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Nenad Antonić1 and Darko Mitrović2
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10 000 Zagreb, Croatia

2 Faculty of Mathematics, University of Montenegro, Cetinjski put bb, 81 000 Podgorica, Montenegro

Correspondence should be addressed to Nenad Antonić, nenad@math.hr
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We use the continuity of Fourier multiplier operators on Lp to introduce the H-distributions—an
extension ofH-measures in the Lp framework.We apply theH-distributions to obtain an Lp version
of the localisation principle and reprove the Murat Lp-Lp

′
variant of div-curl lemma.

1. Introduction

In the study of partial differential equations, quite often it is of interest to determine whether
some Lp weakly convergent sequence converges strongly. Various techniques and tools have
been developed for that purpose (for the state of the art twenty years ago, see [1]); of more
modern ones, we only mention the H-measure of Tartar [2], independently introduced by
Gérard [3] under the name of microlocal defect measures.H-measures proved to be very pow-
erful tool in a number of applications (see, e.g., [4–13] and references therein, which is surely
an incomplete list). The main theorem on the existence ofH-measures, in an equivalent form
suitable for our purposes, reads as following:

Theorem 1.1. If scalar sequences un, vn ⇀ 0 weakly in L2(�d ), then there exist subsequences
(un′), (vn′) and a complex Radon measure μ on �d × Sd−1 such that, for every ϕ1, ϕ2 ∈ C0(�d )
and every ψ ∈ C(Sd−1),

lim
n′

〈Aψ

(
ϕ1un′

) | ϕ2vn′
〉

= lim
n′

∫

�d

Aψ

(
ϕ1un′

)
ϕ2vn′dx =

〈
μ, ϕ1ϕ2ψ

〉
, (1.1)
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whereAψ is the Fourier multiplier operator with the symbol ψ:

Aψu := F(
ψû

)
. (1.2)

We call the measure μ the H-measure corresponding to the sequence (un, vn). In fact, it
corresponds to the nondiagonal element of the corresponding 2 × 2 matrix Radon measure of
the vector function (un, vn) (cf. [14]).

Remark 1.2. After applying the Plancherel theorem, the term under the limit sign in
Theorem 1.1 takes the form

∫

�d

�ϕ1un′�ϕ2vn′ψ dξ, (1.3)

where by û(ξ) = (Fu)(ξ) = ∫
�d e

−2πix·ξu(x)dxwe denote the Fourier transform on �d (with the
inverse (Fv)(x) :=

∫
�d e

2πix·ξv(ξ)dξ). Of course, ψ is extended by homogeneity (i.e., ψ(ξ) :=
ψ(ξ/|ξ|)) to �d \ {0}.

In the particular case of un = vn, μ roughly describes the loss of strong L2 precom-
pactness of sequence (un). Indeed, it is not difficult to see that if (un) is strongly convergent
in L2, then the corresponding H-measure is trivial; on the other hand, if the H-measure is
trivial, then un → 0 in L2

loc(�
d ) (for the details in a similar situation see, [15]).

In order to explain how to apply this idea to Lp-weakly converging sequences when
p /= 2, consider the integral in (1.1). The Cauchy-Schwartz inequality and the Plancherel
theorem imply (see, e.g., [2, page 198])

∣∣∣
∣

∫

�d

Aψ

(
ϕ1un′

)
ϕ2vn′dx

∣∣∣
∣ ≤ C

∥∥ψ
∥∥
C(Sd−1)

∥∥ϕ1ϕ2
∥∥
C0(�d), (1.4)

where C depends on a uniform bound for ‖(un, vn)‖L2(�d;�2). In essence, this fact and the
linearity of integral in (1.1) with respect to ϕ1ϕ2 and ψ enable us to state that the limit in
(1.1) is a Radon measure (a bounded linear functional on C0(�d × Sd−1)). Furthermore, the
bound is obtained by a simple estimate ‖Aψ‖L2 →L2 ≤ ‖ψ‖L∞(�d) and the fact that (un, vn) is a
bounded sequence in L2(�d ;�2).

