
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2011, Article ID 859497, 19 pages
doi:10.1155/2011/859497

Research Article
Positive Solution of Fourth-Order Integral
Boundary Value Problem with Two Parameters

Guoqing Chai

College of Mathematics and Statistics, Hubei Normal University, Hubei 435002, China

Correspondence should be addressed to Guoqing Chai, mathchgq@163.com

Received 12 March 2011; Revised 3 May 2011; Accepted 28 May 2011

Academic Editor: D. Anderson

Copyright q 2011 Guoqing Chai. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

The author investigates the fourth-order integral boundary value problem with two parameters
u(4)(t) + βu′′(t) − αu(t) = f(t, u), t ∈ (0, 1), u(0) = u(1) = 0, u′′(0) =

∫1
0 u(s)φ1(s)ds, u′′(1) =

∫1
0 u(s)φ2(s)ds, where nonlinear term function f is allowed to change sign. Applying the fixed
point index theorem on cone together with the operator spectrum theorem, some results on the
existence of positive solution are obtained.

1. Introduction

The theory of boundary value problems with integral boundary conditions for ordinary
differential equations arises in different areas of applied mathematics and physics. For
example, heat conduction, chemical engineering, underground water flow, thermoelasticity,
and plasma physics can all be reduced to nonlocal problems with integral boundary
conditions (see, e.g., [1–3]). For boundary value problems with integral boundary conditions
and comments on their importance, we refer the reader to the papers by Gallardo [4],
Karakostas and Tsamatos [5], and Lomtatidze and Malaguti [6] and the references therein.
For more information about the general theory of integral equations and their relation to
boundary value problems, we refer to the books of Corduneanu [7] and Agarwal and
O’Regan [8].

Moreover, boundary value problems with integral boundary conditions constitute a
very interesting and important class of problems. They include two, three, multipoints and
nonlocal boundary value problems as special cases. The existence and multiplicity of positive
solutions for such problems have received a great deal of attention. To identify a few, we refer
the reader to [9–15] and the references therein.

In the recent literature, several sorts of boundary value problems with integral
boundary conditions have been studied further, see [16–20]. Especially, RuyunMa and Yulian
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An [18] investigated the global structure of positive solutions for nonlocal boundary value
problems

u′′(t) + λh(t)f(u(t)) = 0, 0 < t < 1,

u(0) = 0, u(1) =
∫1

0
u(s)dA(s),

(1.1)

by using global bifurcation techniques, where f ∈ C([0,∞), [0,∞)), h ∈ C((0, 1), [0,∞)).
In [19], Jiqiang Jiang et al. investigated the existence of positive solution for second-order
singular Sturm-Liouville integral boundary value problems

−u′′(t) = λh(t)f(t, u(t)), 0 < t < 1,

αu(0) − βu′(0) =
∫1

0
a(s)u(s)ds,

γu(1) + δu′(1) =
∫1

0
b(s)u(s)ds,

(1.2)

by using the fixed point theory in cones, where f ∈ C([0, 1] × (0,∞), [0,∞)).
On the other hand, the fourth-order boundary value problem describe the deforma-

tions of an elastic beam in equilibrium state. Owing to its importance in physics, the existence
of solutions to this problem has been studied by many authors; see, for example, [21–24] and
references therein. Especially, in [22], Li studied existence of positive solution for fourth-order
boundary value problem

u(4)(t) + βu′′(t) − αu(t) = f(t, u), t ∈ (0, 1),

u(0) = u(1) = 0 = u′′(0) == u′′(1) = 0,
(1.3)

by using the fixed point index theorem, where f ∈ C([0,∞), [0,∞)).
Motivated by the above-mentioned works [18, 19, 22], in this paper, we study the

following fourth-order integral boundary value problem (for short BVP in the sequel) with
two parameters:

u(4)(t) + βu′′(t) − αu(t) = f(t, u), t ∈ (0, 1),

u(0) = u(1) = 0, u′′(0) =
∫1

0
u(s)φ1(s)ds, u′′(1) =

∫1

0
u(s)φ2(s)ds,

(1.4)

where nonlinear term function f is allowed to change sign. To the best of our knowledge,
BVP has not been investigated up to now. In the literature such as above-mentioned paper
[18, 19, 22], the nonnegativity on f is a usual assumption. In the present paper, since the
function f is not assumed to be nonnegative, the corresponding integral operator doesn’t map
the cone into cone, and so, there exists difficulty in applying the cone fixed point theorem. On
the other hand, owing to the occurrence of parameter α, β in this boundary value problem
including integral boundary conditions, it is not easy to transform the BVP (1.4) into an
integral equation directly. To overcome these difficulties, we first introduce operator spectrum
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method combined with some analysis technique, next apply the fixed point index theorem,
and establish existence of positive solution to BVP (1.4).

Let us begin with listing the following assumption conditions, which will be used in
the sequel:

Let I = [0, 1],R = (−∞,+∞),R− = (−∞, 0],R+ = [0,+∞).

