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The main purpose of this paper is considering the lacunary sequence spaces defined by Karakaya
(2007), by proving the property (β) and Uniform Opial property.

1. Introduction

Let (X, ‖ · ‖) be a real Banach space and let B(X) (resp., S(X)) be a closed unit ball (resp.,
the unit sphere) of X. For any subset A of X, we denote by conv(A) the convex hull of A.
The Banach space X is uniformly convex (UC), if for each ε > 0 there exists δ > 0 such
that for x, y ∈ S(X) the inequality ‖x − y‖ > ε implies ‖(x + y)/2‖ < 1 − δ (see [1]). A
Banach space X has the property (β) if for each ε > 0 there exists δ > 0 such that 1 < ‖x‖ <
1 + δ implies α (conv(B(X) ∪ {x}) \ B(X)) < ε, where α(A) denotes the Kuratowski measure
noncompactness of a subset A of X defined as the infimum of all ε > 0 such that A can be
covered by a finite union of sets of diameter less than ε. The following characterization of
the property (β) is very useful (see [2]): A Banach space X has the property (β) if and only
if for each ε > 0 there exists δ > 0 such that for each element x ∈ B(X) and each sequence
(xn) in B(X) with sep(xn) ≥ ε there is an index k for which ‖(x + xk)/2‖ < 1 − δ where
sep(xn) = inf{‖xn − xm‖ : n/=m} > ε. A Banach space X is nearly uniformly convex (NUC) if
for each ε > 0 and every sequence (xn) in B(X) with sep(xn) ≥ ε, there exists δ ∈ (0, 1) such
that conv(xn) ∩ (1 − δ)B(X)/= ∅. Define for any x /∈ B(X) the drop D(x, B(X)) determined
by x by D(x, B(X)) = conv(B(X) ∪ {x}). A Banach space X has the drop property (write
(D)) if for every closed set C disjoint with B(X) there exists an element x ∈ C such that
D(x, B(X)) ∩ C = {x}. A point x ∈ S(X) is an H-point of B(X) if for any sequence (xn) in X
such that ‖xn‖ → 1 as n → ∞, the week convergence of (xn) to x implies that ‖xn−x‖ → 0 as
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n → ∞. If every point in S(X) is anH-point of B(X), then X is said to have the property (H).
A Banach space is said to have the uniform Kadec-Klee property (abbreviated as (UKK)) if
for every ε > 0 there exists δ > 0 such that for every sequence (xn) in S(X) with sep(xn) ≥ ε

and xn
w−→ x as n → ∞, we have ‖x‖ < 1−δ. Every (UKK) Banach space hasH-property (see

[3]). The following implications are true in any Banach spaces,

(D) =⇒ (Rfx)
⇑

(UC) =⇒ property(β) =⇒ (NUC) =⇒ (UKK) =⇒ property (H),
(1.1)

where (Rfx) denotes the property of reflexivity (see [3–6]). A Banach space X is said to have
the Opial property (see [7]) if every sequence (xn)weakly convergent to x0 satisfies

lim
n→∞

inf ‖xn − x0‖ ≤ lim
n→∞

inf ‖xn − x‖, (1.2)

for every x ∈ X. Opial proved in [7] that the sequence space lp(1 < p < ∞) have this property
but Lp[0, π] (p /= 2, 1 < p < ∞) do not have it. A Banach space X is said to have the uniform
Opial property (see [8]), if for each ε > 0 there exists τ > 0 such that for any weakly null
sequence (xn) in S(X) and x ∈ X with ‖x‖ ≥ ε there holds

1 + τ ≤ lim
n→∞

inf ‖xn + x‖. (1.3)

For example, the space in [9, 10] has the uniform Opial property. The Opial property is im-
portant because Banach spaces with this property have the weak fixed point property (see
[11]) and the geometric property involving fixed point theory can be found, for example, in
[9, 12–14].