In [3], the question whether it is possible to extend the notion of H-measures (or
microlocal defect measures in the terminology used there) to the Lp framework is posed (see
also [16, page 331]). We will consider only the case p ∈ 〈1,∞〉 (i.e., 1 < p < ∞; its dual
exponent we will consistently denote by p′).

To answer that question, one necessarily needs precise bounds for the Fourier
multiplier operator Aψ as a mapping from Lp(�d ) to Lp(�d ). The bounds are given by the
famous Hörmander-Mikhlin theorem [17, 18].

Definition 1.3. Let φ : �d → � satisfy (1 + |x|2)−k/2φ ∈ L1(�d ) for some k ∈ �0 . Then, φ is
called the Fourier multiplier on Lp(�d ), if F(φF(θ)) ∈ Lp(�d ) for any θ ∈ S(�d ), and

S
(
�d

)

 θ �−→ F(φF(θ)) ∈ Lp

(
�d

)
(1.5)
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can be extended to a continuous mapping Tφ : Lp(�d ) → Lp(�d ). One calls operator Tφ
the Lp-multiplier operatorwith symbol φ.

Theorem 1.4 (Hörmander-Mikhlin). Let φ ∈ L∞(�d ) have partial derivatives of order less than
or equal to κ, where κ is the least integer strictly greater than d/2 (i.e., κ = [d/2] + 1). If, for some
constant k > 0,

(∀r > 0)
(
∀α ∈ �d0

)
|α| ≤ κ =⇒

∫

r/2≤|ξ|≤r

∣∣
∣Dα

ξφ(ξ)
∣∣
∣
2
dξ ≤ k2rd−2|α|, (1.6)

then, for any p ∈ 〈1,∞〉 and the associated multiplier operator Tφ, there exists a constant Cd (de-
pending only on the dimension d; see [18, page 367]) such that

∥∥Tφ
∥∥
Lp →Lp

≤ Cdmax
{
p,

1
p − 1

}
(
k +

∥∥φ
∥∥
∞
)
. (1.7)

Remark 1.5. It is important to notice that, according to [19, Section 3.2, Example 2], if the
symbol of a multiplier is aCκ function defined on the unit sphere Sd−1 ⊆ �d , then the constant
k from Theorem 1.4 can be taken to be equal to ‖φ‖Cκ(Sd−1).

By an application of Theorem 1.4, in Section 2 we are able to introduceH-distributions
(see Theorem 2.1)—an extension ofH-measures in the Lp-setting. Its proof is the main result
of the paper and forms Section 3. We conclude in Section 4 by an Lp-variant of the localisation
principle and a proof of an (Lp, Lp

′
)-variant of the div-curl lemma.

Remark 1.6. Recently, variants of H-measures with a different scaling were introduced (the
parabolic H-measures [15, 20] and the ultraparabolic H-measures [21]). We can apply the
procedure from this paper to extend the notion of such H-measures to the Lp-setting in the
same fashion as it is given here based on Theorem 1.1 for the classicalH-measures.

2. A Generalisation of H-Measures

We have already seen (Remark 1.2) that an H-measure μ corresponding to a sequence (un)
in L2(�d ) can describe its loss of strong compactness. We would like to introduce a similar
notion describing the loss (at least in L1

loc) of strong compactness for sequences weakly
converging in Lp(�d ).

Consider a sequence (un) weakly converging to zero in Lp(�d ) and satisfying the
following sequence of differential equations:

d∑

i=1

∂i(Ai(x)un(x)) = fn(x), (2.1)

where Ai ∈ C0(�d ) and fn → 0 strongly in the Sobolev space H−1(�d ). When dealing with
the latter equation, it is standard tomultiply (2.1) byAψ/|ξ|(φun), for φ ∈ C0(�d ), whereAψ/|ξ|
is the multiplier operator with symbol ψ(ξ/|ξ|)/|ξ|, ψ ∈ C(Sd−1), and then pass to the limit
(see, e.g., [14, 22]). If un ∈ L2(�d ), then we can apply the classicalH-measures to describe the
defect of compactness for (un).
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If we instead take un ∈ Lp(�d ), for p < 2, then we cannot apply the same tool. Here we
propose the following replacement.

