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We introduce a new Roper-Suffridge extension operator on the following Reinhardt domain
Qe = 12 € C7 1 [P+ Sz < 1)givenby F(z) = (f(z1) + f'(21) a2y, (F (1)) /P22,
o (f ’(zl))l/ P"zu), where f is a normalized locally biholomorphic function on the unit disc D, p;
are positive integer, a; are complex constants, and j = 2,...,n. Some conditions for a; are found
under which the operator preserves almost starlike mappings of order & and starlike mappings of
order a, respectively. In particular, our results reduce to many well-known results when all a; = 0.

1. Introduction

In 1995, Roper and Suffridge [1] introduced an extension operator. This operator is defined
as follows:

q)n(f) (Z) = (f(zl)l \/ f'(Zl)26>lr (11)

where f is a normalized locally biholomorphic function on the unit disk D in C, z = (z;, 26)'
belonging to the unit ball B" in C", zy = (z2,...,2,)' € C" ! and the branch of the square root
is chosen such that 1/f'(0) = 1.

It is well known that the Roper-Suffridge extension operator has the following remark-
able properties:

(i) if f is a normalized convex function on D, then @,(f) is a normalized convex
mapping on B";
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(ii) if f is a normalized starlike function on D, then @,(f) is a normalized starlike
mapping on B";

(iii) if f is a normalized Bloch function on D, then @, (f) is a normalized Bloch mapping
on B".

The above result (i) was proved by Roper and Suffridge [1] and the result (ii) and (iii)
was proved by Graham and Kohr [2, 3]. Until now, it is difficult to construct the concrete
convex mappings, starlike mappings, and Bloch mappings on B". By making use of the
Roper-Suffridge extension operator, we may easily give many concrete examples about these
mappings. This is one important reason why people are interested in this extension operator.

In 2005, Muir [4] modified the Roper-Suffridge extension operator as follows:

F(z) = <f(zl) v f'(z»P(zO),\/f'(zl)zg) , (1.2)

where P(zp) is a homogeneous polynomial of degree 2 with respect to z, and f, z1, and z
are defined as above. They proved that this operator preserves starlikeness and convexity if
and only if ||P|| < 1/4 and ||P|| < 1/2, respectively. The modified operator plays a key role to
study the extreme points of convex mappings on B" (see [5, 6]). Later, Kohr [7] and Muir [8]
used the Loewner chain to study the modified Roper-Suffridge extension operator. Recently,
the modified Roper-Suffridge extension operator on the unit ball is also studied by Wang and
Liu [9] and Feng and Yu [10].

On the other hand, people also considered the generalized Roper-Suffridge extension
operator on the general Reinhardt domains. For example, Gong and Liu [11, 12] induced the
definition of ¢ starlike mappings and obtained that the operator

1/ () (@) = (Fl20), (f(20)72) (13)

maps the ¢ starlike functions on D to the ¢ starlike mappings on the Reinhardt domain €2, =
[z € C": |z1]> + Z;‘:leﬂ” < 1}, where p > 1, f, z;, and z are defined as above. When
e =0and € = 1, ®,, 1/p) maps the starlike function and convex function on D to the starlike
mapping and the convex mapping on £, ,, respectively.

Furthermore, Gong and Liu [13] proved that the operator

B, 1/ (F) @) = (F0), (F1(20) P22, (F (20))P020) (1.4)

maps the ¢ starlike functions on D to the ¢ starlike mappings on the domain Qn,pz,.__,pn ={ze€
C": |z + Z;‘=2|zj|7"i <1}, wherep; > 1, j =2,...,n, f, z1, and z; are defined as above.
Liu and Liu [14] proved that this operator preserves starlikeness of order a on the domain
Qu,p, ...p.- On the other hand, Feng and Liu [15] proved that this operator preserves almost
starlikeness of order a on the domain €, ,,, .. »

e
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In contrast to the modified Roper-Suffridge extension operator in the unit ball, it is
natural to ask if we can modify the Roper-Suffridge extension operator on the Reinhardt
domains. In this paper, we will introduce the following modified operator:

F(z) = <f<zl> FFE) X a ) (F @) P, (f'(zn)”*’"zn) (15)
j=2

on the Reinhardt domain €2y, ,,,, ... ,,. We will give some sufficient conditions for a; under which
the above Roper-Suffridge operator preserves an almost starlike mappings of order a and
starlike mappings of order a, respectively.