For a bounded subset A ⊂ X, the set measure of noncompactness was defined in [15]
by

α(A) = inf
{
ε > 0 : A can be covered by finitely many sets of diameter ≤ ε

}
. (1.4)

The ball measure of noncompactness was defined in [16, 17] by

β(A) = inf
{
ε > 0 : A can be covered by finitely many balls of diameter ≤ ε

}
. (1.5)

The functions α and β are called the Kuratowski measure of noncompactness and the Haus-
dorffmeasure of noncompactness inX, respectively.We can associate these functions with the
notions of the set-contraction and ball contraction (see [18]). These notions are very useful
tools to study nonlinear operator propblems (see [8, 18]). For each ε > 0 define that Δ(ε) =
inf{1 − inf [‖x‖ : x ∈ A]:A is closed convex subset of B(X) with β(A) ≥ ε}. The function Δ
is called the modulus of noncompact convexity (see [16]). A Banach space X is said to have
property (L) if lim ε→ 1−Δ(ε) = 1. It has been proved in [8] that property (L) is a useful tool in
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the fixed point theory and that a Banach space X has property (L) if and only if it is reflexive
and has the uniform Opial property.

For a real vector space X, a function ρ : X → [0,∞] is called amodular if it satisfies the
following conditions:

(i) ρ(x) = 0 if and only if x = 0;

(ii) ρ(αx) = ρ(x) for all scalar α with |α| = 1;

(iii) ρ(αx + βy) ≤ ρ(x) + ρ(y), for all x, y ∈ X and all α, β ≥ 0 with α + β = 1;

the modular ρ is called convex if

(iv) ρ(αx + βy) ≤ αρ(x) + βρ(y), for all x, y ∈ X and all α, β ≥ 0 with α + β = 1.

For modular ρ on X, the space

Xρ =
{
x ∈ X : ρ(λx) −→ 0 as λ −→ 0+

}
(1.6)

is called the modular space.
A sequence (xn) in Xρ is called modular convergent to x ∈ Xρ if there exists a λ > 0 such

that ρ(λ(xn − x)) → 0 as n → ∞.
A modular ρ is said to satisfy the Δ2-condition (ρ ∈ Δ2) if for any ε > 0 there exist

constants K ≥ 2 and a > 0 such that

ρ(2u) ≤ Kρ(u) + ε (1.7)

for all u ∈ Xρ with ρ(u) ≤ a.
If ρ satisfies the Δ2-condition for any a > 0 with K ≥ 2 dependent on a, we say that ρ

satisfies the strong Δ2-condition (ρ ∈ Δs
2).

By a lacunary sequence θ = (kr), where k0 = 0, we will mean an increasing sequence
of nonnegative integers with kr −kr−1 → ∞ as r → ∞. The intervals determined by θ will be
denote by Ir = (kr−1, kr]. We write hr = kr − kr−1 and the ratio kr/kr−1, will be denoted by qr .
The space of lacunary strongly convergent sequence Nθ was defined by Freedman et al. [19]
as

Nθ =

{

x = (xk) : lim
r→∞

1
hr

∑

k∈Ir
|xk − l| = 0, for some l

}

. (1.8)

It is well known that there is very closed connection between the space of lacunary strong-
ly convergent sequence and the space of strongly Cesaro summability sequences. This con-
nection can be found in [18–23], because a lot of these connection, a lot of geometric property
of Cesaro sequence spaces can generalize the lacunary sequence spaces.

Let w be the space of all real sequences. Let p = (pr) be a bounded sequence of the
positive real numbers. In 2007, Karakaya [24] introduced the new sequence spaces l(p, θ)
involving lacunary sequence as follows:

l
(
p, θ
)
=

{

x = (x(i)) :
∞∑

r=1

(
1
hr

∑

i∈Ir
|x(i)|

)pr

< ∞
}

(1.9)
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and paranorm on l(p, θ) is given by

‖x‖l(p,θ) =
( ∞∑

r=1

(
1
hr

∑

i∈Ir
|x(i)|

)pr)1/M

, (1.10)

whereM = suprpr . If pr = p for all r ∈ N, we will use the notation lp(θ) in place of l(p, θ). The
norm on lp(θ) is given by

‖x‖lp(θ) =
( ∞∑

r=1

(
1
hr

∑

i∈Ir
|x(i)|

)p)1/p

. (1.11)

By using the properties of lacunary sequence in the space l(p, θ), we get the following se-
quences. If θ = (2r), then l(p, θ) = ces(p). If θ = (2r) and pr = p for all r ∈ N, then l(p, θ) = cesp.
For x ∈ l(p, θ) defined the modular on l(p, θ) by

�(x) =
∞∑

r=1

(
1
hr

∑

i∈Ir
|x(i)|

)pr

. (1.12)