Theorem 2.1. If un ⇀ 0 in Lp(�d ) and vn
∗
⇀ v in Lq(�d ) for some q ≥ max{p′, 2}, then there exist

subsequences (un′), (vn′) and a complex valued distribution μ ∈ D′(�d ×Sd−1) of order not more than
κ = [d/2] + 1 in ξ, such that, for every ϕ1, ϕ2 ∈ C∞

c (�d ) and ψ ∈ Cκ(Sd−1) one has:

lim
n′ →∞

∫

�d

Aψ

(
ϕ1un′

)
(x)

(
ϕ2vn′

)
(x)dx = lim

n′ →∞

∫

�d

(
ϕ1un′

)
(x)Aψ

(
ϕ2vn′

)
(x)dx

= 〈μ, ϕ1ϕ2ψ〉,
(2.2)

whereAψ : Lp(�d ) → Lp(�d ) is a multiplier operator with symbol ψ ∈ Cκ(Sd−1).

We call the functional μ the H-distribution corresponding to (a subsequence of) (un)
and (vn). Of course, for q ∈ 〈1,∞〉, the weak ∗ convergence coincides with the weak conver-
gence.

If we are given sequences (un) and (vn) defined on an open set Ω ⊆ �d , then we can
extend the functions by zero to �d , preserving the convergence, and then apply Theorem 2.1
in the above form. The resulting H-distribution will be supported on ��Ω × Sd−1, as it can
easily be seen by taking test functions ϕ1 and ϕ2 supported within the complement of the
closure ��Ω.

Remark 2.2. Notice that, unlike what was the case with H-measures, it is not possible to
write (2.2) in a form similar to (1.3) since, according to the Hausdorff-Young inequality,
‖F(u)‖Lp′ (�d) ≤ C‖u‖Lp(�d) only if 1 < p ≤ 2. This means that we are not able to estimate
‖F(ϕ2vn)‖Lq′ (�d), for q > 2, which would appear from (2.2)when rewriting it in a form similar
to (1.3).

Remark 2.3. In Theorem 2.1, we clearly distinguish between un ∈ Lp(�d ) and vn ∈ Lq(�d ). For
p ≥ 2, p′ ≤ 2 and we can take q ≥ 2; in particular, this covers the classical L2 case (including
un = vn). Even more, in this case (p ≥ 2), the assumptions of Theorem 2.1 imply that un, vn ⇀
0 in L2

loc(�
d ) and we can again use a classical framework, resulting in a distribution μ of

order zero (a Radon measure, not necessary bounded), instead of a more general distribution
of order κ. The real improvement in Theorem 2.1 is for the case p < 2.

Remark 2.4. For applications, it might be of interest to extend the result to vector-valued

functions. In the case when �n ∈ Lp(�d )k and �n ∈ Lq(�d )l, the result is a matrix valued
distribution μ = [μij],where i ∈ 1, . . . , t and j ∈ 1, . . . , l.

It should be noted that, in contrast to what is done with H-measures, in general we
cannot consider H-distributions corresponding to the same sequence, but only to a pair of
sequences, andH-distribution would correspond to nondiagonal blocks forH-measures [14]
(see also the example at the beginning of Section 4).
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3. Proof of Theorem 2.1

In order to prove the theorem, we need a consequence of Tartar’s first commutation lemma
[2, Lemma 1.7]. First, for ψ ∈ Cκ(Sd−1) and b ∈ C0(�d ), define the Fourier multiplier operator
Aψ and the operator of multiplication B on Lp(�d ), by the formulae

F(Aψu
)
(ξ) = ψ

(
ξ

|ξ|
)
F(u)(ξ),

Bu(x) = b(x)u(x).