In the following, we give some notation and definitions. Let C" be the space of n
complex variables z = (z1, ..., z,)" with the Euclidean inner product (z,w) = >, z;w; and
the Euclidean norm ||z|| = (z,z)/?, where z,w € C" and the symbol “’” means transpose.
The unit ball of C" is the set B" = {z € C" : ||z|| < 1}, and the unit sphere is denoted by
OB" = {z € C" : ||z|| = 1}. In the case of one complex variable, B! is the unit disk, usually
denoted by D. Let Q be a domain in C". Denote H(£2) by the space of all holomorphic
mappings from Q into C*. A mapping f € H(B") is called normalized if f(0) = 0 and
J£(0) = I,, where J£(0) is the complex Jacobian matrix of f at the origin and I, is the identity
operator on C". A mapping f € H(B") is said to be locally biholomorphic if det J(z) # 0 for
every z € B". A normalized mapping f € H(B") is said to be convex if Aw; +(1-N)w, € f(B")
for arbitrary wy,w; € f(B") and 0 < A < 1. A normalized mapping f € H(B") is said to be
starlike with respect to the origin if Af(B") C f(B"), 0 < A < 1. A normalized mapping
f € H(B") is said to be ¢ starlike if there exists a positive number ¢, 0 < ¢ < 1, such that
f(B") is starlike with respect to every point in £ f (B").

A domain Q is called a Reinhardt domain if (¢?'z;, e z,, .. .,eienzn)’ € Q holds for
any z = (z1,22,.. ., zn) € Qand 60,0,,...,0, € R. A domain Q is called a circular domain
if ez € Q holds for any z € Q and 6 € R. The Minkowski functional p(z) of the Reinhardt
domain

n
Qo pryeipn = {z eC":|z1[* + Z|zjlpj < 1}, pi=z1l,j=2...n (1.6)
=2
is defined as
p(z) =inf{t > o,% €Qup,.p ), zEC (1.7)

Then, the Minkowski functional p(z) is a norm of C" and Q,,, ... », is the unit ball in the
Banach space C" with respect to this norm. The Minkowski functional p(z) is C! on ﬁn,pz,...,pn
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except for a lower-dimensional manifold €. Moreover, we give the following properties of
the Minkowski functional p(z) (see [16]):

22—2(2)2 =p(z), YzeC"\Q,

)
2a—Z(z)z =1, Vz€0Qup.p\ R,
(1.8)

o, \_9p n
a_Z()LZ) - a_Z(Z)’ VAe [0/ w)/ zeC \QOI

3, 0
a—‘z’ (e2) = e’lga—Z(z), VzeC'\ Q) 6€R.

Definition 1.1 (see [17]). Suppose that Q is a bounded starlike circular domain in C". Its
Minkowski functional p(z) is C! except for a lower-dimensional manifold. Let 0 < a < 1.
We say that a normalized locally biholomorphic mapping f € H(Q) is an almost starlike
mapping of order a if the following condition holds:

n P @fE@ > ze\ (0] (19)

When Q = B", its Minkowski functional p(z) = ||z||, the above inequality becomes
R (2)f(2) = allz|?, zeB". (1.10)

In particular, when a = 0, f reduces to a starlike mapping on €.

Definition 1.2 (see [18]). Suppose that Q € C" is a bounded starlike circular domain. Its
Minkowski functional p(z) is C! except for a lower-dimensional manifold. Let 0 < a < 1.
We say that a normalized locally biholomorphic mapping f € H(Q) is a starlike mapping of
order a if the following condition holds:

2 9 1
SR @@ 5| < 5m z€2\10) ()
When Q = B", the above inequality reduces to
1 —I7-1 1 n
szf <Z, zZz€D \{0} (112)
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2. Some Lemmas
In order to prove the main results, we need the following three lemmas.

