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The statistical behaviors of two-layered random-phase interfaces in two-dimensional Widom-
Rowlinson’s model are investigated. The phase interfaces separate two coexisting phases of the lat-
tice Widom-Rowlinson model; when the chemical potential y of the model is large enough, the con-
vergence of the probability distributions which describe the fluctuations of the phase interfaces is
studied. In this paper, the backbones of interfaces are introduced in the model, and the correspond-
ing polymer chains and cluster expansions are developed and analyzed for the polymer weights.
And the existence of the free energy for two-layered random-phase interfaces of the two-dimensio-
nal Widom-Rowlinson model is given.

1. Introduction

We investigate the statistical behaviors of random interfaces between the two coexisting
phases of the Widom-Rowlinson model (W-R model) when the chemical potential y is large
enough; especially we consider the two-layered interfaces behaviors of the model in this pa-
per. The lattice system interfaces in two dimensions are known to fluctuate widely, for examp-
le, see [1-4] for the W-R model and [5-13] for the Ising spin system. There are two types of
particles (either A or B) in the lattice W-R system, and there is a strong repulsive interaction
between particles of the different types. Namely, a B particle cannot occupy a site within dis-
tance v2 from a site where an A particle has occupied and vice versa. This means that dif-
ferent types of particles are separated by the empty sites. In [2], under some special conditions
for the interfaces (with specified values of the area enclosed below interfaces and the height
difference of two endpoints) and the chemical potential y large enough, it shows the weak
convergence of the probability distributions (which describe the fluctuations of such inter-
faces) to certain conditional Gaussian distribution. According to the dynamic system of the
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W-R model and the results of [2], the thickness of the random interface (or the intermediate
“belt”) between the two coexisting phases of the model is expected to become thinner as p be-
comes larger, so we believe that the interfaces of the W-R model behave like those of the Ising
model to some extent. We are also interested in the fluctuation behaviors of two or more ran-
dom interfaces that one interface lies above the other one, such model presents the coexistence
of three or more phases, which is the multilayer interacting interface model. In the present
paper, the two-layered lattice W-R model is considered, and the convergence of the probabil-
ity distributions which describe the fluctuations of two-layered random interfaces is exhibi-
ted.

The interface behavior of the lattice W-R model has close relation with the wetting phe-
nomenon of the well-known Potts model, for example, see [14-17]. Wetting may occur when
three or more phases coexist; it consists of the appearance of a thick (macroscopic) layer of
the C phase at an interface between the A and the B phases. Much research work has been
devoted to the study of the wetting behavior for the g-state Potts model. Derrida and Schick
[16] show that the interface is wetted by the disordered phase as the transition is approached
by the mean field approximation. According to the method of low-temperature expansions,
Bricmont and Lebowitz [14] exhibit the wetting of the interface between two ordered phases
by the disordered one with g being large. At the transition point, De Coninck et al. [15] dis-
play the similar wetting behavior by the correlation inequalities, and Messager et al. [17]
present an analysis of the order-disorder transition for large g based on the theory of cluster
expansion and surface tension of the Potts model. For the interface of the lattice W-R system,
we think that the wetting phenomenon may appear when the positive chemical potential
u is small, which means that the layer of empty sites that separate A and B particles
may have some thickness. Whereas the results of the present paper may imply that the
interface of the W-R model will not be wetted for large parameter p, since we think that
the layer between the two coexisting phases is expected to become thinner as y becomes
larger.

We consider the two-layered phase interfaces in the two-dimensional Widom-Row-
linson model on the rectangle Ay, where Appr = [1,L-1] x [-M, M] C 72. Suppose that the
particles in Ap ar are of two types and there is a strong repulsive interaction between particles
of the different types. Let 0 denote a configuration on {-1,0, +1 VALM where o(x) = +1 denotes
that the site x is occupied by an A particle, o(x) = —1 denotes that x is occupied by a B par-
ticle, and o(x) = 0 denotes that there is no particle at x. We say that a configuration o is feasi-
ble if o(x)o(y) > 0 for all pairs x, y € Z? with |x - y| < v/2, where |- | is the Euclidean distance.
Let Q; ar denote the set of all feasible configurations in Ay a, so there is a finite diameter hard-
core exclusion between A particles and B particles on Qr . Next, the two-layer interface
model is defined for satisfying the following three conditions.

(i) The Hamiltonian of the two-layered model is given by

Him(0) == 3, p(o()?’-1), (1.1)

XGAL,M

for all o € Qr 1, where p(>0) denotes the chemical potential.
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(ii) Let by = by (L) > 0, let by = by(L) > 0, and assume that M > by, M > b,. We define a
boundary condition «” as

+1, ifx'=0,

x*| > by and if x' = L, |x?| > b,

andif 1<x'<L-1,|x*|=M+1,
wP(x) = wh (xl,x2> =9 (1.2)
0, ifx'=0,|x?*|=byandif x' =L, |x?| =b,,

-1, ifx'=0,

x| <by and if x' = L, |x?| < by,

for each x = (x!,x?) € 0OA M = [0, L] x [-M =1, M + 1]\ Ap m.

(iii) Suppose that there is a connected “—1” particles path from the left side of [0, L] x
[-M -1, M +1] to the right side.