(3.1)

Notice that ψ satisfies the conditions of the Hörmander-Mikhlin theorem (see Remark 1.5).
Therefore,Aψ and B are bounded operators on Lp(�d ), for any p ∈ 〈1,∞〉. We are interested
in the properties of their commutator, C = AψB − BAψ .

Lemma 3.1. Let (vn) be bounded in both L2(�d ) and Lr(�d ), for some r ∈ 〈2,∞], and such that
vn ⇀ 0 in the sense of distributions. Then the sequence (Cvn) strongly converges to zero in Lq(�d ),
for any q ∈ [2, r] \ {∞}.

Proof. If r <∞, then we can apply the classical interpolation inequality:

‖Cvn‖q ≤ ‖Cvn‖α2‖Cvn‖1−αr , (3.2)

for α ∈ 〈0, 1〉 such that 1/q = α/2 + (1 − α)/r. As C is a compact operator on L2(�d ) by the
first commutation lemma, while C is bounded on Lr(�d ), from (3.2) we get the claim.

In the case r = ∞, notice that we do not have the boundedness of Aψ on L∞, but only
on Lp, for p < ∞. Therefore, we take p ∈ 〈q,∞〉 and by the interpolation inequality conclude
that (vn) is bounded in Lp. Now, we can proceed as above, with r replaced by p.

Proof of Theorem 2.1. The first equality from (2.2) follows from the fact that the adjoint
operator A∗

ψ corresponding to Aψ is actually the multiplier operator Aψ (see [17,
Theorem 7.4.3]). This means that (we take the duality product to be sesquilinear, i.e.,
antilinear in the second variable, in order to get the scalar product when p = p′ = 2)

Lp

〈Aψ

(
ϕ1un′

)
, ϕ2vn′

〉
Lp

′ =
Lp

〈
ϕ1un′ ,Aψ

(
ϕ2vn′

)〉
Lp

′ , (3.3)

which is exactly what we need. We can now concentrate our attention on the second equality
in (2.2).

Since un ⇀ 0 in Lp(�d ), while for v ∈ Lq(�d ) one has ϕ1Aψ(ϕ2v) ∈ Lp′(�d ), according
to the Hörmander-Mikhlin theorem for any ϕ1, ϕ2 ∈ C∞

c (�d ) and ψ ∈ Cκ(Sd−1), it follows that

lim
n→∞

∫

�d

ϕ1unAψ

(
ϕ2v

)
dx = 0. (3.4)
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We can write �d =
⋃
l∈�Kl, where Kl form an increasing family of compact sets (e.g.,

closed balls around the origin of radius l); therefore supp ϕ2 ⊆ Kl for some l ∈ �. One has

lim
n→∞

∫

�d

ϕ1unAψ

(
ϕ2vn

)
dx = lim

n→∞

∫

�d

ϕ1unAψ[ϕ2χl(vn − v)]dx

= lim
n→∞

∫

�d

ϕ1ϕ2unAψ

(
χl(vn − v)

)
dx

= lim
n→∞

∫

�d

ϕ1ϕ2unAψ

(
χlvn

)
dx,

(3.5)

where χl is the characteristic function of Kl. In the second equality, one has used Lemma 3.1.
This allows us to express the above integrals as bilinear functionals, after denoting

ϕ = ϕ1ϕ2:

μn,l
(
ϕ, ψ

)
=
∫

�d

ϕunAψ

(
χlvn

)
dx. (3.6)

Furthermore, μn,l is bounded by C̃‖ϕ‖C0(�d)‖ψ‖Cκ(Sd−1), as according to the Hölder inequality,
Theorem 1.4 and Remark 1.5:

∣∣μn,l
(
ϕ, ψ

)∣∣ ≤ ∥∥ϕun
∥∥
p

∥∥Aψ

(
χlvn

)∥∥
p′ ≤ C̃

∥∥ψ
∥∥
Cκ(Sd−1)

∥∥ϕ
∥∥
C0(�d), (3.7)

where the constant C̃ depends on Lp(Kl)-norm and Lp
′
(Kl)-norm of the sequences (un) and