Lemma 2.1 (see [19]). Let p be a holomorphic function on D. If Rp(z) > 0 and p(0) > 0, then

: 2%p(2)
z)| < . 2.1
P (2)] - (2.1)
Lemma 2.2 (see [19]). Let f be a normalized biholomorphic function on D. Then,
2 f(2)
- L < 2.2
(=) - < 22
holds for all z € D.
Lemma 2.3 (see [20]). If p(z) is a Minkowski function of the domain Q, p, ., p,, 2 #0, then
%) z
S2(2) = — —,
1 p@la/e@ + Spilzi/p))7]
(2.3)

|Pi‘2

op pizi|zi/p(2)
E(Z - 2 n p; 7
j 2P(Z)[Z|21/P(Z)| + 3pilzi/ p(2)] ’]

3. Main Results

Theorem 3.1. Let 0 < a < 1 and let f be an almost starlike function of order a on the unit disc D. If
complex numbers a; satisfy the condition |aj| < (1-a)/4, j=2,...,n, then

F(z) = <f(zl) + f(z1) ia]-z;’f, (f'(20) "z, (f’(zl>)”""zn> (3.1)
j=2

is an almost starlike mapping of order a on the domain Q,, p, .. p,, Where p; are positive integer and
pj = 2; the branches are chosen such that (f’(zl))l/"’f|zlzO =1.

Proof. By the definition of almost starlike mapping of order «, we need only to prove that the
following inequality:

2 0
2 5s P DFG) > a (32)

holds for all z € Q, ,,..,, and z#0.
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The case of zyp = 0 is trivial. So, we need only consider that z = (z1,z)’ € ﬁn,pz,...,pnr
20#0. Let z = {u = |¢|e®u,u € 08, p,,...p.rand § € 5\ {0}, then we have

2 0
(z) ap (Z)]F (z)F(z) >
2 op, | |
- %W 0z (|§|e 9u>]F ('Qe 9”) <|§|e 9u> >a
(3.3)
—196 ' |
|§| : azp( W] <|§|€’9u>1—‘<|§|eleu> > a
20p,  Ji Gu)F(Gw)
Ry W—7— =@

For a fixed u, the expression 9‘{(26p/6z)(u)(]gl(gu)F(Cu)/é) — a is the real part of a
holomorphic function with respect to ¢, so it is a harmonic function. By the minimum of
harmonic function principle, we know that it attains its minimum on [{| = 1, so we need only
to prove for all z € 0Q,, p,,.. p, and zo # 0. Hence, p(z) = 1 and inequality (3.2) becomes

20,
=L@ PR > @ 2€0Qup. 0 2070, (34)

In the following, we will prove inequality (3.4).
Since

F(z) = <f(Zl) +f'(Zl)zn:ajZ?j/ (f'(z1)) "2, ..., (f'(Z1))1/P"Zn> ’ (3.5)
=2

we have
/ f’(zl)+f”(z1)iajz§.’j azpzf’(zl)zgz_l anpnf,(zl)znn_l\
2
L A1 g NP
e | EE P @ () I

\pln(f/(zl))(1/Pn)—1f/’(zl)zn 0 (fl(zl))l/;?n /
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Suppose that ];1(2)1-“(2) =A=(x1,x2,...,x,), then F(z) = Jr(2)A; that is,

X1 [f’(zl) + f”(znza,-z;’f] @)X apz " = fz) + f (20X a7,
j=2 j=2 j=2

f”(zl)
+X2 =29,
Mpafa) T (3.7)
f”(z ) +Xp=2
Pnfl(zn) o " "
Some computation shows that
f(Zl) o pj
x ai(pi-1)z7,
1= f’(Z) ]Zz ](P] ) j

= _f(zl)f"(zl) f"(z1) NP
X2 = [1 P2(f/(zl)) PZf'(Z1)Z ](P] 1)2 ]

(3.8)
f(Zl)f"(Zl) f"(z1) pj
=|1- aj(pj—-1)z;/
[ Py Pl G >Z e ]
From Lemma 2.3, we obtain
op 2) = Z _ Z
021" p@)|2lz1/p@) |+ Sapylzi/p@|P] 207+ Ziapilzl”
o - (3.9)
L pizilz|” _ il '
07" 2p(z)2lm/p) + Siapilz 7] 202zl + Siapil=i]]
In terms of (3.8) and (3.9), we obtain
20 G
SL @) (FE) = = (3.10)

2 .7
20211 + iz
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where

(z1) :
G(z) = [}céfl) Zw(m—l)zﬁ-’]

j=2

Lol fef=) | @) . ]
+j§2p]|2]| [ P](f,(zl)) p]f/(z)z (Pk )Z

2 fz) G|y ) (=)
Zf’(Z) Z JlZ]| [1 p,-(f’(Zl))Z:I

(3.11)

= 2|z

DYACEES [’},(‘j)’ S - z-]

By making use of the equality |z;|* + iolzjlP =1, we then get

fe) & ] fEf e
G(x) =2z P L)y Sz, m[l_—]
" af@) z; ] pi(f(z1))” (3.12)

n ; f”(zl) -
+ ]220709] - 1)25) f,(21) <1 - |21|2) - 221] .