It is easy to see that if limr→∞ sup pr < ∞ then � ∈ Δs
2. The Luxembourg norm on l(p, θ) is

defined by

‖x‖ = inf
{
ε > 0 : �

(
x

ε

)
≤ 1
}
. (1.13)

The Luxembourg norm on lp(θ) can be reduced to a usual norm on lp(θ) [24], that is,

‖x‖ = ‖x‖lp(θ). (1.14)

Throughout this paper, we assume that limr→∞ inf pr > 1 and limr→∞ sup pr < ∞ and
for x ∈ w, i ∈ N, we denote

ei =

⎛

⎜
⎝

i−1 times
︷ ︸︸ ︷
0, 0, . . . , 0, 1, 0, 0, 0, . . .

⎞

⎟
⎠,

x|i = (x(1), x(2), x(3), . . . , x(i), 0, 0, 0, . . .),

x|
N−i = (0, 0, 0, . . . , x(i + 1), x(i + 2), . . .).

(1.15)

The following results are very important for our consideration.
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Lemma 1.1 (see [25, Lemma 2.1]). If ρ ∈ Δs
2, then for any L > 0 and ε > 0, there exists δ =

δ(L, ε) > 0 such that

∣
∣ρ(u + v) − ρ(u)

∣
∣ < ε, (1.16)

whenever u, v ∈ Xρ with ρ(u) ≤ L, and ρ(v) ≤ δ.

Lemma 1.2 (see [25, Lemma 2.3]). Convergence in norm and in modular are equivalent in Xρ if
ρ ∈ Δ2.

Lemma 1.3 (see [25, Corollary 2.2, Lemma 2.3]). If ρ ∈ Δ2, then for any sequence (xn) in Xρ,
‖xn‖ → 0 if and only if ρ(xn) → 0 as n → ∞.

Lemma 1.4 (see [25, Lemma 2.4]). If ρ ∈ Δs
2, then for any ε > 0 there exists δ = δ(ε) > 0 such

that ‖x‖ ≥ 1 + δ whenever ρ(x) ≥ 1 + ε.

Lemma 1.5 (see [24, Lemma 2.3]). The functional � is a convex modular on l(p, θ).

Lemma 1.6 (see [24, Lemma 2.5]). (i) For any x ∈ l(p, θ), if ‖x‖ < 1, then �(x) ≤ ‖x‖.
(ii) For any x ∈ l(p, θ), ‖x‖ = 1 if and only if �(x) = 1.

2. The Main Results

In this section, we prove the property (β) and uniform Opial property in lacunary sequence
and connect to the fixed point property. First we shall give some results which are very
important for our consideration.

Lemma 2.1. For any x ∈ l(p, θ), there exists k0 ∈ N and λ ∈ (0, 1) such that �(xk/2) ≤ ((1 −
λ)/2)�(xk) for all k ∈ N with k ≥ k0, where

xk =

⎛

⎜
⎝

k−1
︷ ︸︸ ︷
0, 0, . . . , 0, x(k), x(k + 1), x(k + 2), . . .

⎞

⎟
⎠. (2.1)

Proof. Let k ∈ N be fixed. So there exist rk ∈ N such that k ∈ Irk . Let α be a real number such
that 1 < α ≤ limr→∞ inf pr , then there exists k0 ∈ N such that α < prk for all k ≥ k0. Choose
λ ∈ (0, 1) as a real such that (1/2)α ≤ (1 − λ)/2. Then for each x ∈ l(p, θ) and k ≥ k0, we have

�

(
xk

2

)

=
∞∑

r=rk

(
1
hr

∑

i∈Ir

∣∣∣∣
x(i)
2

∣∣∣∣

)pr

=
∞∑

r=rk

(
1
2

)pr
(

1
hr

∑

i∈Ir
|x(i)|

)pr
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≤
(
1
2

)α ∞∑

r=rk

(
1
hr

∑

i∈Ir
|x(i)|

)pr

≤ 1 − λ

2
�
(
xk
)
.

(2.2)

Lemma 2.2. For any x ∈ l(p, θ) and ε ∈ (0, 1) there exists δ ∈ (0, 1) such that �(x) ≤ 1 − ε implies
‖x‖ ≤ 1 − δ.

