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Existence and multiplicity of positive solutions for the following semilinear elliptic equation:
−Δu + u = a(x)|u|p−2u + λb(x)|u|q−2u in R

N , u ∈ H1(RN), are established, where λ > 0, 1 < q <
2 < p < 2∗ (2∗ = 2N/(N − 2) if N ≥ 3, 2∗ = ∞ if N = 1, 2), a, b satisfy suitable conditions, and b
maybe changes sign in R

N . The study is based on the extraction of the Palais-Smale sequences in
the Nehari manifold.

1. Introduction

In this paper, we deal with the multiplicity of positive solutions for the following semilinear
elliptic equation:

−Δu + u = a(x)up−1 + λb(x)uq−1 in R
N,

u > 0 in R
N,

u ∈ H1
(
R
N
)
,

(Ea,λb)

where λ > 0, 1 < q < 2 < p < 2∗ (2∗ = 2N/(N − 2) if N ≥ 3, 2∗ = ∞ if N = 1, 2) and a, b are
measurable functions and satisfy the following conditions:

(a1) 0 < a ∈ L∞(RN), where lim|x|→∞a(x) = 1, and there exist C0 > 0 and δ0 > 0 such
that

a(x) ≥ 1 − C0e
−δ0|x| ∀x ∈ R

N. (1.1)
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(b1) b ∈ Lq
∗
(RN) (q∗ = p/(p − q)), b+ = max{b, 0}/≡ 0, b− = max{−b, 0} is bounded and

b− has a compact support K in R
N .

(b2) There exist C1 > 0, 0 < δ1 < min{δ0, q} and R0 > 0 such that

b+(x) − b(x) ≥ C1e
−δ1|x| ∀|x| ≥ R0. (1.2)

Semilinear elliptic equations with concave-convex nonlinearities in bounded domains
are widely studied. For example, Ambrosetti et al. [1] considered the following equation:

−Δu = up−1 + λuq−1 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(Eλ)

where λ > 0, 1 < q < 2 < p < 2∗. They proved that there exists λ0 > 0 such that (Eλ) admits
at least two positive solutions for all λ ∈ (0, λ0), has one positive solution for λ = λ0 and
no positive solution for λ > λ0. Actually, Adimurthi et al. [2], Damascelli et al. [3], Korman
[4], Ouyang and Shi [5], and Tang [6] proved that there exists λ0 > 0 such that (Eλ) in the
unit ball BN(0; 1) has exactly two positive solutions for λ ∈ (0, λ0), has exactly one positive
solution for λ = λ0 and no positive solution exists for λ > λ0. For more general results of (Eλ)
(involving sign-changing weights) in bounded domains; see, the work of Ambrosetti et al. in
[7], of Garcia Azorero et al. in [8], of Brown and Wu in [9], of Brown and Zhang in [10], of
Cao and Zhong in [11], of de Figueiredo et al. in [12], and their references.

However, little has been done for this type of problem in R
N . We are only aware of

the works [13–17] which studied the existence of solutions for some related concave-convex
elliptic problems (not involving sign-changing weights). Furthermore, we do not know of
any results for concave-convex elliptic problems involving sign-changing weight functions
except [18, 19]. Wu in [18] have studied themultiplicity of positive solutions for the following
equation involving sign-changing weights:

−Δu + u = fλ(x)uq−1 + gμ(x)up−1 in R
N,

u > 0 in R
N,

u ∈ H1
(
R
N
)
,

(Efλ,gμ)

where 1 < q < 2 < p < 2∗ the parameters λ, μ ≥ 0. He also assumed that fλ(x) = λf+(x) +f−(x)
is sign chaning and gμ(x) = a(x)+μb(x), where a and b satisfy suitable conditions and proved
that (Efλ,gμ) has at least four positive solutions.

In a recent work [19], Hsu and Lin have studied (Ea,λb) in R
N with a sign-changing

weight function. They proved there exists λ0 > 0 such that (Ea,λb) has at least two positive
solutions for all λ ∈ (0, λ0) provided that a, b satisfy suitable conditions and bmaybe changes
sign in R

N .
Continuing our previous work [19], we consider (Ea,λb) in R

N involving a sign-
changing weight function with suitable assumptions which are different from the assump-
tions in [19].
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In order to describe our main result, we need to define

Λ0 =

(
2 − q(

p − q)‖a‖L∞

)(2−q)/(p−2)(
p − 2(

p − q)‖b+‖Lq∗

)
S
p(2−q)/2(p−2)+q/2
p > 0, (1.3)

where ‖a‖L∞ = supx∈RNa(x), ‖b+‖Lq∗ = (
∫
RN |b+(x)|q∗dx)1/q∗ and Sp is the best Sobolev constant

for the imbedding ofH1(RN) into Lp(RN).