Let h(z1) = (f(z1)/z1f'(z1)) — a. Notice that f is an almost starlike function of order a on the
unit disc; hence, Rh(z1) > 0 and h(0) =1 - a > 0. By Lemma 2.1, we can obtain that

h
W (2)] < 29? |Z) (3.13)
Furthermore, we get
f(z1)f"(z1) :
Al A S A —h(z1) — z1h'(z1). 3.14
[f,(21)]2 1 1 1 ( )
Substituting (3.14) into (3.12), we have
L . 1 h ,
G(z) = 2|z1*(h(z1) + a) + g;p]-|zj|p’ (1 "o + % + % + Z—;h (zl)>
+Za](p] _1) A f/( ))<1_| | > 221]
(3.15)

= h(z1) <2|.z1|2 + Z|zj|”f> +2az1* + D (pj - 1+a)|z|”

j=2 j=2

+ i:ZZZ1|Z]-|pfh’(Zl) + nga,- (P] — 1)2? ?}fjj; <1 _ |Zl|2> _ 221] ‘
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Hence,

j=2

RG(z) > <2|zl|2 + Z|z]-|”f>mh(zl) +2alz1* + D (pj - 1+ a)|z|”
j=2

(3.16)
=N |zi||zl (z1)] - Y |ai| (pj - 1 z-pff(zl) 1-|z1)?) -2z
Sl = G0l Skl -Vl |2y (- 1) -2
By Lemma 2.2 and (3.13), we can get that
n . 2|z1|Rh
RG(z) > (1 + |zl|2>f)‘{h(zl) w20z + Y (p — 1+ a)|z]” - <1 - |21|Z>L(§1)
j=2 1—|z]
—4> |a| (p; - 1) |z |”
i=2
n
= <1 + |zl|2>9‘{h(zl) + 2alz1* + > (pj—1+a)|zj|" - 2|z1|Rh(z1)
i=2
—43 |a;| (p; = 1) |z |"
=2
= (1 - |z1])*Rh(z1) + 2alz1* + D | z|7 [a + (1 - |4a;]) (pj - 1)].
i=2
(3.17)
Hence, when |a;| < (1 - a) /4, we have
RG(z) = (1-|z1))*Rh(z1) + 2alz1* + a Y pj|z;|” > 2alzi* +a D pj|z]”. (3.18)
j=2 j=2
In terms of (3.10) and (3.18), we obtain
20
R=L @) (2)F(E) > a (3.19)
which completes the proof of Theorem 3.1. O
Remark 3.2. When a, = a3 = --- = a, = 0, the result of Theorem 3.1 has been obtained by Liu

and Liu [14].

Corollary 3.3. Let f be a normalized biholomorphic starlike function on the unit disc D. If |a;j| <
1/4,j=2,...,n, then

F(z) = (f(zl) FFE) S () P (f’(Z1))1/””Zn> (3.20)
j=2
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is a normalized biholomorphic starlike mapping on the domain Q, p, ., p,, Where p; are positive integer
and p; > 2; the branches are chosen such that (f’(zl))l/pf| =1

Zl=0

Theorem 3.4. Let 0 < a < 1 and let f be a starlike function of order a on the unit disc D. If complex
numbers a; satisfy the condition |a;| < (1 -[2a-1|)/8a,j=2,...,n, then

F(z) = <f(zl) +f'(z1)§n]a]-z§.’f, (f'(z1)) Pz, (f'(zl))l/p"zn> (3.21)
j=2

is a starlike mapping of order a on the domain €, p, .., p,, Where p; are positive integer and p; > 1; the

branches are chosen such that (f’(zl))l/pf |21:O =1.

Proof. By the definition of starlike mapping of order @&, we need only to prove that the
following inequality:

1

AP @FE - 5| <5 62)

2 3
p(z) 0z

holds for all z € Q,,;,,.., and zo #0.

