0, there exists n1 such that
for all n ≥ n1 we have that fn ∈ [{x0}, ε/4]up(f); hence for every n ≥ n1, f(x0) ≤ fn(x0) + ε/4.
Since (fn)n∈ω is cf-almost below f around x0, there is a δ0 > 0 such that for every y ∈ S(x0, δ0)
there exists {nyk}k cofinal in N, with nyk ≥ n1 for every k ∈ ω, and for all n ∈ {nyk}, fn(y) ≤
f(x0) + ε/4. Thus for all n ∈ {nyk} and y ∈ S(x0, δ0)we have fn(y) ≤ f(x0) + ε/4 ≤ fn(x0) +
ε/2.

(ii) Let ε > 0 be fixed. Since (fn)n∈ω is cf-almost below f around x0, there is a δ0 > 0
such that for every y ∈ S(x0, δ0) there exists {nyk}k cofinal in N and for all n ∈ {nyk}, fn(y) ≤
f(x0) + ε/2. Since (fn)n∈ω is τup -convergent to f at y, there exists ny such that for all n ≥ ny

we have that f(y) ≤ fn(y) + ε/2. By cofinality of the index set, let n ∈ {nyk} be such that
n ≥ ny. It follows that f(y) ≤ fn(y) + ε/2 < f(x0) + ε.

Proposition 3.5. Let (fn)n∈ω be a sequence of functions in R
X , that is, τlp-convergent to f ∈ R

X . If
(fn)n∈ω is cf-upper weakly exhaustive at x0, then it is cf-almost below f around x0.

Proof. Let ε > 0 be fixed. By assumption there is a δ > 0 such that for every y ∈ S(x0, δ) there
is {nyk}k cofinal in N and for all n ∈ {nyk}, fn(y) ≤ fn(x0) + ε/4. Since (fn)n∈ω is τlp-convergent
to f at x0, there exists n0 such that for all n ≥ n0, fn(x0) ≤ f(x0) + ε/4. It follows that for all
n ∈ {nyk}k with n ≥ n0, fn(y) ≤ fn(x0) + ε/4 ≤ f(x0) + ε/2.

Proposition 3.6. Let (fn)n∈ω be a sequence of functions in R
X . If (fn)n∈ω is τlp-convergent to f ∈ R

X

and f is upper semicontinuous at x0, then (fn)n∈ω is cf-almost below f around x0.

Proof. Let ε > 0 be fixed, there is a δ0 > 0 such that for every y ∈ S(x0, δ0), f(y) < f(x0) + ε/2.
Since (fn)n∈ω is τlp-convergent to f at y, there exists ny such that for all n ≥ ny, fn(y) ≤
f(y) + ε/2. Thus for every y ∈ S(x0, δ0), the subset {nyk}k = {n : n ≥ ny} is cofinal in N and
fn(y) < f(y) + ε/2 < f(x0) + ε.

Therefore, if we assume the whole pointwise convergence the two properties, cf-upper
weakly exhaustive at x0 and cf-almost below f around x0, associated to the upper and lower
pointwise convergence, coincide.

Corollary 3.7. Let (fn)n∈ω be a sequence of functions in R
X that is pointwise convergent to f ∈ R

X

and x0 ∈ X. The following are equivalent:

(i) f is upper semicontinuous at x0,

(ii) (fn)n∈ω is cf-upper weakly exhaustive at x0,

(iii) (fn)n∈ω is cf-almost below f around x0.

All the previous propositions hold if we consider statistical convergences of the
sequences of functions. Therefore, next corollary, similar to that in [1], improves the result
weakening the condition on the sequence.

Corollary 3.8. Let (fn)n∈ω be a sequence of functions in R
X , that is, st-τp convergent to f ∈ R

X . The
sequence (fn)n∈ω is cf-weakly exhaustive at x0 if and only if f is continuous at x0.
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4. Decomposition of Sticking Topology in C(X)

First, let us recall some definitions and results given in [6].