Theorem 1.1. Assume that (a1), (b1)-(b2) hold. If λ ∈ (0, (q/2)Λ0), (Ea,λb) admits at least two
positive solutions inH1(RN).

This paper is organized as follows. In Section 2, we give some notations and
preliminary results. In Section 3, we establish the existence of a local minimum. In Section 4,
we prove the existence of a second solution of (Ea,λb).

At the end of this section, we explain some notations employed. In the following
discussions, we will consider H = H1(RN) with the norm ‖u‖ = (

∫
RN (|∇u|2 + u2)dx)1/2.

We denote by Sp the best constant which is given by

Sp = inf
u∈H\{0}

‖u‖2
(∫

RN |u|pdx)2/p
. (1.4)

The dual space ofH will be denoted byH∗. 〈·, ·〉 denote the dual pair betweenH∗ andH. We
denote the norm in Ls(RN) by ‖ · ‖Ls for 1 ≤ s ≤ ∞. BN(x; r) is a ball in R

N centered at x with
radius r. on(1) denotes on(1) → 0 as n → ∞. C, Ci will denote various positive constants,
the exact values of which are not important.

2. Preliminary Results

Associated with (1.3), the energy functional Jλ : H → R
N defined by

Jλ(u) =
1
2
‖u‖2 − 1

p

∫

RN

a(x)|u|pdx − λ

q

∫

RN

b(x)|u|qdx, (2.1)

for all u ∈ H is considered. It is well-known that Jλ ∈ C1(H,R) and the solutions of (Ea,λb)
are the critical points of Jλ.

Since Jλ is not bounded from below on H, we will work on the Nehari manifold. For
λ > 0 we define

Nλ =
{
u ∈ H \ {0} :

〈
J ′λ(u), u

〉
= 0

}
. (2.2)

Note that Nλ contains all nonzero solutions of (Ea,λb) and u ∈ Nλ if and only if

〈
J ′λ(u), u

〉
= ‖u‖2 −

∫

RN

a(x)|u|pdx − λ
∫

RN

b(x)|u|qdx = 0. (2.3)

Lemma 2.1. Jλ is coercive and bounded from below on Nλ.
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Proof. If u ∈ Nλ, then by (b1), (2.3), and the Hölder and Sobolev inequalities, one has

Jλ(u) =
p − 2
2p

‖u‖2 − λ
(
p − q
pq

)∫

RN

b(x)|u|qdx (2.4)

≥ p − 2
2p

‖u‖2 − λ
(
p − q
pq

)
S
−q/2
p ‖b+‖Lq∗ ‖u‖q. (2.5)

Since q < 2 < p, it follows that Jλ is coercive and bounded from below on Nλ.

The Nehari manifold is closely linked to the behavior of the function of the form ϕu :
t → Jλ(tu) for t > 0. Such maps are known as fibering maps and were introduced by Drábek
and Pohozaev in [20] and are also discussed by Brown and Zhang in [10]. If u ∈ H, we have

ϕu(t) =
t2

2
‖u‖2 − tp

p

∫

RN

a(x)|u|pdx − tq

q
λ

∫

RN

b(x)|u|qdx,

ϕ′
u(t) = t‖u‖2 − tp−1

∫

RN

a(x)|u|pdx − tq−1λ
∫

RN

b(x)|u|qdx,

ϕ′′
u(t) = ‖u‖2 − (

p − 1
)
tp−2

∫

RN

a(x)|u|pdx − (
q − 1

)
tq−2λ

∫

RN

b(x)|u|qdx.