The Hamiltonian of (i) is the same as that of the W-R model, and conditions (ii) and
(iii) (here we suppose that bi(L) = c1L, bo(L) = c;L, for some 0 < ¢q,¢; < 1) ensure that we
have the two-layered interface model. Let QZ M (CQr n) be the corresponding configuration
space with the conditions (i)-(iii), such that the configuration ¢ x w" is feasible, where o x
w’(x) = o(x) for x € App and 0 x wP(x) = wP(x) for x € dAL m. For a fixed configuration
o€ QZ m-let S%(o) denote the set of points in A ar such that the configuration o takes 0 value.
The connected components of S°(c) are called contours; among these contours, there are two
contours I'*(c) and ' (o) which are defined as the interfaces of the model. I'*(c) is the upper
interface with the starting point (0, b1) and the ending point (L, by); I’ I(0) is the lower interface
with the starting point (0, —b1) and the ending point (L, —b,). Let

Stu={reroctiul  Sth={rerocal,] 13)

be the set of upper interfaces and the set of lower interfaces, respectively. The conditional
Gibbs distribution on QF , - with the boundary condition w? is given by

P! (o) = (ng)_l exp{—y|50(0') } (1.4)

where |S| denotes the cardinality of a set S, and Z? , , is the corresponding partition function.

2. Backbones and Partition Functions

The general theory of interfaces between the coexisting phases (which is based on its micro-
scopic description) has been intensively studied, for example, see [1, 2, 6, 7, 18]. De Coninck
et al. [18] introduce the SOS approximants for the Potts surface tensions and present a con-
nection between the orientation-dependent surface tension of the Potts model and the corre-
sponding surface tension of the SOS model. And they show that an SOS model is applied for
the construction of the Potts crystal shapes. In this section, a similar approximation method is
developed; that is, the interface of the W-R model can be approximated by its corresponding
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backbone. Next we introduce the definitions of the backbones s (I'*) and o (I?) of interfaces
I'* and I in the two-layered W-R model and state the main results of the present paper.
According to the above definitions of interfaces of the model, the interface of the two-layered
model is an intermediate belt between the two coexisting phases, whereas the interface of
the two-dimensional Ising model is an open polygon passing through the starting point to
the ending point. This means that the methods and techniques of the partition function rep-
resentation and the partition function cluster expansion, which are applied in analyzing the
Ising model, cannot be directly used in analyzing the two-layered W-R model. In the present
paper, we define a backbone sr(I'*) of I'* to represent I'#; that is, among self-avoiding paths
connecting the starting point (0,b;) with the ending point (L,b,) in I'#, we select a self-
avoiding path (called backbone o (I'*)) by an “order” given in the following definition (6).
Since the backbone s (I'#) is an open polygon, this will help us to study the interfaces of the
model. Now we define the set of self-avoiding paths in I'# as

ITr« = The set of self-avoiding path in T connecting (0, b;) with (L, by). (2.1)

Among these paths, we select a self-avoiding path according to the following order; the order
is defined with preference among four directions:

up > down > right > left. (2.2)

More precisely, let o = {x1,...,x,} and 7, = {y1,..., ym} be the two self-avoiding paths in
I'. Let k = min;»1 {i : x; # y;} be the first number i such that x; # y;. We define that o, > i, if
the direction of the ordered edge {x-1, xi} is preferred to the direction of the ordered edge
{Yx-1, ¥k }. Let or(I'*) be the unique maximal element of I« with respect to this order, and
call or(T') the backbone of I'*. Similarly, let r(I'") represent the backbone of I'. In this paper,
our study is mainly focused on the backbone of the phase separation belt.

LetUj, ..., U, be the different connected subsets of Ar y1, we say that the subsets {U]}
are compatible if they are connected components of the set Ui<j<,U;. We also say that {U;}
are compatible with a connected set G if {G,U;} are compatible for every 1 < j < n. Next
we define the hole of a connected set of Z2, we say that a set D C 72 is x-connected if, for
every x,y € D, there exist a sequence x = zo,z1,...,2, = ¥ in D such that |z; — zj1| < V2
for every 1 < i < n. A hole of a connected set F C 72 is a finite *-connected component of
F¢ = 72 \ F. Since there may be some holes inside an interface of the W-R model (note that
the interface of the Ising model has no such holes), there is a large difference of the partition
function expansion between the W-R model and the Ising model. Therefore, the partition fun-
ction ZE u defined in (1.4) can be rewritten by the similar formulas in [1-3] as following:

Z0 = S ST oNE)NE) gD TN g sl

) 2.3
ruesys resth  {U;) j (2.3)

where the second summation is taken over compatible families {U;}, which are compatible
with T* UT!, [T%| is the number of points in I'*, and N (I'#) is the number of holes in I'#, similar
toT!, N(I'"), and |U|, N (U). Then for some large yo > 0 and y > po, according to the theory of
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the cluster expansions (see [19]), we have

LM ru esyh Tes
(2.4)

l"u

xexp{—y( o) +mo(N() +N(T)) - S fD(A)},
ACALp:Ai (TUIT)

where Z; , , is the partition function with the plus boundary condition, Ai(I'UI") denotes that

the set A is incompatible with the interfaces T* UT?, and ®(A) is a translation invariant fun-
ction, which satisfies the following estimate:

DDA [t < 1, (2.5)
A;AS0

Moreover, if u is sufficiently large, we have

b
lim —M =
M—owZf

LM Tugsbu Ticgh!

x exp{_#( ) s m2(NE) NI - S e }
ACAL:Ai (TUIT)
(2.6)
where Ar o, = [1,L - 1] x (=00, 0) N Z? and
52’” = UM>052',L;VI, 5?’1 = UM>052',IM. (2.7)

Let

() o

ru

T |rl|> +ln2<N<F“> + N(r’)) -3 (I)(A)}, (2.8)
reurt)