(H1) f ∈ C[I × R+,R] and exists M ∈ L1(0, 1) ∩ C[(0, 1),R+] such that

f(t, u) +M(t) ≥ 0, (t, u) ∈ (0, 1) × R+. (1.5)

(H2) α, β ∈ R, β < 2π2, α ≥ −β2/4, α/π4 + β/π2 < 1.

Let λ1, λ2 be the roots of the polynomial p(λ) = λ2 + βλ − α; namely,

λ1, λ2 =
−β ±

√
β2 + 4α

2
. (1.6)

By (H2), it is to see that λ1 ≥ λ2 > −π2.
Let Γ0 = π4−βπ2−α. Then (H2) implies Γ0 > 0. LetX = C[0, 1] be the real Banach space

equipped with the norm ||u|| = max0≤t≤1|u(t)|. Denote by P the set P = {u ∈ X : u(t) ≥ 0, t ∈ I}
in X.

2. Preliminaries

In this section, we shall give some important preliminary lemmas, which will be used in
proving of our main results.

Lemma 2.1 (see [22, 23]). Suppose that (H2) holds, then there exist unique ϕi, ψi, i = 1, 2 satisfying

−ϕ′′
i (t) + λiϕi(t) = 0, t ∈ [0, 1],

ϕi(0) = 0, ϕi(1) = 1,

−ψ ′′
i (t) + λiψi(t) = 0, t ∈ [0, 1],

ψi(0) = 1, ψi(1) = 0,

(2.1)

respectively, and ϕi ≥ 0, ψi ≥ 0 on [0, 1], where λi is as in (1.6). Moreover, ϕi, ψi have the expression

ϕi(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

sinhωit

sinhωi
, λi > 0,

t, λi = 0,

sinωit

sinωi
, −π2 < λi < 0,

ψi(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

sinhωi(1 − t)
sinhωi

, λi > 0,

1 − t, λi = 0,

sinωi(1 − t)
sinωi

, −π2 < λi < 0,

(2.2)

where ωi =
√
|λi|, i = 1, 2.
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Let Gi(t, s)(i = 1, 2) be the Green function of the linear boundary value problem

−u′′(t) + λiu(t) = 0, t ∈ [0, 1], u(0) = u(1) = 0. (2.3)

By [22, 23], Gi(t, s) can be expressed by the formula

Gi(t, s) =
1
σi

⎧
⎨

⎩

ϕi(t)ψi(s), 0 ≤ t ≤ s ≤ 1,

ψi(t)ϕi(s), 0 ≤ s ≤ t ≤ 1,
(2.4)

where

σi =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ωi

sinhωi
, if λi > 0,

1, if λi = 0, i = 1, 2.
ωi

sinωi
, if − π2 < λi < 0,

(2.5)

Lemma 2.2 (see [22, 23]). Gi = Gi(t, s)(i = 1, 2) have the following properties:

(i) Gi(t, s) > 0, ∀t, s ∈ (0, 1).

(ii) Gi(t, s) ≤ CiGi(s, s), ∀t, s ∈ [0, 1], ϕi ≤ Ci, ψi ≤ Ci, t ∈ [0, 1].

(iii) Gi(t, s) ≥ δiGi(t, t)Gi(s, s), ∀t, s ∈ [0, 1], ϕi(t) ≥ δiGi(t, t), ψi(t) ≥ δiGi(t, t), t ∈ [0, 1],
where

Ci =

⎧
⎪⎨

⎪⎩

1, if λi ≥ 0,

1
sinωi

, if − π2 < λi < 0,
δi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ωi

sinhωi
, if λi > 0,

1, if λi = 0,

ωi sinωi, if − π2 < λi < 0.

(2.6)

Put Di = maxt∈I
∫1
0Gi(t, s)ds, i = 1, 2. Set E21 = D2C1, E12 = D1C2, where Ci is described

as before. We need also the following assumptions in the sequel.

(H3) Functions φi ∈ C[I,R−], i = 1, 2, satisfy D=̇E12
∫1
0 |φ1(s)|ds + E21

∫1
0 |φ2(s)|ds < 1.

Let h ∈ C(0, 1) ∩ L1(0, 1), consider the following BVP:

u(4)(t) + βu′′(t) − αu(t) = h(t), t ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0.
(2.7)

By papers [22, 23], BVP (2.7) has a unique solution u = Kh expressed by

Kh(t) =
∫1

0

∫1

0
G1(t, s)G2(s, τ)h(τ)dτ ds

=
∫1

0

∫1

0
G2(t, s)G1(s, τ)h(τ)dτ ds, t ∈ [0, 1].

(2.8)
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Let w = KM. SinceM ∈ L1(0, 1) ∩ C[(0, 1), R+], by Lemma 2.2, it is easy to verify that
w ∈ P .