(2.6)

It is easy to see that

tϕ′
u(t) = ‖tu‖2 −

∫

RN

a(x)|tu|pdx − λ
∫

RN

b(x)|tu|qdx, (2.7)

and so, for u ∈ H \ {0} and t > 0, ϕ′
u(t) = 0 if and only if tu ∈ Nλ that is, the critical points

of ϕu correspond to the points on the Nehari manifold. In particular, ϕ′
u(1) = 0 if and only if

u ∈ Nλ. Thus, it is natural to split Nλ into three parts corresponding to local minima, local
maxima, and points of inflection. Accordingly, we define

N+
λ =

{
u ∈ Nλ : ϕ′′

u(1) > 0
}
,

N0
λ =

{
u ∈ Nλ : ϕ′′

u(1) = 0
}
,

N−
λ =

{
u ∈ Nλ : ϕ′′

u(1) < 0
}
,

(2.8)

and note that if u ∈ Nλ, that is, ϕ′
u(1) = 0, then

ϕ′′
u(1) =

(
2 − q)‖u‖2 − (

p − q)
∫

RN

a(x)|u|pdx, (2.9)

=
(
2 − p)‖u‖2 − (

q − p)λ
∫

RN

b(x)|u|qdx. (2.10)

We now derive some basic properties of N+
λ
, N0

λ
, and N−

λ
.
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Lemma 2.2. Suppose that u0 is a local minimizer for Jλ on Nλ and u0 /∈ N0
λ, then J

′
λ(u0) = 0 in

H∗.

Proof. See the work of Brown and Zhang in [10, Theorem 2.3].

Lemma 2.3. If λ ∈ (0,Λ0), thenN0
λ = ∅.

Proof. We argue by contradiction. Suppose that there exists λ ∈ (0,Λ0) such thatN0
λ /= ∅. Then

for u ∈ N0
λ
by (2.9) and the Sobolev inequality, we have

2 − q
p − q‖u‖

2 =
∫

RN

a(x)|u|pdx ≤ ‖a‖L∞S
−p/2
p ‖u‖p, (2.11)

and so

‖u‖ ≥
(

2 − q(
p − q)‖a‖L∞

)1/(p−2)
S
p/2(p−2)
p . (2.12)

Similarly, using (2.10), Hölder and Sobolev inequalities, we have

‖u‖2 = λp − q
p − 2

∫

RN

b(x)|u|qdx ≤ λp − q
p − 2

‖b+‖Lq∗S−q/2
p ‖u‖q (2.13)

which implies

‖u‖ ≤
(
λ
p − q
p − 2

‖b+‖Lq∗
)1/(2−q)

S
−q/2(2−q)
p . (2.14)

Hence, we must have

λ ≥
(

2 − q(
p − q)‖a‖L∞

)(2−q)/(p−2)(
p − 2(

p − q)‖b+‖Lq∗

)
S
p(2−q)/2(p−2)+q/2
p = Λ0 (2.15)

which is a contradiction.

In order to get a better understanding of the Nehari manifold and fibering maps, we
consider the function ψu : R

+ → R defined by

ψu(t) = t2−q‖u‖2 − tp−q
∫

RN

a(x)|u|pdx for t > 0. (2.16)

Clearly, tu ∈ Nλ if and only if ψu(t) = λ
∫
RN b(x)|u|qdx. Moreover,

ψ ′
u(t) =

(
2 − q)t1−q‖u‖2 − (

p − q)tp−q−1
∫

RN

a(x)|u|pdx for t > 0, (2.17)
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and so it is easy to see that if tu ∈ Nλ, then tq−1ψ ′
u(t) = ϕ′′

u(t). Hence, tu ∈ N+
λ (or tu ∈ N−

λ) if
and only if ψ ′

u(t) > 0 (or ψ ′
u(t) < 0).

Let u ∈ H \ {0}. Then, by (2.17), ψu has a unique critical point at t = tmax(u), where

tmax(u) =

( (
2 − q)‖u‖2(

p − q) ∫
RN a(x)|u|pdx

)1/(p−2)
> 0, (2.18)

and clearly ψu is strictly increasing on (0, tmax(u)) and strictly decreasing on (tmax(u),∞)with
limt→∞ψu(t) = −∞. Moreover, if λ ∈ (0,Λ0), then

ψu(tmax(u)) =

[(
2 − q
p − q

)(2−q)/(p−2)
−
(
2 − q
p − q

)(p−q)/(p−2)] ‖u‖2(p−q)/(p−2)
(∫

RN a(x)|u|pdx
)(2−q)/(p−2)

= ‖u‖q
(
p − 2
p − q

)(
2 − q
p − q

)2−q/p−2( ‖u‖p∫
RN a(x)|u|pdx

)(2−q)/(p−2)

≥ ‖u‖q
(
p − 2
p − q

)(
2 − q
p − q

)(2−q)/(p−2)
S
p(2−q)/2(p−2)
p

> λ‖b+‖Lq∗S−q/2
p ‖u‖q

≥ λ
∫

RN

b+(x)|u|qdx

≥ λ
∫

RN

b(x)|u|qdx.