Definition 4.1. Let (X, d) be metric space, F ∈ F0(X), and ε > 0. Consider the quasi-uniformity
on R

X having as a base all sets of the form

[F; ε]u :=
{(

f, g
)

: ∀x ∈ F
∣

∣f(x) − g(x)
∣

∣ < ε, ∃ a neighborhood V of F

such that ∀x ∈ V, g(x) < f(x) + ε
}

.
(4.1)

We denote the induced topology on R
X as τu. Also we denote by τl the topology induced on

R
X by the conjugate quasi-uniformity. If we take the uniformity generated by our standard

uniformity for τu and its conjugate τl we get a uniformity having as a base all sets of the form

[F; ε]� :=
{(

f, g
)

: ∃ a neighborhood V of F such that ∀x ∈ V,
∣

∣f(x) − g(x)
∣

∣ < ε
}

(F ∈ F0(X), ε > 0).
(4.2)

The topology τ� induced by this uniformity is called the sticking topology by Bouleau in
[4, 5] and the topology of strong pointwise convergence by Beer and Levi in [19]. This topology
has the intrinsic property to preserve continuity: C(X) is τ�-closed in R

X , and the τ�-
convergence reduces to pointwise convergence on C(X) itself. In [20] the authors gave a
complete characterization of continuity for the pointwise limit of continuous functions. In
[1, 2], it has been proved that similar results about continuity of the limit function are true for
statistical pointwise convergence of sequences of functions between metric spaces.

In [1], a statistical version of the classical Alexandroff convergence, introduced in 1948
in [21] (see [20]), and the well-known quasi-uniform convergence, introduced by Arzelà [22]
in 1883 and extended by Bartle [23] in 1955, were defined (see also [20]).

Definition 4.2. A sequence (fn)n∈ω in C(X,Y ) is said to be statistically Alexandroff convergent to

f ∈ YX , denoted by (fn)n∈ω being st-τAl, provided (fn)n∈ω
st-τp→ f and for every ε > 0 and every

statistically dense set A ⊂ N there exist an infinite set MA = {n1 < n2 < · · ·nk < · · · } ⊂ A and
an open cover U = {Un : n ∈ A} such that for every x ∈ Uk we have ρ(fnk(x), f(x)) < ε.

Definition 4.3. A sequence (fn)n∈ω in C(X,Y ) is said to be statistically Arzelà convergent to f ∈
YX , denoted by (fn)n∈ω being st-τArz convergent to f , if (fn)n∈ω is st-τp convergent to f , and
for every ε > 0 and every statistically dense setA ⊂ N there exists a finite set {n1, n2, . . . , nk} ⊂
A such that for every x ∈ X it holds ρ(fni(x), f(x)) < ε for at least one i ≤ k.

In [2] (Theorem 2.3) the authors proved the following characterization for the
continuity of a statistical pointwise limit of continuous functions.

Theorem 4.4 (see [2]). Let (fn)n∈ω be a sequence of functions in C(X), that is, st-τp convergent to
f ∈ R

X . The following are equivalent:

(i) f is continuous,

(ii) (fn)n∈ω is st-τArz convergent to f on compacta,
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(iii) (fn)n∈ω is st-τ� convergent to f ,

(iv) (fn)n∈ω is st-τAl convergent to f .

We continue our analysis with respect to the statistical version of these convergences,
and we prove that the whole statistical pointwise convergence in C(X) ensures convergence
in the two symmetric topologies of the decomposition of the sticking topology.

In [6] (Proposition 3.2), the author proved that if (fn)n∈ω is a sequence of functions in
C(X), that is τp-convergent to g ∈ U(X), then the sequence is τu-convergent to g. And he
shows that the τp-convergence in U(X) does not ensure τu-convergence, even if the limit is
continuous and convergences are statistical. In the next proposition we clarify what exactly
must be added to the τup -convergence of a sequence of lower semicontinuous functions with
an upper semicontinuous limit to ensure the τu-convergence even from the statistical point
of view.

Proposition 4.5. Let (fn)n∈ω be a sequence of functions in L(X). If (fn)n∈ω is st-τup -convergent to
g ∈ U(X) and (fn)n∈ω is st-almost below g in X, then (fn)n∈ω is st-τu convergent to g.

Proof. Fix F = {x1, . . . , xn} a finite subset of X, and ε > 0. We show that there is A ⊂ N

statistically dense such that for every n ∈ A it follows that fn ∈ [F; ε]u(g). Since (fn)n∈ω is
st-τup -convergent to g, there is M ⊂ N statistically dense, such that for every x ∈ F and for
all n ∈ M we have g(x) ≤ fn(x) + ε/3. Let n1 ∈ M, since fn1 is lower semicontinuous at
each xi ∈ F; there exists Uxi such that for every y ∈ Uxi , fn1(y) > fn1(xi) − ε/3. By upper
semicontinuity of g at each xi ∈ F, there exists Wxi such that for every y ∈ Wxi , g(y) <
g(xi) + ε/3. Also (fn)n∈ω is st-almost below g at each xi ∈ F; therefore for every i ≤ n, there
is δi > 0 such that for every y ∈ S(xi, δi), there is By ⊂ N statistically dense, and for all
n ∈ By, fn(y) < g(xi) + ε/3. Set V =