Similar to the proof of Theorem 3.1, we need only to prove that (3.22) holds for p(z) =1
and z¢ # 0 according to the maximum modulus theorem for analytic functions. So, it is suffice
to show that

20p B 1 1
E(z) ]Fl(z)F(z)—ﬂ <54 (3.23)
From the proof of Theorem 3.1, we can get
d
L@ @FE)
1 » flz) & p.[ f(m)f”(zl)]
= 2 + Y|z |- 2 2
2[2|zl|2+2?:2pj|z]-|”f]{ SETEEDRS Ll vy ICEY

n " (z1) :
+]':Zzaj(pj - 1)2? f(z1) <1 - |21|2> _221] }

Hence,

1 H(z)
20 2 n pil’
220 + Sopyli]”]

20
L@ FE) - (325
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where

fz) Sl L fE)f (=)
H(z) = 2|Zl|[ Pz 1]+2ajz:;p]|z]| [1 o —p]-(f’(zl))z]

+ Zazn:aj(pj - 1)2? f(z) <1 - |Z1|2> - 221].
=2

(3.26)

f'(z1)

Let h(z1) = 2a(f(z1)/z1f'(z1)) — 1. Then, |h(z1)| < 1 because f is a starlike function of order
a on the unit disc D. By the Schwarz-Pick lemma, we obtain that

| (z1)] < LZ@' (3.27)
1— |z

On the other hand, we can get

f(z)f"(z1) _ 1 h(z1) zih'(z1)
el a2 2w (3:28)

Substituting (3.28) into (3.26), we have

" 1 1 1 hiz) ziH(z) >]
+2a zil[1-=-( =- - -
]Z:;PJl il [ 2a <p]~ 2ap;  2ap; 2ap;

+ Za];zaj (pj - 1)z§’f []},((Z)) <1 - IZ1|2> - 221]

f(z1)

z1f'(z1) -

H(z) = 2|z [20{

=2|z1[*h(z1) + h(zl)Z|zj|pf + Zz1h'(zl)|zj|p’ +(2a - 1)Z(p]- -1)|z|"”

j=2 j=2 j=2

S [ f'(z1) _
* Z“JZ:;“;‘ (pj - 1)2? [j},(:) (1 - Izl|2> - 221].

(3.29)

Hence,

H(2)| < (1+|21) Izl + X2k @) |27 + 2a =13 (p; - 1) |z]”

[ =

+2“Z|”1|(P7 1|z 7|p] (1—| 1|> 27,|.

(3.30)
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By Lemma 2.2 and (3.27), we have

1-|h(z1))?
H@| < (1+ ) )]+ |zl|%
—|<~1

(1-121P) +l2a =113, (p; - 1) |2]”

j=2
+8“ZZ|E’]'|(P]' -1z |”
=
< (1+12P) ()l - 1) + (1+121F) + 212201 - h(z0) (3.31)

+ 2a - 1|Z(pj - 1)|Zj|pj +8“Z|“i|(?i - 1)|Zj|pj

j=2 j=2

< (1+1z) + (h(z)| - )(A = |z1]) + ngj(pa— 1]+ 8ala;|) (p; - 1)|7|"

If |aj| < (1 - [2a - 1[)/8a, then we obtain

1-2a-1]\ & .
HE) < 1+ + (- 1+ 872 5 - 1)z
j=2

n
<1+]zf+ > (p - 1)|z]” (3.32)
j=2

n
= 2|z + Y pjlz
=2

The equality (3.25) and (3.32) show that

200, 1] 1
@) @@ - 5| < 5 (333)
which completes the proof of Theorem 3.4. O
4. Problem
In 2003, Gong and Liu [13] proved that the Roper-Suffridge extension operator
) _ ' 1/p2 ) 1/pn ! 4.1
(1 p2) /) () (2) = (f(21), (f'(21)) P22, (f(21)) P24 (4.1)

does preserve convexity on £, py, ..., pn, which solved the open problem posed by Graham
and Kohr [2]. Naturally, we will propose the following problem on the new Roper-Suffridge
extension operator.
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Problem 1. Let p; be positive integer. Under what conditions for a; such that if f is a convex
function in the disc D, then the mapping defined by the new Roper-Suffridge extension
operator

F(z) = f(z) +f’(zl)ia]-z§'j, (F(z)"Pza,..., (f (z1)) """z, (4.2)
j=2

is a convex mapping in the Reinhardt domain Q,,p»,...,ps"?
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