(2.19)

Therefore, we have the following lemma.

Lemma 2.4. Let λ ∈ (0,Λ0) and u ∈ H \ {0}.
(i) If λ

∫
RN b(x)|u|qdx ≤ 0, then there exists a unique t− = t−(u) > tmax(u) such that t−u ∈

N−
λ , ϕu is inceasing on (0, t−) and decreasing on (t−,∞). Moreover,

Jλ
(
t−u

)
= sup

t≥0
Jλ(tu). (2.20)

(ii) If λ
∫
RN b(x)|u|qdx > 0, then there exist unique 0 < t+ = t+(u) < tmax(u) < t− = t−(u)

such that t+u ∈ N+
λ , t

−u ∈ N−
λ , ϕu is decreasing on (0, t+), inceasing on (t+, t−) and

decreasing on (t−,∞)

Jλ(t+u) = inf
0≤t≤tmax(u)

Jλ(tu), Jλ
(
t−u

)
= sup

t≥t+
Jλ(tu). (2.21)

(iii) N−
λ = {u ∈ H \ {0} : t−(u) = (1/‖u‖)t−(u/‖u‖) = 1}.

(iv) There exists a continuous bijection between U = {u ∈ H \ {0} : ‖u‖ = 1} and N−
λ
. In

particular, t− is a continuous function for u ∈ H \ {0}.
Proof. See the work of Hsu and Lin in [19, Lemma 2.5].
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We remark that it follows Lemma 2.4, Nλ = N+
λ ∪N−

λ for all λ ∈ (0,Λ0). Furthermore,
by Lemma 2.4 it follows that N+

λ
and N−

λ
are non-empty and by Lemma 2.1 we may define

αλ = inf
u∈Nλ

Jλ(u), α+λ = inf
u∈N+

λ

Jλ(u), α−λ = inf
u∈N−

λ

Jλ(u). (2.22)

Theorem 2.5. (i) If λ ∈ (0,Λ0), then we have αλ ≤ α+λ < 0.
(ii) If λ ∈ (0, (q/2)Λ0), then α−λ > d0 for some d0 > 0.
In particular, for each λ ∈ (0, (q/2)Λ0), we have α+λ = αλ < 0 < α−

λ
.

Proof. See the work of Hsu and Lin in [19, Theorem 3.1].

Remark 2.6. (i) If λ ∈ (0,Λ0), then by (2.9), Hölder and Sobolev inequalities, for each u ∈ N+
λ

we have

‖u‖2 < p − q
p − 2

λ

∫

RN

b(x)|u|qdx

≤ p − q
p − 2

λ‖b‖Lq∗S−q/2
p ‖u‖q

≤ p − q
p − 2

Λ0‖b‖Lq∗S−q/2
p ‖u‖q,

(2.23)

and so

‖u‖ ≤
(
p − q
p − 2

Λ0‖b‖Lq∗S−q/2
p

)1/(2−q)
∀u ∈ N+

λ. (2.24)

(ii) If λ ∈ (0, (q/2)Λ0), then by Lemma 2.4(i), (ii) and Theorem 2.5(ii), for each u ∈ N−
λ

we have

Jλ(u) = sup
t≥0

Jλ(tu) ≥ α−λ > 0. (2.25)

3. Existence of a Positive Solution

First, we define the Palais-Smale (simply by (PS)) sequences, (PS)-values, and (PS)-
conditions inH for Jλ as follows.

Definition 3.1. (i) For c ∈ R, a sequence {un} is a (PS)c-sequence inH for Jλ if Jλ(un) = c+on(1)
and J ′λ(un) = on(1) strongly inH∗ as n → ∞.

(ii) c ∈ R is a (PS)-value inH for Jλ if there exists a (PS)c-sequence inH for Jλ.
(iii) Jλ satisfies the (PS)c-condition inH if any (PS)c-sequence {un} inH for Jλ contains

a convergent subsequence.