Let

g1(t) = −
∫1

0
G2(t, s)ϕ1(s)ds, t ∈ [0, 1], (2.9)

where ϕ1 is as in (2. 1). By Lemmas 2.1 and 2.2, we have g1 ∈ C2([0, 1], R−) and

−g ′′
1(t) + λ2g1(t) = −ϕ1(t), t ∈ [0, 1],

g1(0) = g1(1) = 0.
(2.10)

On the other hand, ϕ1 satisfies the following relation:

−ϕ′′
1(t) + λ1ϕ1(t) = 0, t ∈ [0, 1],

ϕ1(0) = 0, ϕ1(1) = 1.
(2.11)

So, from (2.10)–(2.11), it follows that

g ′′
1(0) = λ2g1(0) + ϕ1(0) = 0,

g ′′
1(1) = λ2g1(1) + ϕ1(1) = 1.

(2.12)

Now, we make the following decomposition:

g
(4)
1 + βg ′′

1 − αg1 =
(

− d
2

dt2
+ λ1

)(

− d
2

dt2
+ λ2

)

g1

=

(

− d
2

dt2
+ λ1

)
(−g ′′

1 + λ2g1
)

=
d2ϕ1

dt2
− λ1

dϕ1

dt
= 0.

(2.13)

So by (2.10), (2.12)-(2.13), it follows that

g
(4)
1 (t) + βg ′′

1(t) − αg1(t) = 0, t ∈ [0, 1],

g1(0) = g1(1) = 0, g ′′
1(0) = 0, g ′′

1(1) = 1,

g1(t) ≤ 0, t ∈ [0, 1].

(2.14)

Similarly, by setting

g2(t) = −
∫1

0
G1(t, s)ψ2(s)ds, t ∈ [0, 1], (2.15)
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we have

g
(4)
2 (t) + βg ′′

2(t) − αg2(t) = 0, t ∈ [0, 1],

g2(0) = g2(1) = 0, g ′′
2(0) = 1, g ′′

2(1) = 0,

g2(t) ≤ 0, t ∈ [0, 1].

(2.16)

For any u ∈ X, define u∗ as

u∗(t) =

⎧
⎪⎨

⎪⎩

u(t), if u(t) ≥ 0,

0, if u(t) < 0.
(2.17)

Obviously, u∗ ∈ P for any u ∈ X.
Let h ∈ L1(0, 1) ∩ C(0, 1); consider the BVP with integral boundary conditions

u(4)(t) + βu′′(t) − αu(t) = h(t), t ∈ (0, 1),

u(0) = u(1) = 0,

u′′(0) =
∫1

0
[u −w]∗(s)φ1(s)ds, u′′(1) =

∫1

0
[u −w]∗(s)φ2(s)ds.

(2.18)

Denote operator B on C[0, 1] by

Bu(t) = g2(t)
∫1

0
[u −w]∗(s)φ1(s)ds + g1(t)

∫1

0
[u −w]∗(s)φ2(s)ds. (2.19)

It is easy to see that B maps C[0, 1] into C[0, 1].
Define operator L: C4(0, 1) → C(0, 1) as follows:

Lu = u(4) + βu′′ − αu. (2.20)

We need the following Lemma.

Lemma 2.3. Let (H2) holds. Assume that h ∈ L1(0, 1) ∩ C(0, 1) and φi ∈ C[I,R−], i = 1, 2. Then
u ∈ C4(0, 1) ∩ C2[0, 1] is a solution of (2.18) if and only if u is a solution of operator equation
u = Kh + Bu in C[0, 1].
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Proof. (1) Assume u ∈ C4(0, 1) ∩ C2[0, 1] is a solution of (2.18). By (2.14)–(2.20), we have

(Bu)(0) = (Bu)(1) = 0, (Bu)′′(0) =
∫1

0
[u −w]∗(s)φ1(s)ds,

(Bu)′′(1) =
∫1

0
[u −w]∗(s)φ2(s)ds,

L(Bu) =
(
Lg2
)
∫1

0
[u −w]∗(s)φ1(s)ds +

(
Lg1
)
∫1

0
[u −w]∗(s)φ2(s)ds = 0.

(2.21)

Let v = u − Bu. Then Lv(t) = Lu(t) − LBu(t) = Lu(t) = h(t), t ∈ (0, 1);v(0) = u(0) − (Bu)(0) =

0,v(1) = u(1) − (Bu)(1) = 0; v′′(0) = u′′(0) − (Bu)′′(0) = 0, v′′(1) = u′′(1) − (Bu)′′(1) = 0. Thus,

by (2.7)-(2.8), we have v = Kh, v ∈ C[0, 1], and so u = Kh + Bu, u ∈ C[0, 1].
(2) Inversely, assume u ∈ C[0, 1] satisfies u = Kh + Bu. Then u ∈ C4(0, 1) ∩C2[0, 1]. By

(2.7), (2.8),(2.14)–(2.20), we have

LKh = h, LBu = 0, (Kh)(0) = (Kh)(1) = (Kh)′′(0) = (Kh)′′(1) = 0,

(Bu)(0) = (Bu)(1) = 0, (Bu)′′(0) =
∫1

0
[u −w]∗(s)φ1(s)ds,

(Bu)′′(1) =
∫1

0
[u −w]∗(s)φ2(s)ds.