ACAL A

which is called the weight of the partition function expansion (2.6). From [19], the last part in
(2.6) can be expanded as follows:

exp { - Z ¢)(A)} = i Z H(e“D(A”) - 1>. (2.9)
reurt)

ACALm:Ai( n=0 Ay,..,AyCALs v=1
' Ayvi(Tur')

In the definition of boundary condition w? (see (1.2)), for a fixed by > 0, let Sy =
(Ub.S?’”, Ubﬁi’l), then, for the interfaces vector (I'*,T!) € Sy, the height of the last ending
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point of (I'*,T") is defined as the vector

(1) (1)) = (1) (1)), 20

The aim of this paper is to study the statistical behaviors of the free energy of the height vector
(h(T*), h(T")). The following theorem shows the limit existence of the free energy of the height
for the interface vector (I'%, ).

Theorem 2.1. For some & > 0 and a complex vector (§,¢) € C?, when the chemical potential y is
large enough, one has the existence of the free energy of the heights for the two-layered W-R model as
follows:

.1 u I
9,0 = ngn T In Z HERT)+Eh(T ”W(l‘“,l"), (2.11)
« e Iles;

where the function ¢(¢,¢) is analytic in (¢,¢) € C? if the real parts Reé < 1-6/pand Re§ < 1-6/p.

3. Polymer Chains and Cluster Expansions

Since the formula (2.11) heavily depends on the polymer representation of the two-layered
W-R model partition function and the theory of the cluster expansions, we study and analyze
the polymer representation of the partition function in this section. And we show the estimate
of the free energy for the height of the last ending point of (I'*, ). Further, we show that the
asymptotical behavior of the backbone 7 (I'*) can represent that of the corresponding inter-
face I'* when p is large enough; this means that the statistical properties of the interface I'*
are similar to those of its backbone o (I'*). From the definition of or (I'#), we define its polymer
and polymer chains and develop a new polymer representation of the two-layered model
partition function; we also obtain some estimates for the polymer weights.

For the Ising model, the polymers are defined by “cutting” the interface into elemen-
tary pieces at the line {x! = n +1/2}(n € Z) of dual lattice, see [5-7]. However, this cutting
procedure is invalid for the interface of the W-R model, since the interface of the Ising model
is a line, but the interface of the W-R model is a belt. So it needs to develop a new technique
to cut the interface of the W-R model; that is, we hope to give a new definition of polymers.
Higuchi et al. [2] introduce a new definition of polymers for one-layered interface of the
W-R model; here we modify the definitions in [2] and define the polymer chains for the two-
layered interface model.

For the interface vector (I'*,T') € Sy, let (0,b;) and (L, k,,) be the starting and the end-
ing points of I'*; let - (I'*) be the backbone of I'* connecting (0,b;) and (L, k,,). Similarly, let
(0,-by) and (L, k;) be the starting and the ending points of I; let or(I") be the backbone of T'!

connecting (0,-b1) and (L, k;). We decompose I'* \ 7 (I'*) into connected components {C; }]s.:1



Abstract and Applied Analysis 7

and decompose I\ o (") into connected components {D; }]r-=1- Then, from (2.6) and (2.9), we
have

Z e#(éh(r")Jréh(Fl))W(rM,rl>
T« IleS;

ku—ki>1 a;(0,b1) — (Lky) Cy,...,.Cs; compatible Dy,...,.D,; compatible
~co<ky ky<+oo a';(0,~by) — (L,k;) Cyimr,Cynr=0 D, iz’ ,Dynr=0
o lies above o' ar; backbone of rUC1U-+UC ar'; backbone of o'UD;U--UDg

S
X exp{yéku —plr|+ N(r,Cy,...,Cs)In2 - yZ|CV|}
v=1

r t
xeXp{#§k1—H|Jr’|+N(yz-',D1,...,Dr)lr12—yZ|Dv|} Z H(e_q)(A”)—1>,
v=1

Aq,...,At; connected a=1
AyimruCiU-+-UCs or
Aqior'UDU-+-UD,

(3.1)

where N (i, Cy, ..., C;) denotes the number of holes of 7 UU;_,C,, N (o', Dy, ..., D,) denotes
the number of holes of ' UU’_ D,,, and the second summation taken over “zr lies above 7'
which is consistent with the definitions (i)—(iii) in Section 1.

Next we give the definitions of polymers of the two-layered W-R model. Let a < ¢ be
the positive integers,

4

n= <Y”,YZ,C1,...,CP,D1,...,Dq,Al,...,A-U), (32)

is called a polymer with base [a, c] if 7 satisfies the following conditions (1)—(4).

(1) y*,y" are self-avoiding paths in {a < x! < ¢}, y* starts from (a, a*) and ending at a
point (¢, c*) in {x! = ¢}, y! starts from (a, a') and ending at a point (c,c') in {x! = ¢},
where a*, a!, ¢, ¢! are fixed integers satisfying a* — a>1landc*-c ' >1,and y* lies
above y.

(2) {C,,}fj=1 is a compatible family of connected subsets of {x € A o;a < x! < ¢} such
that (i) C, NV (y*) = 0, where V (y*) is the set of vertices in y; (ii) C, U V(y*) is con-
nected; (iii) y* is the backbone of y* U C; U --- U C,, with starting point (a, a*) and
ending point (c, c*). Similarly, {D,}?_, and y' have the same properties.