Now we will ensure that there are (PS)α+
λ
-sequence and (PS)α−

λ
-sequencein on Nλ and

N−
λ
, respectively, for the functional Jλ.
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Proposition 3.2. If λ ∈ (0, (q/2)Λ0), then

(i) there exists a (PS)αλ -sequence {un} ⊂ Nλ inH for Jλ.

(ii) there exists a (PS)α−
λ
-sequence {un} ⊂ N−

λ inH for Jλ.

Proof. See Wu [21, Proposition 9].

Now, we establish the existence of a local minimum for Jλ on N+
λ .

Theorem 3.3. Assume (a1) and (b1) hold. If λ ∈ (0, (q/2)Λ0), then there exists uλ ∈ N+
λ
such that

(i) Jλ(uλ) = αλ = α+λ < 0,

(ii) uλ is a positive solution of (Ea,λb),

(iii) ‖uλ‖ → 0 as λ → 0+.

Proof. From Proposition 3.2(i) it follows that there exists {un} ⊂ Nλ satisfying

Jλ(un) = αλ + on(1) = α+λ + on(1), J ′λ(un) = on(1) in H∗. (3.1)

By Lemma 2.1 we infer that {un} is bounded on H. Passing to a subsequence (Still denoted
by {un}), there exists uλ ∈ H such that as n → ∞

un ⇀ uλ weakly in H,

un −→ uλ almost everywhere in R
N,

un −→ uλ strongly in Lsloc

(
R
N
)
∀1 ≤ s < 2∗.

(3.2)

By (b1), Egorov theorem and Hölder inequality, we have

λ

∫

RN

b(x)|un|qdx = λ
∫

RN

b(x)|uλ|qdx + on(1) as n −→ ∞. (3.3)

By (3.1) and (3.2), it is easy to see that uλ is a solution of (Ea,λb). From un ∈ Nλ and (2.4), we
deduce that

λ

∫

RN

b(x)|un|qdx =
q
(
p − 2

)

2
(
p − q)‖un‖

2 − pq

p − qJλ(un). (3.4)

Let n → ∞ in (3.4). By (3.1), (3.3) and αλ < 0, we get

λ

∫

RN

b(x)|uλ|qdx ≥ − pq

p − qαλ > 0. (3.5)

Thus, uλ ∈ Nλ is a nonzero solution of (Ea,λb).



Abstract and Applied Analysis 9

Next, we prove that un → uλ strongly inH and Jλ(uλ) = αλ. From the fact un, uλ ∈ Nλ

and applying Fatou’s lemma, we get

αλ ≤ Jλ(uλ) =
p − 2
2p

‖uλ‖2 −
p − q
pq

λ

∫

RN

b(x)|uλ|qdx

≤ lim inf
n→∞

(
p − 2
2p

‖un‖2 −
p − q
pq

λ

∫

RN

b(x)|un|qdx
)

≤ lim inf
n→∞

Jλ(un) = αλ.

(3.6)

This implies that Jλ(uλ) = αλ and limn→∞‖un‖2 = ‖uλ‖2. Standard argument shows that
un → uλ strongly in H. By Theorem 2.5, for all λ ∈ (0, (q/2)Λ0) we have that uλ ∈ Nλ and
Jλ(uλ) = α+λ < α

−
λ
which implies uλ ∈ N+

λ
. Since Jλ(uλ) = Jλ(|uλ|) and |uλ| ∈ N+

λ
, by Lemma 2.2

we may assume that uλ is a nonzero nonnegative solution of (Ea,λb). By Harnack inequality
[22] we deduce that uλ > 0 in R

N . Finally, by (2.10), Hölder and Sobolev inequlities,

‖uλ‖2−q < λ
p − q
p − 2

‖b+‖Lq∗S−q/2
p , (3.7)

and thus we conclude the proof.

4. Second Positive Solution

In this section, we will establish the existence of the second positive solution of (Ea,λb) by
proving that Jλ satisfies the (PS)α−

λ
-condition.

Lemma 4.1. Assume that (a1) and (b1) hold. If {un} ⊂ H is a (PS)c-sequence for Jλ, then {un} is
bounded inH.

Proof. See the work of Hsu and Lin in [19, Lemma 4.1].