(2.22)

Consequently,

Lu = LKh + LBu = h,

u(0) = (Kh)(0) + (Bu)(0) = 0, u(1) = (Kh)(1) + (Bu)(1) = 0,

u′′(0) = (Kh)′′(0) + (Bu)′′(0) =
∫1

0
[u −w]∗(s)φ1(s)ds,

u′′(1) = (Kh)′′(1) + (Bu)′′(1) =
∫1

0
[u −w]∗(s)φ2(s)ds.

(2.23)

Hence, u is a solution of (2.18). The proof is complete.

We have also the following lemma.

Lemma 2.4. Suppose (H3) holds. Then B : X → X is a bounded operator with ||B|| ≤ D(< 1) and
BX ⊂ P .
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Proof. In view of Lemma 2.2 (ii), by (2.9),(2.15),(2.19) and (H3), noticing that w ∈ P , for any
u ∈ X and t ∈ I, we have

|(Bu)(t)| ≤ ∣∣g2(t)
∣
∣
∫1

0
[u −w]∗φ1(s)

∣
∣
∣
∣
∣
ds +

∣
∣g1(t)

∣
∣
∫1

0
[u −w]∗φ2(s)

∣
∣
∣
∣
∣
ds

≤ E12

∫1

0
|u(s)|∣∣φ1(s)

∣
∣ds + E21

∫1

0
|u(s)|∣∣φ2(s)

∣
∣ds

≤ D‖u‖.

(2.24)

Thus, ||Bu|| ≤ D||u||, and so ||B|| ≤ D(< 1).
On the other hand, from gi(t) ≤ 0, φi(t) ≤ 0, t ∈ I, i = 1, 2, we have BX ⊂ P . So,

Lemma 2.4 is true.
By (2.7)-(2.8), it follows from w = KM that

w(4)(t) + βw′′(t) − αw(t) =M(t), t ∈ (0, 1),

w(0) = w(1) = w′′(0) = w′′(1) = 0.
(2.25)

For any u ∈ X, let fu(t) = f(t, [u−w]∗(t)), t ∈ [0, 1] and Gu(t) = fu(t) +M(t), t ∈ (0, 1).
Under conditions (H1)–(H3), consider the following auxiliary BVP:

u(4)(t) + βu′′(t) − αu(t) = Gu(t), t ∈ (0, 1),

u(0) = u(1) = 0,

u′′(0) =
∫1

0
[u −w]∗(s)φ1(s)ds, u′′(1) =

∫1

0
[u −w]∗(s)φ2(s)ds.

(2.26)

Notice that w(t) satisfies (2.25), it is easy to see that u ∈ C4(0, 1) ∩ C2[0, 1] is a solution of
(2.26) if and only if u −w ∈ C4(0, 1) ∩ C2[0, 1] is a solution of the following BVP:

u(4)(t) + βu′′(t) − αu(t) = f(t, u∗(t)), t ∈ (0, 1),

u(0) = u(1) = 0, u′′(0) =
∫1

0
u∗(s)φ1(s)ds, u′′(1) =

∫1

0
u∗(s)φ2(s)ds.

(2.27)

Thus, if and only if u(t) ≥ w(t), t ∈ [0, 1], then u −w is a solution of BVP (1.4).
Now, by Lemma 2.3, u ∈ C4(0, 1) ∩ C2[0, 1] is a solution of (2.26) if u ∈ X is a fixed

point of the operator KG + B. So, we only need focusing our attention on the existence of the
fixed point of KG + B.

For the remainder of this section, we give the definition of positive solution.
By a positive solution of BVP (1.4), we mean a function u ∈ C4(0, 1)∩C2[0, 1] such that

u(t) ≥ 0, t ∈ [0, 1], u(t) > 0, t ∈ (0, 1), and u satisfies (1.4).
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3. Main Results

We introduce now some notations, which will be used in the sequel.
Let C1, δ1, and D be as described in Lemma 2.2 and (H3), respectively. We also set

d1 =
∫1

0

∫1

0
G2(s, τ)M(τ)dτ ds, b0 =

C2
1d1

δ1(1 −D)
, f0 = lim

u→+0
inf
t∈I
f(t, u)
u

,

f∞ = lim
u→+∞

max
t∈I

f(t, u)
u

.

(3.1)

We also need the following assumption.
(H4) There exists a number r0 ∈ (b0,+∞), and Γ1 ≥ r0/Γ0(r0 − b0) such that

f(t, u) +M(t) ≥ Γ1u, ∀(t, u) ∈ (0, 1) × [0, r0]. (3.2)

We are now in a position to state and prove our main results on the existence.

Theorem 3.1. Suppose that (H1)–(H4) hold. If f∞ = 0, then BVP (1.4) has a positive solution.

Proof. By Lemma 2.4 together with (H3), we have ||B|| ≤ D(<1). By operator spectrum
theorem, we know that (I−B)−1 exists and is bounded. Furthermore, byNeumann expression,
(I − B)−1can be expressed by

(I − B)−1 =
∞∑

n=0

Bn. (3.3)

Noticing that BP ⊂ P and from (3.3), we have

(I − B)−1u =
∞∑

n=0

Bnu ≥ u, ∀u ∈ P, (3.4)

∥∥∥(I − B)−1
∥∥∥ ≤

∞∑

n=0
‖B‖n =

1
1 − ‖B‖ ≤ 1

1 −D. (3.5)

Thus, from the reversibility of I − B, we have

u = KGu + Bu, u ∈ X ⇐⇒ u = (I − B)−1KGu, u ∈ X. (3.6)

The following proof will be divided into five steps.