(3) {Ax}5_; is a collection of connected subsets of {x € A o;a < x! < ¢} such that
Agiy" UU_ C, or Ayl UUl_ D, (3.3)
(4) Fora < j <c,j €N, theline ¢; = {x! = j +1/2} intersects at least two edges of

y"ué(uﬁzlCvuugzlAa)ué(y”, UzzlcvuuzzlAa) or at least two edges of leé(UZﬂDVU
UzzlAu)Ué(y’ , UZ:IDVUUZﬂAu). Here, for B C Z?, £(B) denotes the set of the nearest
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neighbor edges of B; &£(y, B) is the set of edges that connect y with the set B. Also,
we identify an edge {x,y} of Z? with the line segment connecting x and y.

We call (y*,y') the backbone of 1. For two disjoint self-avoiding paths y!*, y3' (similarly
for yl,y}) such that the starting point of y¥ is the nearest neighbor of the endpoint of y¥, we
can define the concatenation y;' o y; of these paths by simply connecting them. Let

111 - <Y{4,Y{,C1/.”’CP’le“'/DqIAll-H/AU>/
(3.4)
= (B0 Che CluDyy o Dy A, AL)

be two polymers with bases [a, c] and [a, ¢'] (a < a'), respectively. We say that 77; and 7, are
compatible if either of the following conditions holds:

(a)c+1<d,
(b) @’ = ¢ +1, the backbone of

T=yUCiU---UC,U (y; + (O,h(y{‘))) U <C’1 + (O,h(y{‘))) U---u (C; + (O,h(y{‘)))
Unubiu-ub,u (+ (0.0(x)))u (Dy+ (0,.0(y))) U+ v (D}, + <0h<y{2>2

3.5)

is the concatenation (y* o (y¥ + (0, h(y¥))), ¥ o (y4 + (0, h(y!)))) , and connected components
of the set T\ (y¥ o (y¥ + (0, h(y!))) Uy} o (¥% + (0,h(y)))) are {Cy,...,Cp,C},...,C,} and
{D1,...,Dy,Dj,...,D,}. Here, h(y) is the height of the endpoint of y.

Note that the previous work (see [2]) has presented the similar formula as that of the
above (3.5) for the one-layered interface W-R model, so we can derive the formula (3.5) for
the two-layered interface model from the corresponding work in Section 2 of [2].

The family {7, }Z;'(l) is compatible if 7, and 77,y (p # p') are compatible. Let

7= (ﬂ(F”),Jr(Fl>,C1,...,CS, D,.. .,Dr,Al,...,At>. (3.6)

An edge e = {x,y} of 7 is not admissible if it is a horizontal edge in &(or(I'), Uj_,C, U
U Ag) UE(ar(TY),U_ D, UU!_ A,), such that

(i) the left vertex x is in a connected E of Uj_,C,,UU; _, D,,U Uizll\a, and the right vertex
yisin V(o (I'*)) UV (x(I*));

(ii) further, there exists a horizontal edge ¢’ = {x,y'} of 7 such that x' € V(xr(IT*)) U
V(r(I'*)) and y' € E, where x' is the left vertex of ¢'.

Other edges of 7] are admissible.

We say that the line ¢; = {x' = j +1/2}(0 < j < L - 1) is the cutting line of 7 if ¢; inter-
sects only two admissible edges of 77 = (or(T*), 7 ("), {Cy )51, {Dy ) ooy, { A }'_,). Here, one of
two admissible edges is connected to or(I'); the other is connected to o ().
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Let €y < ¢j, <--- < ¥¢j, <¥j,, = €11 be all the cutting lines of (o (%), 7 (Th, (Cy )5y,

{Dy},1, {Aa}azl).ForeaChm €{0,1,...,n+1}, there are only two edges e}, = {Bj,, A% |} and

el, = (B!, Al }ofx ("), and xr(I"), respectively, which intersect ¢;,. Let y be the portion of

m+1
o (T*) starting from A% and ending at B; let y!, be the portion of o (I") starting from A!, and

ending at B.,. Also let {C™ 5", (DU} and {A{™ };(Z) be the set of elements of {C,}°

y=1 "’ y=1 7 v=1s
{D,},_;, and {A, }fX:l, respectively, such that they are subsets of [fy,—1 + 1, jm] X (=00, 00) N 72.

Then A% = (jm-1 +1,p%), A’m = (jm-1 + 1,pl) for some p”,pl € Z, where p* > pl. Thus, we
obtain the mth polymer 7,, by setting

fim = <m‘(0rp”)/¥r’n—(0,r’”)f {Ci’”—(o,p”)}z)f {Di’")—(o,p”)}:(j)f {A&mt(o,p“)}t(m))-

a=1
(3.7)
By the above definitions, {79, 1, ..., 7.1} are compatible.
For a polymer
_ (yu Al (m) (m) (m)
Mm = (leYmI{Cv }I{Dv }r {Aa })/ (38)

let hli, = h(n%) = h(y;,) be the height of the endpoint of the self-avoiding path y;,; similarly
let k!, = h(r,) = h(yl,). Then the heights h(sr(I'™)) and h(ar(T")) are given by

n+l n+1

ha @) = Sh(r), k(= (1)) = Xh(n). (39)

m=0

Now we introduce a statistical weight of a polymer
I u 1 P q v
1= (Y AC D (A2, (3.10)

by setting

¥(ny') = exp{ - uly"| —‘ulyli +N*(y*,Cy,...,Cp) 1n2+N*<yl,D1,...,Dq> In2
3.11)

