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We study the distribution eαx(♦ +m2)kδ for m ≥ 0, where (♦ +m2)k is the diamond Klein-Gordon
operator iterated k times, δ is the Dirac delta distribution, x = (x1, x2, . . . , xn) is a variable in
R

n, and α = (α1, α2, . . . , αn) is a constant. In particular, we study the application of eαx(♦ +m2)kδ
for solving the solution of some convolution equation. We find that the types of solution of such
convolution equation, such as the ordinary function and the singular distribution, depend on the
relationship between k andM.

1. Introduction

The n-dimensional ultrahyperbolic operator �k iterated k times is defined by

�k =

⎛
⎝ ∂2

∂x2
1

+
∂2

∂x2
2

+ · · · + ∂2

∂x2
p

− ∂2

∂x2
p+1

− ∂2

∂x2
p+2

− · · · − ∂2

∂x2
p+q

⎞
⎠

k

, (1.1)

where p + q = n is the dimension of R
n, and k is a nonnegative integer. We consider the linear

differential equation of the form

�ku(x) = f(x), (1.2)

where u(x) and f(x) are generalized functions, and x = (x1, x2, . . . , xn) ∈ R
n.
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Gelfand and Shilov [1] have first introduced the fundamental solution of (1.2), which
was initially complicated. Later, Trione [2] has shown that the generalized function RH

2k(x)
defined by (2.2) with γ = 2k is the unique fundamental solution of (1.2). Tellez [3] has also
proved that RH

2k(x) exists only when n = p + q with odd p.
Kananthai [4] has first introduced the operator ♦k called the diamond operator iterated

k times, which is defined by

♦k =

⎡
⎢⎣
(

p∑
i=1

∂2

∂x2
i

)2

−
⎛
⎝

p+q∑
j=p+1

∂2

∂x2
j

⎞
⎠

2
⎤
⎥⎦

k

, (1.3)

where n = p + q is the dimension of R
n, for all x = (x1, x2, . . . , xn) ∈ R

n and nonnegative
integers k. The operator ♦k can be expressed in the form

♦k = �k�k = �k�k, (1.4)

where �k is defined by (1.1), and �k is the Laplace operator iterated k times defined by

�k =

(
∂2

∂x2
1

+
∂2

∂x2
2

+ · · · + ∂2

∂x2
n

)k

. (1.5)

Note that in case k = 1, the generalized form of (1.5) is called the local fractional Laplace
operator; see [5] for more details. On finding the fundamental solution of this product, he
uses the convolution of functions which are fundamental solutions of the operators �k and
�k. He found that the convolution (−1)kRe

2k(x) ∗ RH
2k(x) is the fundamental solution of the

operator ♦k, that is,

♦k
(
(−1)kRe

2k(x) ∗ RH
2k(x)

)
= δ, (1.6)

where RH
2k(x) and Re

2k(x) are defined by (2.2) and (2.7), respectively (with γ = 2k), and δ

is the Dirac-delta distribution. The fundamental solution (−1)kRe
2k(x) ∗ RH

2k(x) is called the
diamond kernel of Marcel Riesz. A number of effective results on the diamond kernel of
Marcel Riesz have been presented by Kananthai [6–12].

In 1997, Kananthai [13] has studied the properties of the distribution eαx�kδ and
the application of the distribution eαx�kδ for finding the fundamental solution of the
ultrahyperbolic equation by using the convolution method. Later in 1998, he has also studied
the properties of the distribution eαx♦kδ and its application for solving the convolution
equation

eαx♦kδ ∗ u(x) = eαx
m∑
r=0

Cr♦rδ. (1.7)

Recently, Nonlaopon gave some generalizations of his paper [6]; see [14] for more details.
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In 2000, Kananthai [15] has studied the application of the distribution eαx�kδ for
solving the convolution equation

eαx�kδ ∗ u(x) = eαx
m∑
r=0

Cr�rδ, (1.8)

which is related to the ultrahyperbolic equation.
In 2009, Sasopa and Nonlaopon [16] have studied the properties of the distribution

eαx�k
cδ and its application to solve the convolution equation

eαx�k
cδ ∗ u(x) = eαx

m∑
r=0

Cr�r
cδ. (1.9)

Here, �k
c is the operator related to the ultrahyperbolic type operator iterated k times, which

is defined by

�k
c =

⎛
⎝ 1

c2

p∑
i=1

∂2

∂x2
i

−
p+q∑
j=p+1

∂2

∂x2
j

⎞
⎠

k

, (1.10)

where p + q = n is the dimension of R
n.