Step 1. We will show that (I − B)−1KG : P → P is completely continuous.

(1) KGmaps P into P .
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For any u ∈ P , it follows from (H1) that f(t, [u − w]∗(t)) ∈ X, and so (Gu)(t) ≥ 0, t ∈
(0, 1), Gu ∈ C(0, 1) ∩ L1(0, 1). By (H1)-(H2) together with Lemma 2.2, for any t ∈ [0, 1], we
have

0 ≤ (KGu)(t) =
∫1

0

∫1

0
G1(t, s)G2(s, τ)

[
f
(
τ, [u −w]∗(τ)

)
+M(τ)

)
dτ ds

≤ ρη + ρ
∫1

0
M(τ)dτ < +∞,

(3.7)

where η = maxt∈[0,1]|f(t, [u −w]∗(t))| <∞, ρ = maxt,s,τ∈[0,1]G1(t, s)G2(s, τ) <∞.

From the continuity of G1(t, s), it is easy to see that KGu ∈ X, and so KGu ∈ P .
(2) KG is a compact operator on P .

Assume that U is a arbitrary bounded set in P . Then there exists a L0 > 0 such that ‖u‖ ≤ L0

for all u ∈ U. Also, we have ‖[u −w]∗‖ ≤ L0 for all u ∈ U since w ∈ P . Consequently,

0 ≤ (KGu)(t) ≤ ρb + ρ
∫1

0
M(τ)dτ < +∞, ∀w ∈ P, (3.8)

where b = max(t,u)∈I×[0,L0]|f(t, u)|, ρ = maxt,s,τ∈[0,1]G1(t, s)G2(s, τ). That means {KGu | u ∈ U}
is a uniformly bounded set in P .

On the other hand, the continuity of G1 on I × I yields that for every ε > 0, there
exists δ > 0 such that for any t1, t2 ∈ I with |t1 − t2| < δ, the following inequality

|G1(t2, s) −G1(t1, s)| < ε (3.9)

holds for all s ∈ I, and so,

|(KGu)(t2) − (KGu)(t1)| ≤ ε
∫1

0

∫1

0
G2(s, τ)(Gu)(τ)dτds

≤ ε
[

be2 + e2

∫1

0
M(τ)dτ

]

,

(3.10)

for any u ∈ U, where e2 = maxs,τ∈[0,1]G2(s, τ) < +∞, b = max(t,u)∈I×[0,L0]|f(t, u)| < +∞. That is,
{KGu | u ∈ U}is equicontinuous.

Hence, in view of Arzela-Ascoli theorem, we know that the operator KG is compact
on P .

(3) Now, we show that the operator KG is continuous.
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Indeed, for any sequence {un} in P with un → u and any t ∈ I, we have

∣
∣[un −w]∗(t) − [u −w]∗(t)

∣
∣ =

1
2
|[|un(t) −w(t)| + (un(t) −w(t))] − [|u(t) −w(t)| + u(t) −w(t)]|

=
1
2
|[|un(t) −w(t)| − |u(t) −w(t)| + un(t) − u(t)]|

≤ 1
2
{|[|un(t) −w(t)| − |u(t) −w(t)|]| + |un(t) − u(t)|}

≤ |un(t) − u(t)|.
(3.11)

Thus, ‖[un −w]∗ − [u−w]∗‖ → 0, and, by Lemma 2.2, it follows from the continuity of f that

‖KGun −KGu‖

≤ C1

∫1

0

∫1

0
G1(s, s)G2(s, τ)

∣∣f
(
τ, [un −w]∗(τ)

) − f(τ, [u −w]∗(τ)
)∣∣dτ ds −→ 0.

(3.12)

By (1)–(3) we obtain that KG : P → P is completely continuous.
Now, from (3.4), we have (I−B)−1 : P → P is continuous, and so, (I−B)−1KG : P → P

is completely continuous.
Now we set

Q = (I − B)−1KG, q1(t) =
δ1
C1
G1(t, t), t ∈ I, (3.13)

where δ1, C1 are described in Lemma 2.2. Set

P0 =
{
u ∈ P : u(t) ≥ (1 − ‖B‖)q1(t)‖u‖, t ∈ I

}
. (3.14)

Obviously, P0 is a cone in X.

Step 2. Q : P → P0.
In fact, for any u ∈ P and every t, σ in I, by Lemma 2.2, we have

(KGu)(t) =
∫1

0

∫1

0
G1(t, s)G2(s, τ)(Gu)(τ)dτ ds

≥ δ1G1(t, t)
∫1

0

∫1

0
G1(s, s)G2(s, τ)(Gu)(τ)dτ ds

≥ δ1
C1
G1(t, t)

∫1

0

∫1

0
G1(σ, s)G2(s, τ)(Gu)(τ)dτ ds

= q1(t)(KGu)(σ).