%

P q
_#Z|CV| _#Zlel} X H(eiq)(Aa) _1)[
v=1 p=1 =1

where

N*(y“,Cl,. ..,Cp) = N(y“,Cl,. ..,Cp) + Ni(Yu,Cl,.. .,Cp) + N;(y“,Cl,. ..,Cp), (312)

and N;(y",Cy,...,Cp) is the number of new holes created by V (y*) UUZ _1Cy and the line {x! =

I-1 }, where base(1') = [T, 7]; Nz (y",Cy, ..., Cp) is the number of new holes created by V (y*)U
UZ:IC,, and the line {x! =7+ 1}. Similarly, we can give the definition of N* (y’, Dy, ..., Dy).
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A polymer 7 is called simple if base(1) is one point and 1 = (y*,y',®,0,0). Thus, the
weight ¥(7) is given by

lp(ﬂ) = e*#lY“l*ﬂlYll_ (3.13)

A polymer 7 is called decorated if it is not simple. A decorated polymer 1 = (y*,y!,{C,},
{Dy}, {As}) with base(n) = [lA, 7] is said to be r-active if there exists a simple polymer
m = (y{, yll,(b, 0,0) with base(r1) = {7 + 1} such that 7 is incompatible with 7, or the con-
catenation of y* and y together with U, C, produces a new hole, or the concatenation of y!
and y! together with U, D, produces a new hole. 77 is said to be I-active if there exists a simple
polymer 1, = (y¥,y},8,0,0) with base(r,) = {7 — 1} such that 7, is incompatible with 7, the
concatenation of y* and y,' together with U, C, produces a new hole, or the concatenation of
y! and y} together with U, D, produces a new hole. If 77 is both r-active and I-active, we call it
bi-active.

A polymer chain is a family of decorated polymers C = {7, ..., 1, } such that

(1) {m,...,nm) are compatible;
(2) if base(n,) = (I, 7], 1 <u<m,thenl, =7, +1or 7, +2 for each u;

(3) if lAu+1 =7, + 2 for some u, then 7, is r-active and #,.+1 is l-active.

Let C; and C; be two polymer chains. We say that C; and C, are compatible if C; UC; is a com-
patible family of polymers, but now it is not a polymer chain. For example, if base(C;) =
(L., 7] and base(C,) = [?u, 7,] have fu -7, > 2, then C; U C; is compatible polymers, but not a
polymer chain.

Let X = K be the set of all decorated polymers with base in [0, L], and let C0; denote
the set of polymer chains with base in [0, L], then we have the following Lemma 3.1.

Lemma 3.1. Let Q(¢&, ) be the generating function of the heights of the endpoints of a simple poly-
mer

Q,8) =etet e,“ékue—|ku|#el4§kle—\kl|#,
ku—zkpl (3.14)

—oo<k), ky <+oo

then one has

1 u 1 z

e+ 7 (T 1Y = BCue0),

Q(g’ C)LT“IZESL ( ) C1,..-,§€%pu 11:1[ (3'15)
compatible

where W(C;, &, ¢) is the weight function of polymer chains which is given (3.17).

Proof of Lemma 3.1. Considering a polymer chain C = {#1,..., %}, let base(C) = base(rn;) U
---Ubase(],). Further, for a polymer #, from (3.9) and (3.11), we define

lir(n; &) = eﬂéh(fl“)eﬂéh(ﬂl)qr(n) Q(, g)—lbaSE(fl)I’ (3.16)
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where |base(n)| = 7 - I+1 for base(n) = [1,7]. By the formula (3.16), for a polymer chain
C={m,...,Mm}, weput

m m-1
{I}(Ci; é/ C) = H@(Tlur ér §) X QT(Tll)Q?(Tlm)HQ(ﬂur 7]14+1)/ (317)
u=1 u=1

where 2;, 27, 2 are defined in the following way. For base(n) = [,7] and base(1n) = [c,d]
with ¢ > 7, we define

-1

QT(”) = n'en (318)

1, otherwise,

where Zzﬁ , means over polymers 7' = (y'", ', ,8,0) with base{l - 1} which are compatible
with 77, and N (77, 7) is the number of new holes created by the concatenation of y'* and y*
together with U, C,, or by the concatenation of y'l and y! together with U, D,. Similarly,

7+1

W (15 ¢, 8) 2NN CoresCp)=No(y\D1Dy) - if s p-active ,
() = ,lz;l (3.19)
1, otherwise,

and 2(1,7) is defined in the following two cases.

(1) If c =7 + 2, i is r-active and 7 is l-active, then

7+1

Q( ﬂ/ﬁ) _ Z P ( 11,; g, §) 2N(11,11’)+N(11’,ﬁ)—N;(y“,C1,...,C,,)—N;(YZ,D1,...,Dq)—NIA(?“,fl,...,6,7)—N,~(?1,51,...,Dﬁ).
nenn
(3.20)
(2) If c =7 + 1, 7 and 7] are compatible, then
2(n,7) = N ) ~N# (v ,C1,1,Cp)=Ni (v D10, Dg) =N ,C1,-..C5)~Ni(¥' D1, Dg) (3.21)

From the formulas (3.16) and (3.18)-(3.21), we show the weight expression of
¥(C;;¢,2). According to the polymer representation of the partition function which is intro-
duced in this section, and, by (3.1)—(3.14), we can show the existence of (3.15). This completes
the proof of Lemma 3.1. O

4. Proof of the Main Results

In the first part of this section, we do some preparations for the main results by some lemmas.
Then we present the proof of Theorem 2.1.
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Lemma 4.1. Let I C Z be a fixed interval; if p, is large enough, then for some & > 0, one has

. oy R(u,6)"
ST e /AN-(u-28/HNM)) (41, ) @1

buse(y“):l 1= R(/’llf 6)

where y* is a upper backbone, Ny, (y*) is the number of vertical edges in y*, Ny (y*) is the number of
horizontal edges in y*, and

R(p1,6) = 2¢~(#11726/3) (1 + e-5/3) (1 - e"‘5/3>71. (4.2)

The upper bound of (4.1) also exists for the lower backbone y'.