(vn), respectively.
For each l ∈ �, we can apply Lemma 3.2 (actually, the operators are defined in its

proof) to obtain operators Bl ∈ L(CKl(�
d ); (Cκ(Sd−1))′). Furthermore, for the construction of

Bl , we can start with a defining subsequence for Bl−1, so that the convergence will remain
valid on CKl−1(�

d ), in such a way obtaining that Bl is an extension of Bl−1.
This allows us to define the operator B on Cc(�d ): for, ϕ ∈ Cc(�d ), we take l ∈ � such

that supp ϕ ⊆ Kl, and set Bϕ := Blϕ. Because of the above-mentioned extension property, this
definition is good, and one has a bounded operator:

∥∥Bϕ
∥∥
(Cκ(Sd−1))′ ≤ C̃

∥∥ϕ
∥∥
C0(�d). (3.8)

In such a way one has got a bounded linear operator B on the space Cc(�d ) equipped
with the uniform norm; the operator can be extended to its completion, the Banach space
C0(�d ).

Now, we can define μ(ϕ, ψ) := 〈Bϕ, ψ〉, which satisfies (2.2).
We can restrict B to an operator B̃ defined only on C∞

c (�d ); as the topology on
C∞
c (�d ) is stronger than the one inherited from C0(�d ), the restriction remains continuous.

Furthermore, (Cκ(Sd−1))′ is the space of distributions of order κ, which is a subspace of
D′(Sd−1). In such a way, one has a continuous operator from C∞

c (�
d ) to D′(Sd−1), which by

the Schwartz kernel theorem can be identified to a distribution fromD′(�d ×Sd−1) (for details
cf. [23, Chapter VI]).
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We conclude this section by a simple lemma and its proof, which was used in the proof
of Theorem 2.1.

Lemma 3.2. Let E and F be separable Banach spaces and (bn) an equibounded sequence of bilinear
forms on E × F (more precisely, there is a constant C such that, for each n ∈ � one has |bn(ϕ, ψ)| ≤
C‖ϕ‖E‖ψ‖F).

Then, there exists a subsequence (bnk ) and a bilinear form b (with the same bound C) such that

(∀ϕ ∈ E) (∀ψ ∈ F) lim
k
bnk

(
ϕ, ψ

)
= b

(
ϕ, ψ

)
. (3.9)

Proof. To each bn, we associate a bounded linear operator Bn : E → F ′ by

F ′
〈
Bnϕ, ψ

〉
F
:= bn

(
ϕ, ψ

)
. (3.10)

The above expression clearly defines a function (i.e., Bnϕ ∈ F ′ is uniquely determined); it is
linear in ϕ and bounded:

∥∥Bnϕ
∥∥
F ′ = sup

ψ /= 0

∣∣bn
(
ϕ, ψ

)∣∣
∥
∥ψ

∥
∥
F

≤ C∥∥ϕ∥∥E. (3.11)

Let G ⊆ E be a countable dense subset; for each ϕ ∈ G, the sequence (Bnϕ) is bounded in F ′,
so by the Banach theorem there is a subsequence such that

Bn1ϕ
∗
⇀ β1 =: B

(
ϕ
)
. (3.12)

By repeating this construction countably many times and then applying the Cantor diagonal
procedure, we get a subsequence

(∀ϕ ∈ G) Bnkϕ
∗
⇀ B

(
ϕ
)
, (3.13)

such that ‖B(ϕ)‖F ′ ≤ C‖ϕ‖E.
Then, it is standard to extend B to a bounded linear operator on the whole space E.

Clearly,

b
(
ϕ, ψ

)
:= F ′

〈
Bϕ, ψ

〉
F
= lim

k F ′
〈
Bnkϕ, ψ

〉
F = lim

k
bnk

(
ϕ, ψ

)
. (3.14)

4. Some Applications

It is well-known that weak convergences are ill behaved under nonlinear transformations (in
contrast to their good behaviour under linear transformations). Only in some particular cases
of compensation, it is even possible to pass to the limit in a product of two weakly converging
sequences.
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The prototype of this compensation effect is Tartar-Murat’s div-curl lemma (cf. [24,
Theorem 7.1]).