(3.15)
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Thus, we have

(KGu)(t) ≥ q1(t)‖KGu‖, t ∈ I. (3.16)

Since KGP ⊂ P , by (3.4) together with (3.16) for every t ∈ I, we have

(
(I − B)−1KGu

)
(t) ≥ (KGu)(t)

≥ q1(t)‖KGu‖.
(3.17)

On the other hand, since ‖(I − B)−1(KGu)‖ ≤ ‖(I − B)−1‖ · ‖KGu‖, by (3.5), we have

‖KGu‖ ≥ 1
∥∥∥(I − B)−1

∥∥∥

∥
∥∥(I − B)−1KGu

∥
∥∥

≥ (1 − ‖B‖)
∥∥∥(I − B)−1KGu

∥∥∥.

(3.18)

Inequality (3.17) together with (3.18) implies for every t ∈ I
(
(I − B)−1KGu

)
(t) ≥ (1 − ‖B‖)q1(t)

∥∥∥(I − B)−1KGu
∥∥∥, (3.19)

namely, (Qu)(t) ≥ (1 − ‖B‖)q1(t)‖Qu‖, t ∈ I. Thus, we obtain that Q maps P into P0.

Step 3. We shall deduce that for any u ∈ P0 and t ∈ I, the following inequality holds:

u(t) −w(t) ≥
(
1 − b0

‖u‖
)
u(t), (3.20)

where b0 = C2
1d1/δ1(1 −D).

In fact, in view of Lemma 2.2 and the symmetry of G1(t, s), we have

G1(t, s) = G1(s, t) ≤ C1G1(t, t), ∀t, s ∈ I. (3.21)

Thus, keeping in mind that d1 =
∫1
0

∫1
0 G2(s, τ)M(τ)dτ ds, it follows from w = KM that

w(t) =
∫1

0

∫1

0
G1(t, s)G2(s, τ)M(τ)dτ ds

≤ C1G1(t, t)
∫1

0

∫1

0
G2(s, τ)M(τ)dτ ds

=
C2

1

δ1
d1q1(t), t ∈ I.

(3.22)
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On the other hand, from u ∈ P0, it follows that

u(t) ≥ q1(t)(1 − ‖B‖)‖u‖ ≥ q1(t)(1 −D)‖u‖, t ∈ I. (3.23)

Thus, by (3.22)-(3.23), we have

w(t) ≤ C2
1d1

δ1(1 −D)‖u‖ , (3.24)

and so,

u(t) −w(t) ≥
(

1 − C2
1d1

δ1(1 −D)‖u‖

)

u(t) =
(
1 − b0

‖u‖
)
u(t), t ∈ I, (3.25)

where b0 = C2
1d1/(δ1(1 −D)).

Step 4. By (H4), we have

f(t, u) +M(t) ≥ Γ1u, (t, u) ∈ (0, 1) × [0, r0]. (3.26)

Let φ0 = sinπt. By (2.7)-(2.8), we easily know that sinπt is a positive eigenfunction of
operator K with respect to positive eigenvalue Γ0, that is, Kφ0 = Γ0φ0.

Now, we show that φ0 ∈ P0, that is, φ0(t) ≥ (1 − ‖B‖)q1(t)‖φ0‖, t ∈ I. We discuss it in
three different cases.

(1) λ1 = 0. In this case, G1(t, t) = t(1 − t), t ∈ I, and C1 = δ1 = 1.

(i) If t ∈ [0, 1/2], then πt ∈ [0, π/2]. By Jordan’s inequality, we have

sinπt ≥ 2
π

· πt = 2t, t ∈
[
0,

1
2

]
. (3.27)

(ii) If t ∈ [1/2, 1], by setting x = 1 − t, we have x ∈ [0, 1/2]. Then from (3. 12), it
follows that

sinπt = sinπ(1 − x) = sinπx ≥ 2x = 2(1 − t), t ∈
[
1
2
, 1
]
. (3.28)

Thus, by (i)-(ii) above, we have

sinπt ≥ 2t(1 − t) = 2G1(t, t) = 2q1(t), t ∈ I. (3.29)

(2) λ1 > 0. In this case, G1(t, t) = (sinhω1t · sinhω1(1 − t))/ω1 sinhω1, t ∈ I, and C1 =
1,δ1 = ω1/ sinhω1.
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(i) If t ∈ [0, 1/2], by setting ϕ(t) = (cosh(ω1/2))t − (sinhω1t/ω1), t ∈ [0, 1/2], we
have

ϕ′(t) = cosh
ω1

2
− coshω1t ≥ cosh

ω1

2
− cosh

ω1

2
= 0, t ∈

[
0,

1
2

]
. (3.30)

From φ(0) = 0, it follows that 0 ≤ sinhω1t/ω1 ≤ (cosh(ω1/2))t, t ∈ [0, 1/2]. Keeping in mind
that 0 < sinhω1(1 − t)/ sinhω1 ≤ 1 for all t ∈ [0, 1/2], it follows immediately that

G1(t, t) ≤
(
cosh

ω1

2

)
t, t ∈

[
0,

1
2

]
. (3.31)

(ii) If t ∈ [1/2, 1], by setting x = 1− t, we have x ∈ [0, 1/2]. From (2)(i) above, it follows
that

G1(t, t) = G1(1 − x, 1 − x) = G1(x, x) ≤ (cosh(ω1/2))x = (cosh(ω1/2))(1 − t), t ∈
[
1
2
, 1
]
.