Proof of Lemma 4.1. We separate y* into fragments by the following method. Let y* = {xg, x1,
..., Xy} be a self-avoiding path with base(y*) = I. For jo = 0and i > 1, we let

ji =min{j > ji-1; {xj-1,x;} is a horizontal edge}. (4.3)

Each vertical part {x;_,,xj ,+1,...,xj-1} of y* with the direction of the exit vector {x;1, xj} is
called a fragment. For a fragment f = {Xo, X1,...,X,} with exit direction e(f), we define

W(f) = o~ (6/)Nu(f)=(11-26/3) _ ,=p6/3-(111-26/3) (4.4)
Then the decomposition of y* into fragments { f1, ..., f+} leads to the identity

,
e~/ INM~Gu=26/5MN ) = TTW (f;). (4.5)
j=1

Therefore, if y; is sufficiently large, we have

5 e—(6/3)Nv(Y")—(#1—26/3)(Nh()’“)+1):i D ﬁw(fj)

y*; base(y*)=I r=I| fi, . fr j=1

o) o) r
< <2 D e‘(5/3)|k|> x o~ (11=26/3)r (4.6)

=l \ k=—oo

_ R(u,6)"
1-R(u,6)’

where the last equality comes from [7]. Following the same proving procedure, we can obtain
the existence of the formula (4.1) for y'. This completes the proof of Lemma 4.1. O
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Lemma 4.2. There is a large chemical potential p > 0; if p > py, then for any ¢, ¢ € C with the con-
ditions Re¢ <1—-6/pand Re§ <1 -6/, and for each polymer 1o, one has

> e“(”)+d(”)|‘f‘(11;§,§)| < c(m), (4.7)
neK;nino

where Ky is the set of all decorated polymers with the base in [0, L], c(n) = 3|base(n)|, and

6w 6 .
(4= p2) [base(m)| + Iy + ZIy'] = (w = = 1), if |base(n)| 22,

d(n) = (4.8)

R .
(4= p2) |base(m)| + 2 [y + Z1v'], if [base(n)| =1,

where py is given in Lemma 4.1.

Proof of Lemma 4.2. In order to verify the convergence and analyticity, we have to show that
there exist two functions

¢, d: Kp = {¢ decorated polymer} — [0, o0), (4.9)
such that the above estimate (4.7) exists. First we consider the statistical properties of

n= <y”,yl,C1,...,C,,,D1,...,Dq,Al,...,A,,), (4.10)

and we have
IY"] = No (y*) + Nu(y") + 1, |y’| = No(¥') + Nu(y) + 1. (4.11)

By the definition of the decorated polymers, if base(#) is one point, then

P q v
N (y") +Nh(Y’) + QUG+ DDy + D IAal > 1, (4.12)
a=1

v=1 v=1

since {C,} or {D,} or {A,} is nonempty if base(n) is one point. If |base(#)| > 2, then we have

p q v
Na(y") + Na(¥') + 2ICol + DDyl + X[ Aal 2 3(|base(&)| - 1). (4.13)
v=1 v=1

a=1

Let (y*,7") be the backbone of some decorated polymer with the base I = [1,7]. Next we esti-
mate the following function

G<Y“rYl) - S |e#§h(Y“)e#§h(Yl)qr(,1)'.

(4.14)
n;(y“,y’) is the backbone of 77
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From (2.4) and |®(A)| < e~ #IAl < 1 for large parameter g, we have

|e—<I>(A) _ 1' < e(Hpo=DIAI (4.15)

(i) If [ = 7, that is |I| = 1, then
N*(y*,Cy,...,Cp) = N* <yl,D1,...,Dq> =0. (4.16)
From the (3.11), (4.14), and (4.15), we have

G<Yu,yl>Se—mruleuhwu)Re; S et Cl i gk n(IReE ST oD
{Cy };Criy (D, };Dyiy!

x Z e~ (H=Ho=1) XalAd]

{Aa};Aaiy"UC; U-UC,,
or Aqiy'UD;U~UD,

(4.17)
< oMyl (y") Re doply![+puh(y') Re &= (u-p~1) D e 2|
{C,};Cyiy®
« Z e 12Dy Z e~ (H1=H0) ZalAal
{Dv}}DviYI {Aa};Aaiy"Uclu---uCP
or Agiy'UD;U~UD,
The summation over {A,} is estimated as follows:
e~ (H1=H0) ZalAal
{Aa};Aaiy"UC1U-UC,
or AaileDlumqu
S (1) Sl
— e —(H1=Ho) 2ualDNa
IR 2 e
=0 """ Agiy“UCiU-UC, Agiy*UCiU~UC,
or Ayiy'UDU~UD,;  or Asiy'UD1U-UD, (4.18)

Sexp{4 y”uClU---uCpUy’uD1U-~-qu| > e‘(f‘l‘”ﬂ)'A'}

A30; connected
o (171 |+ Scu = 0 s o) |

There exist constants K, x > 0 such that the number N,, of connected sets of m points in 72
which contain the origin is bounded as