For simplicity, consider two vector-valued sequences, (u1n, u2n) and (v1n, v2n), converging
to zero weakly in L2(�2), such that (∂xu1n + ∂yu

2
n) and (∂yv1n − ∂xv2n) are both contained in a

compact set ofH−1
loc(�

2) (which then implies that they converge to zero strongly inH−1
loc(�

2 )).

We can define �n :=
[
�n
�n

]
, which (on a subsequence) defines a 4 × 4 H-measure μ.

By the localisation principle [2, Theorem 1.6] and [14, Theorem 2], as the above relations
can be written in the form (A1,A2 are 4 × 4 constant matrices with all entries zero except
A1

11 = A
2
12 = A

2
33 = 1 and A1

34 = −1)

A1∂1�n +A2∂2�n −→ � strongly in H−1
loc

(
�2

)4
, (4.1)

the correspondingH-measure satisfies (ξ1A1 + ξ2A2)μ = 0. After straightforward calculations
this shows that u1nv

1
n + u

2
nv

2
n ⇀ 0 weak ∗ in the sense of Radon measures (and therefore in the

sense of distributions as well).
For the above, one has used only the nondiagonal blocks μ12 = μ∗

21 of

μ =

⎡

⎣
μ11 μ12

μ21 μ22

⎤

⎦, (4.2)

corresponding to products of uin and v
j
n; in fact, the calculation shows that μ1112+μ

22
12 = 0, which

gives the above result.
In order to get a similar result usingH-distributions, we first show that the following

localisation principle holds.

Theorem 4.1. Assume that un ⇀ 0 in Lp(�d ) and fn → 0 inW−1,q(�d ), for some q ∈ 〈1, d〉, such
that they satisfy

d∑

i=1

∂i(Ai(x)un(x)) = fn(x). (4.3)

Take an arbitrary sequence (vn) bounded in L∞(�d ), and by μ denote the H-distribution corre-
sponding to some subsequences of sequences (un) and (vn). Then,

d∑

i=1

Ai(x)ξiμ(x, ξ) = 0 (4.4)

in the sense of distributions on �d × Sd−1, the function (x, ξ) �→ ∑d
i=1Ai(x)ξi being the symbol of the

linear partial differential operator with Cκ
0 coefficients.
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Proof. In order to prove the theorem, we need a particular multiplier, the so called (Marcel)
Riesz potential I1 := A|2πξ|−1 , and the Riesz transforms Rj := Aξj/i|ξ| [19, V.1,2]. We note that
[id.,V.2.3]

∫
I1
(
φ
)
∂jg =

∫
(
Rjφ

)
g, g ∈ S

(
�d

)
. (4.5)

From here, using the density argument and the fact that Rj is bounded from Lp(�d ) to itself,
we conclude that ∂jI1(φ) = −Rj(φ), for φ ∈ Lp(�d ).

We should prove that the H-distribution corresponding to (the chosen subsequences
of) (un) and (vn) satisfies (4.4). To this end, take the following sequence of test functions:

φn := ϕ1
(
I1 ◦ Aψ(ξ/|ξ|)

)(
ϕ2vn

)
, (4.6)

where ϕ1, ϕ2 ∈ C∞
c (�

d ) and ψ ∈ Cκ(Sd−1), κ = [d/2] + 1. Then, apply the right-hand side of
(4.3), which converges strongly to 0 inW−1,q(�d ) by the assumption, to a weakly converging
sequence (φn) in the dual spaceW1,q′(�d ).