(3.32)

Hence, by (2)(i)-(ii) above, we have

G(t, t) ≤ cosh
1
ω1

·

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t, t ∈
[
0,

1
2

]
,

1 − t, t ∈
[
1
2
, 1
]
.

(3.33)

On the other hand, by (3.27)-(3.28), we have

sinπt ≥ 2 ·

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t, t ∈
[
0,

1
2

]
,

1 − t, t ∈
[
1
2
, 1
]
.

(3.34)

Thus, we have immediately

sinπt≥ 2
cosh(ω1/2)

G1(t, t)=
2C1

δ1 cosh(ω1/2)
q1(t)=

2 sinhω1

ω1 cosh(ω1/2)
q1(t)=

2 sinh(ω1/2)
ω1/2

q1(t),

t ∈ I.
(3.35)

It is easy to verity that sinh (ω12)/ω1/2 ≥ 1. Hence, sinπt ≥ 2q1(t), t ∈ I.
(3) −π2 < λ1 < 0. In this case, G1(t, t) = sinω1t · sinω1(1 − t)/ω1 sinω1, t ∈ I, and

C1 = 1/ sinω1, δ1 = ω1 sinω1.
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(i) If t ∈ [0, 1/2], then 0 ≤ sinω1t ≤ sinπt, 0 < sinω1(1 − t) ≤ 1. Thus,

G1(t, t) ≤ sinπt
ω1 sinω1

, t ∈
[
0,

1
2

]
. (3.36)

(ii) If t ∈ [1/2, 1], from (i), by letting x = 1 − t, then we have x ∈ [0, 1/2], and

G1(t, t) = G1(1 − x, 1 − x) = G1(x, x)

≤ sinπx
ω1 sinω1

=
sinπ(1 − t)
ω1 sinω1

=
sinπt

ω1 sinω1
, t ∈

[
1
2
, 1
]
.

(3.37)

Thus, (3)(i)-(ii) above implies that

sinπt ≥ ω1 sinω1G1(t, t) = ω1 sinω1
C1

δ1
q1(t) =

1
sinω1

q1(t) ≥ q1(t), t ∈ I. (3.38)

Summing up (1)–(3) keeping in mind that ‖φ0‖ = 1, we have

φ0(t) = sinπt ≥ q1(t) = q1(t)
∥∥φ0
∥∥ ≥ (1 − ‖B‖)q1(t)

∥∥φ0
∥∥, t ∈ I, (3.39)

that is, φ ∈ P0.
Now, set Ωr0 = {u ∈ P0 : ||u0|| < r0}. We claim that

u/=Qu + λφ0, ∀λ ≥ 0, u ∈ ∂Ωr0 . (3.40)

Indeed, if not, then exists a u0 ∈ ∂Ωr0 and λ0 ≥ 0 with u0 = Qu0 + λ0φ0. Without loss of
generality, assume that λ0 > 0 (otherwise, by proving later on, we will know that the theorem
is true). By u0 ∈ ∂Ωr0 , we have ||u0|| = r0, and so, it follows from (3.25) that

r0 ≥ u0(t) ≥ u0(t) −w(t) ≥
(
1 − b0

r0

)
u0(t) ≥ 0, t ∈ I, (3.41)

since r0 > b0.
Thus, by (3.26) and (3.41), we have

f
(
t, [u0 −w]∗(t)

)
+M(t) = f(t, (u0 −w)(t)) +M(t)

≥ Γ1
(
1 − b0

r0

)
u0(t), t ∈ (0, 1).

(3.42)
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Therefore, by (3.4), (3.16), we have

u0 = Qu0 + λ0φ0 = (I − B)−1KGu0 + λ0φ0

≥ KGu0 + λ0φ0

=
∫1

0

∫1

0
G1(t, s)G2(s, τ)

[
f
(
τ, [u −w]∗(τ)

)
+M(τ)

]
dτ ds + λ0φ0

≥ Γ1
(
1 − b0

r0

)∫1

0

∫1

0
G1(t, s)G2(s, τ)u0(τ)dτ ds + λ0φ0

= Γ1
(
1 − b0

r0

)
Ku0 + λ0φ0.