N, <Kix™ (m>1), (4.19)
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then we know that the function

si(upo) =4 > el

A30; connected
goes to zero exponentially fast as 3 — oo. Thus, from (4.17) and (4.18) we obtain
Gy, 1) < (s bpaDh sy Red- s ol 1) Red o o=

% Z e~ (=81 (11,40)) Z, |Gy | Z e~ (=81 (11,40) Xy 1Dy |
{CV];CViYu {Dv};Dvin

< e~ (=81 (H1H0) =g (ki po) Iy +ph(y") Reg

x e~ (=81 o) =g po )y Hph(Y Re o p=(u=pa=1)

where

@) =4 > e ltstam)ibl

D>0; connected

(ii) If [ < 7; that is, |I| > 2, then we have

4
N*(y*,Cy,...,Cp) < Nu(y*) + DIC, 1,
v=1

N* <yl, D,. ..,Dq) <N, (yl> + i|DV|.
v=1

From the formula (4.13), we have

G(Y",YZ> < e Kl grh(r) Red p=puly'l ph(y') Reg e HZColpN* (y*.Cr,e...Cp)
{C,,};C,,i)”“
% Z e HZwIDsloN* (v, D1,....Dy) Z o~ (H=Ho=1) Tl Al
{D,};Dyiy! {Aa};Agiy"UCiU-UC,

or Aai)’IUDlumqu

< eIy HHrh(y") Red=ply'[+puh(y') Re &= (u=pa=1) GITI=Niu(y")=Na(y)=3) o Nu(y) p Ni(v')

x Z e~ (=In2)3,1Gy| Z e~ (=In2)3, Dy
{Co};Coiy" {Dy };Dyiy!

% e~ (m=H0) ZalAal

{Aa};Aaiy"UC1U-UC,
or Aai)’luDlunqu

15

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)
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Further, according to the formula (4.18), we have
G<Y”r Yl) < e (=g (o)) Iy () Re &= (=g (o) Iy [+uh (') Re § = (=41 =1) GIII=Nin(y*)~Nin(y')-3)

% Z e~ (=81 (H1p0)~In2) 3, 1Cy | Nin(r*) Z e~ (11=81(11,p0)-In2) 5, Dy | p N (y')
{CV};CviYu {Dv};Dvi)’I

< o (g1 (1 p0)=gs (i o)) Iy [+ ph (Y Red o o=(k=g1 (1,p0)=ga (ur o))y [+l (y') Re g

% g~ (=11 BII=Nu(y*)=Ni(y")=3)+Ni(y*) In 2+ N (y') In 2,

(4.25)
where
Slprrso) = 4Dao; g\:nected{(”rgl e (4.26)
We choose p1(> po) sufficiently large, such that
81 (p1, po) < % $2(p1, po) < g, g3(p1, po) < 2 (4.27)
Assume that Re¢ <1—-6/pand Re§ <1 - 6/p. Since
No() 2 [h(r)] No(¥') 2 ()], (4.28)

then from the formula (4.11), for |I| > 2, we have
G<YM’YI> < e~ (6/2No(y)=(u1=6/2) (N (y)+1) 5=(6/2)No (')~ (j11-6/2) (Nn (y)+1) o= (u=p1-1) BI1|-1) (4.29)

For |I| =1, we have

G <Yu,Yl> < e~ (6/DNo(1)=(6/2)No(y")-2(11-6/2) p=3(u=p-1) (4.30)

Let (1), d(n) be defined in (4.7). Since c¢(77) and d(77) only depend on the backbone
(v, y"), let

ct)=c(y'y'),  dlm)=d(y".y). (4.31)
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Then, for a fixed interval I, we have

e +d(m) | ppéh(y*) e#§h<y1>1p(,1)|
71;()’”,)”) is the backbone of 7

= Gy, et (4.32)

< e—(5/3)Nv(Y“)—(#1—25/3)(Nh(Y“)+1)e—(5/3)Nv(YI)—(#1—26/3)(Nh(Y')+1)e—(2M+#z—3#1—6)|base(Y“/Y1)|,

where base(y",y') = base(n) for any 7 such that (y*, ") is the backbone of 7. Then

S ec(y“,r’)m(r",r’)(;(Yu,Yl)
base(y) =I

< e Curedu-oll -y e~ B/3)No(y")=(pu1=26/3) (N (y")+1) p=(6/3)No ()= (41 =26/3) (N (y)+1)

base (y) =I
(4.33)

By Lemma 4.1,if Re¢ <1-6/p, Re{ <1-6/pu, and p > py, where y is sufficiently large, we
have

1\ 2
D eC(Y“rY’)de(Y“/Yl)G(Yu, Yl> < e—(2ﬂ+ﬂz—3ﬂl—6)|1|< R, ) ) ) (4.34)
base(@)=I 1-R(m,6)
From (3.14), there is a y3 > 0 such that
Q@ Q)| > e, (4.35)
then we have
I\ 2
S |‘i’(71; £,2)|ectr oy < e—(2M+ﬂz—3ﬂ1—6)I< R(p1,0) > o)l
base()=I 1-R(p1,6)

(4.36)

1-R(p,6)

N
=e(#23H1#36)|I<M> .
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Let 411 be large enough, we take p > 3p1 +p3 +6 and p > p,. For a fixed 1o with the base (1) =
[1,7], then we have

N
S [#meg|ew i< 3 Z<%>

1nim xe[l-1,7+1] Iox

(?—lA+ 3) ikR( 6)2k
T A-RGue) (@37)

3lbase(m)| _ R(u,6)’
~ (1-R(u,6))° (1—R(#1,6)2>2

< c(1o).