We can do that since (φn) is a bounded sequence inW1,r(�d ) for any r ∈ 〈1,∞〉.
Indeed, Aψ(ϕ2vn) is bounded in any Lr(�d ) (r > 1). By the well-known fact [19,

Theorem V.1] that I1 is bounded from Lq(�d ) to Lq
∗
(�d ), for q ∈ 〈1, d〉 and 1/q∗ = 1/q−1/d,

φn is bounded in Lq
∗
(�d ) for all sufficiently large q∗. Then, take q∗ ≥ r and due to the compact

support of ϕ1, one has that Lq
∗
boundedness implies the same in Lr . On the other hand, Rj is

bounded from Lr(�d ) to itself, for any r ∈ 〈1,∞〉, thus; ∂j(ϕ1(I1 ◦Aψ(ξ/|ξ|))(ϕ2vn)) is bounded
in Lr(�d ).

Therefore, one has (the sequence is bounded and 0 is the only accumulation point, so
the whole sequence converges to 0)

lim
n→∞

W−1,q(IRd)
〈
fn, φn

〉

W1,q′ (�d)
= 0. (4.7)

Concerning the left-hand side of (4.3), according to (4.5), one has

W−1,q(�d)

〈
d∑

j=1

∂j
(
Ajun

)
, φn

〉

W1,q′ (�d)

=
∫

�d

d∑

j=1

ϕ1AjunA(ξj/|ξ|)ψ(ξ/|ξ|)
(
ϕ2un

)
dx

−
∫

�d

∂jϕ1

d∑

j=1

Ajun
(
I1 ◦ Aψ(ξ/|ξ|)

)(
ϕ2vn

)
dx.

(4.8)

The first term on the right is of the form of the right-hand side of (2.2). The integrand in the
second term is supported in a fixed compact and weakly converging to 0 in Lp, so strongly in
W−1,r ′ , where r is such that p = r∗ (i.e., r = dp/(d − p)). Of course, the argument giving the
boundedness of φn inW1,q′(�d ) above applies also to r instead of q′.

Therefore, from (4.7) and (4.8), one concludes (4.4).

Remark 4.2. Notice that the assumption of the strong convergence of fn in W−1,q(�d ) can be
relaxed to local convergence, because in the proof we used a cutoff function ϕ1.
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Let us return to the simple example from the beginning of this section; consider two
vector-valued sequences (u1n, u

2
n) and (v1n, v

2
n), this time converging to zero weakly in Lp(�)

and Lp
′
(�), respectively. Assume that the sequence (∂1u1n + ∂2u2n) is bounded in Lp(�2), and

(∂2v1n − ∂1v2n) in Lp
′
(�2) (thus precompact inW−1,p

loc (�2), andW−1,p′
loc (�2 ), resp.).

Then, the sequence (u1nv
1
n+u

2
nv

2
n) is bounded in L1(�2 ) so also inMb (Radonmeasures)

and by weak ∗ compactness it has a weakly converging subsequence. However, we can say
more—the whole sequence converges to zero.

Denote by μij the H-distribution corresponding to (some sub)sequences (of) (u1n, u
2
n)

and (v1n, v
2
n).

Since (∂1u1n +∂2u
2
n) is bounded in Lp(�2), and (∂2v1n −∂1v2n) is bounded in Lp

′
(�2 ), they

are weakly precompact, while the only possible limit is zero, so

∂1u
1
n + ∂2u

2
n ⇀ 0 in Lp, ∂2v

1
n − ∂1v2n ⇀ 0 in Lp

′
. (4.9)

Now, from the compactness properties of the Riesz potential I1 (see the proof of previous
theorem), we conclude that, for every ϕ ∈ Cc(�2) and ψ ∈ Cκ(Sd−1), the following limit holds
in Lp(�2):

Aψ(ξ/|ξ|)(ξ1/|ξ|)
(
ϕu1n

)
+Aψ(ξ/|ξ|)(ξ2/|ξ|)

(
ϕu2n

)
= Aψ(ξ/|ξ|)/|ξ|

(
∂1
(
ϕu1n

)
+ ∂2

(
ϕu2n

))
−→ 0. (4.10)