Proof. Suppose that the lemma does not hold, then there exist ε > 0 and xn ∈ l(p, θ) such that
�(xn) ≤ 1 − ε and 1/2 ≤ ‖xn‖ ↗ 1. Let an = (1/‖xn‖) − 1. Then an → 0 as n → ∞. Let
L = sup{�(2xn) : n ∈ N}. Since � ∈ Δs

2 there exists K ≥ 2 such that

�(2u) ≤ K�(u) + 1, (2.3)

for every u ∈ l(p, θ)with �(u) < 1. By (2.3), we have �(2xn) ≤ K�(xn)+1 ≤ K+1 for all n ∈ N.
Hence 0 < L < ∞. By Lemmas 1.5 and 1.6(ii), we have

1 = �

(
xn

‖xn‖
)

= �(2anxn + (1 − an)xn)

≤ an�(2xn) + (1 − an)�(xn)

≤ anL + (1 − ε) −→ 1 − ε,

(2.4)

which is a contradiction.

Theorem 2.3. The space l(p, θ) is Banach spaces with respect to the Luxemburg norm.

Proof. Let (xn) = (xn(i)) be a Cauchy sequence in l(p, θ) and ε ∈ (0, 1). Thus there exists
N ∈ N such that ‖xn − xm‖ < εM for all n,m ≥ N. By Lemma 1.6 (i), we have

�(xn − xm) ≤ ‖xn − xm‖ < εM ∀n,m ≥ N. (2.5)

That is,

∞∑

r=1

(
1
hr

∑

i∈Ir
|xn(i) − xm(i)|

)pr

< εM ∀n,m ≥ N. (2.6)

For fixed r, we get that

|xn(i) − xm(i)| < ε ∀n,m ≥ N. (2.7)
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Thus let (xn(i)) be a Cauchy sequence in R for all i ∈ N. Since R is complete, then there exists
x(i) ∈ R such that xm(i) → x(i) as m → ∞ for all i ∈ N. Thus for fixed r, we have

|xn(i) − x(i)| < ε as m −→ ∞, ∀n ≥ N. (2.8)

This implies that, for all n ≥ N,

�(xn − xm) −→ �(xn − x) as m −→ ∞. (2.9)

This means that, for all n ≥ N,

∞∑

r=1

(
1
hr

∑

i∈Ir
|xn(i) − xm(i)|

)pr

−→
∞∑

r=1

(
1
hr

∑

i∈Ir
|xn(i) − x(i)|

)pr

(2.10)

asm → ∞. By (2.6), we have

�(xn − x) ≤ ‖xn − xm‖ < εM ≤ ε ∀n ≥ N. (2.11)

This implies that xn → x as n → ∞. So we have xN − x ∈ l(p, θ). By the linearity of the
sequence space l(p, θ), we have x = (xN − x) + xN ∈ l(p, θ). Therefore the sequence space
l(p, θ) is Banach space, with respect to the Luxemburg norm and the proof is complete.

Theorem 2.4. The space l(p, θ) has property (β).

Proof. Let ε > 0 and (xn) ⊂ B(l(p, θ)) with sep(xn) ≥ ε. For each k ∈ N, there exist rk ∈ N such
that k is a minimal element in Irk . Let

xk
n =

⎛

⎜
⎝

k−1
︷ ︸︸ ︷
0, 0, . . . , 0, xn(k), xn(k + 1), xn(k + 2), . . .

⎞

⎟
⎠. (2.12)

Since for each i ∈ N, (xn(i))
∞
n=1 is bounded. By using the diagonal method, we have that for

each k ∈ N we can find subsequence (xnj ) of (xn) such that (xnj (i)) converges for each i ∈ N.
Therefore, for any k ∈ N there exists an increasing sequence (tk) such that sep((xk

nj
)j>tk) ≥ ε.

Hence for each k ∈ N there exists sequence of positive integers (sk)
∞
k=1 with s1 < s2 < s3 < · · ·

such that ‖xk
sk‖ ≥ ε/2, and since � ∈ Δs

2, by Lemma 1.3 we may assume that there exists η > 0
such that �(xk

sk) ≥ η for all k ∈ N, that is,

∞∑

r=rk

(
1
hr

∑

i∈Ir

∣∣∣xk
sk(i)

∣∣∣

)pr

≥ η (2.13)
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for all k ∈ N. On the other hand by Lemma 2.1, there exist k0 ∈ N and λ ∈ (0, 1) such that

�

(
uk

2

)