Let us introduce the problem at infinity associated with (Ea,λb):

−Δu + u = up−1 in R
N, u ∈ H, u > 0 in R

N. (E∞)

We state some known results for problem (E∞). First of all, we recall that by Lions [23] has
studied the following minimization problem closely related to problem (E∞):

S∞ = inf
{
J∞(u) : u ∈ H, u/≡ 0, (J∞)′(u) = 0

}
> 0, (4.1)

where J∞(u) = (1/2)‖u‖2 − (1/p)
∫
RN |u|pdx. Note that a minimum exists and is attained by a

ground state w0 > 0 in R
N such that

S∞ = J∞(w0) = sup
t≥0

J∞(tw0) =
(
1
2
− 1
p

)
S
p/(p−2)
p , (4.2)



10 Abstract and Applied Analysis

where Sp = infu∈H\{0}‖u‖2/(
∫
RN |u|pdx)2/p. Gidas et al. [24] showed that for every ε > 0, there

exist positive constants Cε, C2 such that for all x ∈ R
N ,

Cε exp(−(1 + ε)|x|)

≤ w0(x) ≤ C2 exp(−|x|).
(4.3)

We define

wn(x) = w0(x − ne), where e = (0, 0, . . . , 0, 1) is a unit vector in R
N. (4.4)

Clearly, wn(x) ∈ H.

Lemma 4.2. Let Ω be a domain in R
N . If f : Ω → R satisfies

∫

Ω

∣∣∣f(x)eσ|x|
∣∣∣dx <∞ for some σ > 0, (4.5)

then

(∫

Ω
f(x)e−σ|x−x̃|dx

)
eσ|x̃|

=
∫

Ω
f(x)eσ〈x,x̃〉/|x̃|dx + o(1) as |x̃| −→ ∞.

(4.6)

Proof. We know σ|x̃| ≤ σ|x| + σ|x − x̃|. Then,
∣∣∣f(x)e−σ|x−x̃|eσ|x̃|

∣∣∣ ≤
∣∣∣f(x)eσ|x|

∣∣∣. (4.7)

Since −σ|x − x̃| + σ|x̃| = σ〈x, x̃〉/|x̃| + o(1) as |x̃| → ∞, then the lemma follows from the
Lebesgue dominated convergence theorem.

Lemma 4.3. Under the assumptions (a1), (b1)-(b2) and λ ∈ (0,Λ0). Then there exists a number
n0 ∈ N such that for n ≥ n0

sup
t≥0

Jλ(twn) < S∞. (4.8)

In particular, α−
λ
< S∞ for all λ ∈ (0,Λ0).

Proof. (i) First, since ‖wn‖ = ‖w0‖ for all n ∈ N and Jλ is continuous in H and Jλ(0) = 0, we
infer that there exists t1 > 0 such that

Jλ(twn) < S∞ ∀n ∈ N, t ∈ [0, t1]. (4.9)
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(ii) Since lim|x|→∞a(x) = 1, there exists n1 ∈ N such that if n ≥ n1, we get a(x) ≥ 1/2
for x ∈ BN(ne; 1). Then, for n ≥ n1

Jλ(twn) =
t2

2
‖wn‖2 − tp

p

∫

RN

a(x)|wn|pdx − tq

q

∫

RN

λb(x)|wn|qdx

≤ t2

2
‖w0‖2 − tp

p

∫

BN(0;1)
a(x + ne)|w0|pdx +

tq

q
λ
∥∥b−∥∥L∞

∫

RN

|wn|qdx

≤ t2

2
‖w0‖2 − tp

2p

∫

BN(0;1)
|w0|pdx +

tq

q
λ
∥∥b−∥∥L∞

∫

RN

|w0|qdx

−→ −∞ as t −→ ∞.

(4.10)

Thus, there exists t2 > 0 such that for any t > t2 and n > n1 we get

Jλ(twn) < 0. (4.11)

(iii) By (i) and (ii), we need to show that there exists n0 such that for n ≥ n0

sup
t1≤t≤t2

Jλ(twn) < S∞. (4.12)

We know that supt≥0 J
∞(tw0) = S∞. Then, t1 ≤ t ≤ t2, we have

Jλ(twn) =
1
2
‖twn‖2 − 1

p

∫

RN

a(x)(twn)pdx − 1
q

∫

RN

λb(x)(twn)qdx

≤ t2

2
‖w0‖2 − tp

p

∫

RN

w
p

0dx +
tp

p

∫

RN

(1 − a(x))wp
ndx − tq

q

∫

RN

λb(x)wq
ndx

≤ S∞ +
t
p

2

p

∫

RN

(1 − a)+(x)wp
ndx − t

q

1

q

∫

RN

λb+(x)wq
ndx +

t
q

2

q

∫

RN

λb−(x)wq
ndx.