Multiplying (4.10) first by ϕv1n and then by ϕv2n, integrating over �2 and passing to the limit,
we conclude from (2.2), due to the arbitrariness of ψ and ϕ:

ξ1μ
11 + ξ2μ21 = 0, ξ1μ

12 + ξ2μ22 = 0. (4.11)

Next, take

w
j
n = ϕAψ(ξ/|ξ|)/|ξ|

(
ϕu

j
n

)
∈W1,p′

(
�d

)
, j = 1, 2. (4.12)

From (4.9), we get

〈(
ϕv1n,−ϕv2n

)
,∇wj

n

〉
= −

〈
����

(
ϕv1n, ϕv

2
n

)
, w

j
n

〉
−→ 0 as n −→ ∞, (4.13)

for j = 1, 2. Rewriting it in the integral formulation, we obtain, from (2.2),

ξ2μ
11 − ξ1μ12 = 0, ξ2μ

21 − ξ1μ22 = 0. (4.14)

From the algebraic relations (4.11) and (4.14), we can easily conclude

ξ1
(
μ11 + μ22

)
= 0, ξ2

(
μ11 + μ22

)
= 0, (4.15)

implying that the distribution μ11 + μ22 is supported on the set {ξ1 = 0} ∩ {ξ2 = 0} ∩ P = ∅,
which implies μ11 + μ22 ≡ 0.
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After inserting ψ ≡ 1 in the definition of H-distribution (2.2), we immediately reach
the conclusion. This proof is similar to the L2 case, but it should be noted that there we had
used only a nondiagonal block of 4 × 4 H-measure, which corresponds to the only available
2 × 2 H-distribution.

There is no reason to limit oneself to two dimensions; take (�n) and (�n) converging
weakly to zero in Lp(�d )d and Lp

′
(�d )d, and by μ denote d × d matrix H-distribution corre-

sponding to some chosen subsequences of (�n) and (�n).
From 	
� �n → 0 strongly inW−1,p

loc (�d ), for ϕ1 ∈ Cc(�d ) and ψ ∈ Cκ(Sd−1), one has as
in (4.10) that

Aψ(ξ/|ξ|)(ξ/|ξ|)
(
ϕ1�n

)
= Aψ(ξ/|ξ|)/|ξ|	
�

(
ϕ1�n

) −→ 0 strongly in Lp
(
�d

)
. (4.16)

After forming a product with ϕ2vn, integrating and passing to the limit, we conclude that

ξ�μ = �, (4.17)

namely, that the columns of μ are perpendicular to ξ.
On the other hand, from ���� �n → 0 strongly in W−1,p′

loc (�d )d×d, in an analogous way,
we conclude that, for each row (denoted by μi) of μ, for all j, k, one has

ξjμ
ik − ξkμij = 0, (4.18)

so the rows of μ are proportional to ξ and μ = λ⊗ ξ (a rank-one matrix), λi being the constants
of proportionality. So, the columns of μ are proportional to λ, while earlier we showed that
they are perpendicular to ξ. Thus, ��μ = λ · ξ = 0, which implies the convergence �n · �n ⇀ 0,
as in the two-dimensional situation.

The above result is the well-known Murat’s div-curl lemma in the (Lp, Lp
′
)-setting [24,

25], which we state as a theorem.

Theorem 4.3. Let (�n) and (�n) be vector-valued sequences converging to zero weakly in Lp(�d )d

and Lp
′
(�d )d, respectively. Assume that the sequence (	
� �n) is bounded in Lp(�d ) and the sequence

(���� �n) is bounded in Lp
′
(�d )d×d.

Then, the sequence (�n · �n) converges to zero in the sense of distributions (or vaguely in the
sense of Radon measures).

Acknowledgment

Originally, Theorem 2.1 was proved only in the case q = ∞. The authors would like to thank
Martin Lazar for pointing out the possibility to extend the theorem to more general values of
q. They wish to thank the referee for numerous suggestions which helped them to improve
the final version of this paper. The work of N. Antonić is supported in part by the Croatian
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