≤ 1 − λ

2
�
(
uk
)

(2.14)

for all u ∈ l(p, θ) and k ≥ k0. From Lemma 2.2, there exist δ ∈ (0, 1) such that for any y ∈
l(p, θ),

�
(
y
) ≤ 1 − λη

4
=⇒ ∥∥y∥∥ ≤ 1 − δ. (2.15)

Since again � ∈ Δs
2, by Lemma 1.1, there exists δ0 such that

∣∣�(u + v) − �(u)
∣∣ <

λη

4
, (2.16)

whenever �(u) ≤ 1 and �(v) ≤ δ0. Since x ∈ B(l(p, θ)), we have that �(x) ≤ 1. Then there exits
k ≥ k0 such that �(xk) ≤ δ0. We put u = xk

sk and v = xk,

�
(u
2

)
=

∞∑

r=rk

(
1
hr

∑

i∈Ir

∣∣∣∣
xsk(i)
2

∣∣∣∣

)pr

< 1, �
(v
2

)
=

∞∑

r=rk

(
1
hr

∑

i∈Ir

∣∣∣∣
x(i)
2

∣∣∣∣

)pr

< δ0. (2.17)

From (2.14) and (2.16), we have

∞∑

r=rk

(
1
hr

∑

i∈Ir

∣∣∣∣
x(i) + xsk(i)

2

∣∣∣∣

)pr

= �
(u + v

2

)
≤ �
(u
2

)
+
λη

4
≤ 1 − λ

2
(
�(u)

)
+
λη

4
. (2.18)

By (2.13), (2.16), (2.18), and convexity of function f(t) = |t|pr , for all r ∈ N, we have

�

(
x + xsk

2

)
=

∞∑

r=1

(
1
hr

∑

i∈Ir

∣∣∣∣
x(i) + xsk(i)

2

∣∣∣∣

)pr

=
rk−1∑

r=1

(
1
hr

∑

i∈Ir

∣∣∣∣
x(i) + xsk(i)

2

∣∣∣∣

)pr

+
∞∑

r=rk

(
1
hr

∑

i∈Ir

∣∣∣∣
x(i) + xsk(i)

2

∣∣∣∣

)pr

≤ 1
2

(
rk−1∑

r=1

(
1
hr

∑

i∈Ir
|x(i)|

)pr

+
rk−1∑

r=1

(
1
hr

∑

i∈Ir
|xsk(i)|

)pr)
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+
∞∑

r=rk

(
1
hr

∑

i∈Ir

∣∣
∣
∣
xsk(i)
2

∣∣
∣
∣

)pr

+
λη

4

≤ 1
2

(
rk−1∑

r=1

(
1
hr

∑

i∈Ir
|x(i)|

)pr

+
rk−1∑

r=1

(
1
hr

∑

i∈Ir
|xsk(i)|

)pr)

+
1 − λ

2

∞∑

r=rk

(
1
hr

∑

i∈Ir
|xsk(i)|

)pr

+
λη

4

=
1
2

rk−1∑

r=1

(
1
hr

∑

i∈Ir
|x(i)|

)pr

+
1
2

rk−1∑

r=1

(
1
hr

∑

i∈Ir
|xsk(i)|

)pr

+
1 − λ

2

∞∑

r=rk

(
1
hr

∑

i∈Ir
|xsk(i)|

)pr

+
λη

4

=
1
2

rk−1∑

r=1

(
1
hr

∑

i∈Ir
|x(i)|

)pr

+
1
2

∞∑

r=1

(
1
hr

∑

i∈Ir
|xsk(i)|

)pr

− λ

2

∞∑

r=rk

(
1
hr

∑

i∈Ir
|xsk(i)|

)pr

+
λη

4

≤ 1
2
+
1
2
− λη

2
+
λη

4

= 1 − λη

4
.

(2.19)

So it follows from (2.15) that

∥∥∥∥
x + xsk

2

∥∥∥∥ ≤ 1 − δ. (2.20)

Therefore, the space l(p, θ) has property (β).

By the facts presented in the introduction, following results are obtained directly from
Theorem 2.4.

Corollary 2.5. The space lp(θ) has property (β).

Corollary 2.6. The space l(p, θ) is nearly uniform convexity, has drop property, and is reflexive.

Corollary 2.7. The space l(p, θ) has property (UKK).