(4.13)

Suppose a satisfies (a1), we get (1 − a)+(x) ≤ C0e
−δ0|x| for all x ∈ R

N and some positive
constant δ0. By (4.3) and Lemma 4.3, there exists n2 > n1 such that for any n ≥ n2

∫

RN

(1 − a)+(x)wp
ndx ≤ C3e

−min{δ0,p}n. (4.14)

By (b1) and (4.3), we get

∫

RN

λb−(x)wq
ndx ≤ λ∥∥b−∥∥L∞C2

∫

K

e−q|x−ne|dx

≤ λC3e
−qn.

(4.15)
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By (b2), (4.3) and Lemma 4.3, we have

∫

RN

λb+(x)wq
ndx ≥ λC1Cε

∫

|x|≥R0

e−δ1|x|e−q(1+ε)|x−ne|dx

≥ λCεe
−δ1n.

(4.16)

Since 0 < δ1 < min{δ0, q} ≤ min{δ0, p} and λ ∈ (0,Λ0) and using (4.13)–(4.16), we have there
exists n0 > n2 such that for all n ≥ n0, then

sup
t1≤t≤t2

Jλ(twn) < S∞, λ

∫

RN

b(x)|wn|qdx > 0. (4.17)

This implies that if λ ∈ (0,Λ0), then for all n ≥ n0 we get

sup
t≥0

Jλ(twn) < S∞. (4.18)

From a(x) > 0 for all x ∈ R
N and (4.17), we have

∫

RN

a(x)|wn0 |pdx > 0,
∫

RN

b(x)|wn0 |qdx > 0. (4.19)

Combining this with Lemma 2.4(ii), from the definition of α−λ and supt≥0Jλ(twn0) < S
∞, for all

λ ∈ (0,Λ0), we obtain that there exists t0 > 0 such that t0wn0 ∈ N−
λ
and

α−λ ≤ Jλ(t0wn0) ≤ sup
t≥0

Jλ(twn0) < S
∞. (4.20)

Lemma 4.4. Assume that (a1) and (b1) hold. If {un} ⊂ H is a (PS)c-sequence for Jλ with c ∈
(0, S∞), then there exists a subsequence of {un} converging weakly to a nonzero solution of (Ea,λb) in
R
N .

Proof. Let {un} ⊂ H be a (PS)c-sequence for Jλ with c ∈ (0, S∞). We know from Lemma 4.1
that {un} is bounded inH, and then there exist a subsequence of {un} (still denoted by {un})
and u0 ∈ H such that

un ⇀ u0 weakly in H,

un → u0 almost everywhere in R
N,

un → u0 strongly in Lsloc

(
R
N
)
∀1 ≤ s < 2∗.

(4.21)

It is easy to see that J ′
λ
(u0) = 0 and by (b1), Egorov theorem and Hölder inequality, we have

λ

∫

RN

b(x)|un|qdx = λ
∫

RN

b(x)|u0|qdx + on(1). (4.22)
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Next we verify that u0 /≡ 0. Arguing by contradiction, we assume u0 ≡ 0. By (a1), for
any ε > 0, there exists R0 > 0 such that |a(x) − 1| < ε for all x ∈ [BN(0;R0)]

C. Since un → 0
strongly in Lsloc(R

N) for 1 ≤ s < 2∗, {un} is a bounded sequence in H, therefore
∫
RN (a(x) −

1)|un|p ≤ C
∫
BN(0;R0)

|un|p + εC. Setting n → ∞, then ε → 0, we have

lim
n→∞

∫

RN

a(x)|un|pdx = lim
n→∞

∫

RN

|un|pdx. (4.23)

We set

l = lim
n→∞

∫

RN

a(x)|un|pdx

= lim
n→∞

∫

RN

|un|pdx.
(4.24)

Since J ′
λ
(un) = on(1) and {un} is bounded, then by (4.22), we can deduce that

0 = lim
n→∞

〈
J ′λ(un), un

〉

= lim
n→∞

(
‖un‖2 −

∫

RN

a(x)|un|pdx
)

= lim
n→∞

‖un‖2 − l,

(4.25)

that is,

lim
n→∞

‖un‖2 = l. (4.26)

If l = 0, then we get c = limn→∞Jλ(un) = 0, which contradicts to c > 0. Thus we
conclude that l > 0. Furthermore, by the definition of Sp we obtain