This finishes the proof of Lemma 4.2. O

Next we give the proof of Theorem 2.1, where the technique of polymer chains and
Lemmas 3.1-4.2 are applied to show the limit existence of the free energy for the two-layered
lattice W-R model.

Proof of Theorem 2.1. From Lemma 3.1, we have

1 u 1 Z
M hT) 7 (P P BCot0)
Q0" rﬁ%& (rer) Ci cze cm;ll-;[ (4.38)
compatible

In the following part, we will show the existence of the following limit:

_ .1 6

(P(ér é) - LIEI;OE lnc CZ ‘ Hq;(cll ér C)/ (439)
1 CoECD; =1
compatible

where (¢, ¢) is analytic for Re¢ <1 —-6/pu and Re{ <1 — 6/ p. In this case, from the formulas
(2.11), (4.38), and (4.39) we have

9(&6) =96 +InQ(,Q), (4.40)

which is analytic in this region. According to (4.40), in order to demonstrate Theorem 2.1
(or to prove the existence of (2.11)), it is sufficient to show the limit existence of the above
(4.39).

Next we estimate the weight of the polymer chains. We call a family of intervals

I = [1],?1],. D= [Tn,?n], (4.41)
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the linked intervals if 7, < Tu+1 <7, +2foreach 1 <u < n. So that the base of a polymer chain
forms the linked intervals. For a fixed polymer chain Cy, let [base(Cy)] = [lo, 7o] be the small-
est intervals (in length) including base(Cy). Let

() =c(m),  d(C)=>d(n), (4.42)

necC neC
where c(77) and d(7) are defined in Lemma 4.2. Then, for the functions
c*,d*: CP = {C;polymer chain} — [0, ), (4.43)

we show that

S |reeo

CeCpy;CiCy

&0 < ¢ (Cy), (4.44)

for any polymer chain Cy and for any ¢, € CwithReé¢ <1-6/pand Re{ <1 —-6/pu. Noting
that the distance of base(Cy) and base(C) is less than 2 if Cy and C are incompatible, then we
have

> |reeo
; CiCo

G

@@ = 3 1 H(C;4,0) eXP{ZC(ﬂ) + 2.d(n) }
C;CiCy

neC necC

< X i > > (4.45)

xe [ZAO,Z,;OJrz] n=1 I,..,I,C[0,L]; UI,5x MM €KL
linked intervals base(qu):lu, 1<u<n

nooo n-1
[T [® (i &, )] 21 (1) 2 (1) T T2 (1 ).
u=1 u=1

From definitions (3.18)—(3.21) and the formula (4.35), there exists y; > 0 such that | 2], [2/],
and |2| are all bounded from above by ets if Reg <1-6/ yuand Re¢ < 1 - 6/p. Therefore,
from (4.36) or Lemma 4.2, we have that

n N n-1
> TT[® i & &)e< 4| 20(1) 2, () [ T2 (s M)
u=1 u=1

MM €KL
base (qu)zlu, 1<u<n

(4.46)

n R( 6)|Iu‘ 2
< T Je w2270l i .
1-R(m,0)

u=1
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Assuming that pip > 3p1 + p3 + 2p5 + 6, then, from the inequalities (4.45) and (4.46) and if y; is
large enough (by following the similar estimate procedure of (4.37) in Lemma 4.2), we obtain

2

_ (O @) (o T D n /R, 6)™

W(C;¢,0)]e OO < (7) -1y + 4 <—

c;czicol < >; ; Ii,.., I,,C[OZ,L];UIMSxE 1-R(p1,6)
linked intervals

N n-1
(bR o (g
(1- R(#1,5))2<1 - R(ﬂ1,5)2>2 n=t <1 - R(ﬂ1,5)2>2
< <?0 - lo + 4)
- 2
< ¢*(Co)-
(4.47)

Since quc0|ba53(rl)| > max{(2/3)[base(Cyp)],1} and, by the definition c¢*(C) = Zrlecc(rl) and
c(n) = 3|base(n)| (which is given in Lemma 4.2), the above last inequality holds.

According to the above inequality (4.44), we apply the general theory of cluster expan-
sion for the partition function to display the following results; for the details, see [19]. Let
P (CP) be the collection of all finite subsets of C/, so that there exists a function

YT pp(Cp) x C* — C?, (4.48)

such that W7 is analytic for Re¢ <1-6/p and Re¢ < 1 - 6/p, and it satisfies

2 f[@(ci;é,o:exp{ > W(A;g,@)},

Ci,...,.C.eCPy; i=1 Aeps(Cp

1compaii‘bleL l PP (4.49)
S|P 0]t ® < (o),
AiCy

where d*(A) = Yccad®(C). If A is decomposed into two disjoint subsets Ay and A,, such
that, for each pair C; € Ay,C, € Ay, {Cy,Cy} are compatible, then @T(A;g,g) = 0. We call
A € Ps(CPy) acluster if there are no such decomposition A = A;UA;. Note that WT(A;¢,0) is
invariant under horizontal translation of A. For A € P¢(CP), we set base(A) = Uceabase(C).
Then, by the cluster expansion theory of [19] and (4.49), we have that the limit

lim % In Z H@(Ci; 9

L—oo

9(&6)

compatible ( 4 50)
¥(48,0),

AePs(CP); [base(A)]=[0,k]
for some k>0

exists and is analytic for Re¢ <1 -6/, Re{ <1—-06/pif u> py.
From (4.40) and (4.50), we complete the proof of Theorem 2.1. O
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