Corollary 2.8 (see [24, Theorem 2.9]). The space l(p, θ) has property (H).

Corollary 2.9. The space lp(θ) is nearly uniform convexity, has drop property, and is reflexive.



10 Abstract and Applied Analysis

Corollary 2.10. The space lp(θ) has property (UKK) and (H).

Theorem 2.11. The space l(p, θ) has uniform Opial property.

Proof. Take any ε > 0 and x ∈ l(p, θ) with ‖x‖ ≥ ε. Let (xn) be weakly null sequence in
S(l(p, θ)). By limr→∞ sup pr < ∞, that is, � ∈ Δs

2, hence by Lemma 1.2 there exists δ ∈ (0, 1)
independent of x such that �(x) > δ. Also, by � ∈ Δs

2, Lemma 1.1 asserts that there exists
δ1 ∈ (0, δ) such that

∣
∣�
(
y + z

) − �
(
y
)∣∣ <

δ

4
, (2.21)

whenever �(y) ≤ 1 and �(z) ≤ δ1. Choose r0 ∈ N such that

∞∑

r=r0+1

(
1
hr

∑

i∈Ir
|x(i)|

)pr

<
δ1
4
. (2.22)

So, we have

δ <
r0∑

r=1

(
1
hr

∑

i∈Ir
|x(i)|

)pr

+
∞∑

r=r0+1

(
1
hr

∑

i∈Ir
|x(i)|

)pr

≤
r0∑

r=1

(
1
hr

∑

i∈Ir
|x(i)|

)pr

+
δ1
4
,

(2.23)

which implies that

r0∑

r=1

(
1
hr

∑

i∈Ir
|x(i)|

)pr

> δ − δ1
4

> δ − δ

4
=

3δ
4
. (2.24)

Since xn
w−→ 0, then there exists n0 ∈ N such that

3δ
4

≤
r0∑

r=1

(
1
hr

∑

i∈Ir
|xn(i) + x(i)|

)pr

(2.25)

for all n > n0, since weak convergence implies coordinatewise convergence. Again, by xn
w−→

0, then there exists n1 ∈ N such that

∥∥∥xn|k0

∥∥∥ < 1 −
(
1 − δ

4

)1/M
(2.26)
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for all n > n1 where k0 is a minimal element in Ir0+1 and M ∈ N with pr ≤ M for all r ∈ N.
Hence, by the triangle inequality of the norm, we get

∥
∥
∥xn|

N−k0

∥
∥
∥ >

(
1 − δ

4

)1/M

. (2.27)

It follows by the definition of ‖ · ‖ that we have

1 < �

(
xn|

N−k0

(1 − (δ/4))1/M

)

=
∞∑

r=r0+1

(
(1/hr)

∑
i∈Ir |xn(i)|

(1 − (δ/4))1/M

)pr

≤
(

1

(1 − (δ/4))1/M

)M ∞∑

r=r0+1

(
1
hr

∑

i∈Ir
|xn(i)|

)pr

(2.28)

Which implies that

∞∑

r=r0+1

(
1
hr

∑

i∈Ir
|xn(i)|

)pr

> 1 − δ

4
(2.29)

for all n > n1. By inequality (2.21), (2.25), and (2.29), it yields for any n > n1 that

�(xn + x) =
r0∑

r=1

(
1
hr

∑

i∈Ir
|xn(i) + x(i)|

)pr

+
∞∑

r=r0+1

(
1
hr

∑

i∈Ir
|xn(i) + x(i)|

)pr

≥ 3δ
4

+
∞∑

r=r0+1

(
1
hr

∑

i∈Ir
|xn(i)|

)pr

− δ

4

≥ 3δ
4

+
(
1 − δ

4

)
− δ

4

≥ 1 +
δ

4
.

(2.30)

Since � ∈ Δs
2 and by Lemma 1.4 there exists τ depending on δ only such that ‖xn + x‖ ≥ 1 + τ ,

which implies that limn→∞ inf ‖xn + x‖ ≥ 1 + τ , hence the prove is complete.

By the facts presented in the introduction and the reflexivity of l(p, θ), we get the
following results.

Corollary 2.12. The space lp(θ) has uniform Opial property.

Corollary 2.13. The space l(p, θ) has property (L) and the fixed point property.

Corollary 2.14. The space lp(θ) has property (L) and the fixed point property.
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