‖un‖2 ≥ Sp
(∫

RN

|un|pdx
)2/p

. (4.27)

Then, as n → ∞, we have

l = lim
n→∞

‖un‖2 ≥ Spl2/p, (4.28)

which implies that

l ≥ Sp/(p−2)p . (4.29)
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Hence, from (4.2) and (4.22)–(4.29), we get

c = lim
n→∞

Jλ(un)

=
1
2
lim
n→∞

‖un‖2 − 1
p
lim
n→∞

∫

RN

a(x)|un|pdx − λ

q
lim
n→∞

∫

RN

b(x)|un|qdx

=
(
1
2
− 1
p

)
l

≥ p − 2
2p

S
p/(p−2)
p = S∞.

(4.30)

This is a contradiction to c < S∞. Therefore, u0 is a nonzero solution of (Ea,λb).

Now, we establish the existence of a local minimum of Jλ on N−
λ .

Theorem 4.5. Assume that (a1) and (b1)-(b2) hold. If λ ∈ (0, (q/2)Λ0), then there existsUλ ∈ N−
λ

such that

(i) Jλ(Uλ) = α−λ ,

(ii) Uλ is a positive solution of (Ea,λb).

Proof. If λ ∈ (0, (q/2)Λ0), then by Theorem 2.5(ii), Proposition 3.2(ii) and Lemma 4.3(ii),
there exists a (PS)α−

λ
-sequence {un} ⊂ N−

λ
in H for Jλ with α−

λ
∈ (0, S∞). From Lemma 4.4,

there exist a subsequence still denoted by {un} and a nonzero solutionUλ ∈ H of (Ea,λb) such
that un ⇀ Uλ weakly inH.

First, we prove that Uλ ∈ N−
λ
. On the contrary, if Uλ ∈ N+

λ
, then by N−

λ
is closed inH,

we have ‖Uλ‖2 < lim infn→∞‖un‖2. From (2.9) and a(x) > 0 for all x ∈ R
N , we get

∫

RN

b(x)|Uλ|qdx > 0,
∫

RN

a(x)|Uλ|pdx > 0. (4.31)

By Lemma 2.4(ii), there exists a unique t−λ such that t−λUλ ∈ N−
λ . If u ∈ Nλ, then it is easy to

see that

Jλ(u) =
p − 2
2p

‖u‖2 − p − q
pq

λ

∫

RN

b(x)|u|qdx. (4.32)

From (3.1), un ∈ N−
λ
and (4.32), we can deduce that

α−λ ≤ Jλ
(
t−λUλ

)
< lim

n→∞
Jλ
(
t−λun

) ≤ lim
n→∞

Jλ(un) = α−λ (4.33)

which is a contradiction. Thus,Uλ ∈ N−
λ .

Next, by the same argument as that in Theorem 3.3, we get that un → Uλ strongly in
H and Jλ(Uλ) = α−λ > 0 for all λ ∈ (0, (q/2)Λ0). Since Jλ(Uλ) = Jλ(|Uλ|) and |Uλ| ∈ N−

λ , by
Lemma 2.2 we may assume that Uλ is a nonzero nonnegative solution of (Ea,λb). Finally, by
the Harnack inequality [22]we deduce thatUλ > 0 in R

N .
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Now, we complete the proof of Theorem 1.1. By Theorems 3.3, 4.5, we obtain (Ea,λb)
has two positive solutions uλ and Uλ such that uλ ∈ N+

λ
, Uλ ∈ N−

λ
. Since N+

λ
∩ N−

λ
= ∅, this

implies that uλ andUλ are distinct. It completes the proof of Theorem 1.1.
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[1] A. Ambrosetti, H. Brézis, and G. Cerami, “Combined effects of concave and convex nonlinearities in
some elliptic problems,” Journal of Functional Analysis, vol. 122, no. 2, pp. 519–543, 1994.

[2] Adimurthi, F. Pacella, and S. L. Yadava, “On the number of positive solutions of some semilinear
Dirichlet problems in a ball,” Differential and Integral Equations, vol. 10, no. 6, pp. 1157–1170, 1997.

[3] L. Damascelli, M. Grossi, and F. Pacella, “Qualitative properties of positive solutions of semilinear
elliptic equations in symmetric domains via the maximum principle,” Annales de l’Institut Henri
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