(3.43)

Thus, u0 ≥ λ0φ0. Let λ∗ = sup{λ | u0 ≥ λφ0}. Then λ∗ ≥ λ0, and u0 ≥ λ∗φ0. By KP ⊂ P and
Kφ0 = Γ0φ0, it follows that

Ku0 ≥ λ∗Kφ0 = λ∗Γ0φ0. (3.44)

Thus, by (3.43), we have

u0 ≥ Γ1
(
1 − b0

r0

)
Γ0λ∗φ0 + λ0φ. (3.45)

The hypothesis in (H4) yields Γ1(1 − b0/r0)Γ0 ≥ 1, and so u0 ≥ (λ∗ + λ0)φ0, which contradicts
to the definition of λ∗( noticing that λ0 > 0). This shows that (3.40) fulfils. Therefore, in terms
of the fixed point index theorem on cone ([25]), we have

i(Q,Ωr0 , P0) = 0. (3.46)

Step 5. Let d2 = maxt∈[0,1]
∫1
0

∫1
0 G1(t, s)G2(s, τ)dτ ds,Γ2 = (1 − D)/d2. By hypothesis f∞ = 0,

we have f∞ < (Γ2 − ε0) for a fixed ε0 ∈ (0,Γ2), and so, there exists R1 > 0 such that

f(t, u) < (Γ2 − ε0)u, t ∈ I (3.47)

holds when u ≥ R1.

Let C = max{|f(t, u)| : (t, u) ∈ I × [0, R1]}. Then

f(t, u) ≤ (Γ2 − ε0)u + C, (t, u) ∈ I × R+. (3.48)

Let d3 = maxt∈[0,1]
∫1
0

∫1
0 G1(t, s)G2(s, τ)M(τ)dτ ds, let E0 = (Cd2 + d3)/ε0d2. Take R0 >

max{r0, E0}. Set ΩR0 = {u ∈ P0 : ‖u‖ < R0}. We shall show that

λu/=Qu, u ∈ ∂ΩR0 , λ ≥ 1. (3.49)
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Suppose on the contradiction that there exist u0 ∈ ∂ΩR0 and λ0 ≥ 1 with λ0u0 = Qu0. Then
‖u0‖ = R0 > r0 > b0. By (3.48), we have

f
(
t, [u0 −w]∗(t)

) ≤ (Γ2 − ε0)[u0 −w]∗(t) + C

≤ (Γ2 − ε0)u0(t) + C, t ∈ I.
(3.50)

Hence,

(KGu0)(t) =
∫1

0

∫1

0
G1(t, s)G2(s, τ)

(
f
(
τ, [u0 −w]∗(τ)

)
+M(τ)

)
dτ ds

≤
∫1

0

∫1

0
G1(t, s)G2(s, τ)((Γ2 − ε0)u0(τ) + C +M(τ))dτ ds

≤ (Γ2 − ε0)d2‖u0‖ + Cd2 + d3, t ∈ I.

(3.51)

So, ‖KGu0‖ ≤ (Γ2 − ε0)d2‖u0‖ +Cd2 + d3. Thus, from (3.5) and Γ2 = (1 −D)/d2, it follows that

‖u0‖ ≤ ‖λ0u0‖ =
∥∥∥(I − B)−1KGu0

∥∥∥ ≤ 1
1 −D ‖KGu0‖ ≤ d2(Γ2 − ε0)

1 −D ‖u0‖ + Cd2 + d3
1 −D . (3.52)

Then, R = ‖u0‖ ≤ E0, which contradicts to the choice of R0. Hence, (3.49) holds. Therefore,
the fixed point index theorem ([25]) implies

i(Q,ΩR0 , P0) = 1. (3.53)

By (3.46)–(3.53), applying additivity of fixed point index [25], we have

i
(
Q,ΩR0 \Ωr0 , P0

)
= i(Q,ΩR0 , P0) − i(Q,Ωr0 , P0) = 1. (3.54)

Therefore, Q has a fixed point u ∈ ΩR0 \Ωr0 . Hence, v = u −w is a solution of BVP (1.4).
Now, from u /∈ Ωr0 , we have ‖u‖ > r0(> b0), and so, (3.20) together with the fact that

u ∈ P0 gives

v(t) = u(t) −w(t) ≥
(
1 − b0

‖u‖
)
u(t) ≥

(
1 − b0

r0

)
u(t) ≥

(
1 − b0

r0

)
(1 − ‖B‖)q1(t)r0, t ∈ I.

(3.55)

Thus, v(t) ≥ 0, t ∈ [0, 1]. Moreover, v(t) > 0, t ∈ (0, 1) from q1(t) > 0, t ∈ (0, 1). That means
that v is a positive solution of BVP (1.4). The proof is completed.

Corollary 3.2. Let (H2), (H3) hold. Assume that f ∈ C[I × R+,R+]. If f0 > 1/Γ0 , f∞ = 0, then
BVP (1.4) has a positive solution.
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Proof. Let us takeM(t) = 0 in Theorem 3.1. Then d1 = 0, and so b0 = 0. By f0 > 1/Γ0, we can
take a Γ1 ∈ (1/Γ0,∞) such that f0 > Γ1. Then there exists a r0 ∈ (0,+∞) such that

f(t, u) ≥ Γ1u, (t, u) ∈ I × [0, r0]. (3.56)

Hence, all hypotheses in Theorem 3.1 are satisfied, and the conclusion of Corollary 3.2
follows. This completes the proof.

Remark 3.3. Even in the case thatM(t) = 0, the conclusion of Corollary 3.2 is still new.
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