⋃n
i=1(Wxi ∩ Vxi ∩ S(xi, δi)). For every v ∈ V we have

g(v) < g(xi) + ε/3 < fn1(xi) + 2ε/3 < fn1(v) + ε. LetA = (
⋂n

i=1 Bxi)∩M. For all n ∈ A and each
xi ∈ F it follows that fn(xi) ≤ g(xi) + ε/3 and g(xi) < fn(xi) + ε; thus (fn)n∈ω is statistically
τu-convergent to g.

We underline that there is an asymmetric role of the upper and lower decomposition of
the pointwise convergence with respect to the upper and lower decomposition of the sticking
topology. In fact with the same assumptions on the functions and the limit, the necessary
condition to get the st-τu convergence is guaranteed by the st-τl convergence.

Proposition 4.6. Let (fn)n∈ω be a sequence of functions in L(X) and g ∈ U(X). If (fn)n∈ω is st-τl

convergent to g, then

(i) g is continuous,

(ii) (fn)n∈ω is st-τup convergent to g,

(iii) (fn)n∈ω is st-almost below g.

Proof. To prove (i), it is sufficient to prove lower semicontinuity of g. Fix that x0 ∈ X and
ε > 0. By assumption there is A ⊂ N statistically dense, and for all n ≥ A, fn ∈ [{x0}, ε/3]l(g).
Thus there is δ > 0 such that for all y ∈ S(x0, δ), g(y) > fn(y)−ε/3 and |g(x0)−fn(x0)| < ε/3.
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Let n0 ∈ A. Since fn0 is lower semicontinuous, we may assume that for every y ∈ S(x0, δ) we
have also fn0(y) > fn0(x0) − ε/3. It follows that for y ∈ S(x0, δ),

g(x0) < fn0(x0) +
ε

3
< fn0

(

y
)

+
2ε
3

< g
(

y
)

+ ε. (4.3)

To prove (iii), fix x0 ∈ X and ε > 0. Let F = {x0}, since (fn)n∈ω statistically τl- converges to
g; there is A ⊂ N statistically dense, δ1 > 0 such that for all y ∈ S(x0, δ1) and n ∈ A, we have
g(y) > fn(y) − ε/2 and |g(x0) − fn(x0)| < ε/2. By upper semicontinuity of g at each x0 there
exists δ0 > 0 such that for all y ∈ S(x0, δ0), g(y) < g(x0) + ε/2. Let δ = min{δ0, δ1}. For all
n ∈ A and y ∈ S(x0, δ) it follows that fn(y) ≤ g(y) + ε/2 < g(x0) + ε.

From Propositions 4.5 and 4.6 we have the following corollaries.

Corollary 4.7. Let (fn)n∈ω be a sequence of functions in C(X) and g ∈ L(X). If (fn)n∈ω is st-τu

convergent to g, then (fn)n∈ω is st-τl convergent to g.

Corollary 4.8. Let (fn)n∈ω be a sequence of functions in C(X) and g ∈ U(X). If (fn)n∈ω is st-τl-
convergent to g, then (fn)n∈ω is st-τu convergent to g.

If we restrict our attention to continuous functions, we can relate results of the previous
section due to the pointwise convergence in R

X , namely, Corollary 3.7, to the sticking
topology in C(X).

Theorem 4.9. Let (fn)n∈ω be in C(X). If (fn)n∈ω is st-τp convergent to g, then the following are
equivalent:

(i) g is continuous,

(ii) (fn)n∈ω is st-almost below and st-almost above g,

(iii) (fn)n∈ω is st-weakly exhaustive,

(iv) (fn)n∈ω is st-τ� convergent to g.

Combining Corollaries 4.7 and 4.8, we show that assuming the statistical pointwise
convergence in C(X), the convergence in one of the two symmetric topologies τu and τl

automatically ensures convergence in the whole sticking topology, since they coincide.

Corollary 4.10. Let (fn)n∈ω and g ∈ C(X). If (fn)n∈ω is st-τp convergent to g, then the following
are equivalent:

(i) (fn)n∈ω is st-τu convergent to g,

(ii) (fn)n∈ω is st-τl convergent to g.
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