In 1988, Trione [17] has studied the fundamental solution of the ultrahyperbolic Klein-
Gordon operator iterated k times, which is defined by

(
� +m2

)k
=

⎛
⎝

p∑
i=1

∂2

∂x2
i

−
p+q∑
j=p+1

∂2

∂x2
j

+m2

⎞
⎠

k

. (1.11)

The fundamental solution of the operator (� +m2)k is given by

W2k(x,m) =
∞∑
r=0

(−1)rΓ(k + r)
r!Γ(k)

(
m2

)r
(−1)rRH

2k+2r(x), (1.12)

where RH
2k+2r(x) is defined by (2.2) with γ = 2k + 2r. Next, Tellez [18] has studied the

convolution product of Wα(x,m) ∗ Wβ(x,m), where α and β are any complex parameter. In
addition, Trione [19] has studied the fundamental (P ± i0)λ-ultrahyperbolic solution of the
Klein-Gordon operator iterated k times and the convolution of such fundamental solution.

Liangprom andNonlaopon [20] have studied the properties of the distribution eαx(�+
m2)kδ and its application for solving the convolution equation

eαx
(
� +m2

)k
δ ∗ u(x) = eαx

M∑
r=0

Cr

(
� +m2

)r
δ, (1.13)

where (� +m2)k is defined by (1.11).
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In 2007, Tariboon and Kananthai [21] have introduced the operator (♦ + m2)k called
diamond Klein-Gordon operator iterated k times, which is defined by

(
♦ +m2

)k
=

⎡
⎢⎣
(

p∑
i=1

∂2

∂x2
i

)2

−
⎛
⎝

p+q∑
j=p+1

∂2

∂x2
j

⎞
⎠

2

+m2

⎤
⎥⎦

k

, (1.14)

where p+q = n is the dimension of R
n, for all x = (x1, x2, . . . , xn) ∈ R

n,m ≥ 0 and nonnegative
integers k. Later, Lunnaree and Nonlaopon [22, 23] have studied the fundamental solution
of operator (♦ + m2)k, and this fundamental solution is called the diamond Klein-Gordon
kernel. They have also studied the Fourier transform of the diamond Klein-Gordon kernel
and its convolution.

In this paper, we aim to study the properties of the distribution eαx(♦ +m2)kδ and the
application of eαx(♦ +m2)kδ for solving the convolution equation

eαx
(
♦ +m2

)k
δ ∗ u(x) = eαx

M∑
r=0

Cr

(
♦ +m2

)r
δ, (1.15)

where (♦ + m2)k is defined by (1.14), u(x) is the generalized function, and Cr is a constant.
On finding the type of solution u(x) of (1.15), we use the method of convolution of the
generalized functions.

Before we proceed to that point, the following definitions and concepts require
clarifications.

2. Preliminaries

Definition 2.1. Let x = (x1, x2, . . . , xn) be a point of the n-dimensional Euclidean space R
n. Let

u = x2
1 + x2

2 + · · · + x2
p − x2

p+1 − x2
p+2 − · · · − x2

p+q (2.1)

be the nondegenerated quadratic form, where p + q = n is the dimension of R
n. Let Γ+ = {x ∈

R
n : x1 > 0 and u > 0} be the interior of a forward cone, and let Γ+ denote its closure. For any

complex number γ , we define the function

RH
γ (x) =

⎧⎪⎨
⎪⎩

u(γ−n)/2

Kn

(
γ
) , for x ∈ Γ+,

0, for x /∈ Γ+,
(2.2)

where the constant Kn(γ) is given by

Kn

(
γ
)
=

π(n−1)/2Γ
((
2 + γ − n

)
/2

)
Γ
((
1 − γ

)
/2

)
Γ
(
γ
)

Γ
((
2 + γ − p

)
/2

)
Γ
((
p − γ

)
/2

) . (2.3)
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The function RH
γ (x) is called the ultrahyperbolic kernel of Marcel Riesz, which was

introduced by Nozaki [24]. It is well known that RH
γ (x) is an ordinary function if Re(γ) ≥ n

and is a distribution of γ if Re(γ) < n. Let supp RH
γ (x) denote the support of RH

γ (x) and

suppose that supp RH
γ (x) ⊂ Γ+, that is, supp RH

γ (x) is compact.
By putting p = 1 in RH

2k(x) and taking into account Legendre’s duplication formula

Γ(2z) = 22z−1π−1/2Γ(z)Γ
(
z +

1
2

)
, (2.4)

we obtain

IHγ (x) =
v(γ−n)/2

Hn

(
γ
) , (2.5)

v = x2
1 − x2

2 − x2
3 − · · · − x2

n, where

Hn

(
γ
)
= π(n−2)/22γ−1Γ

(
γ + 2 − n

2

)
Γ
(γ
2

)
. (2.6)

The function IHγ (x) is called the hyperbolic kernel of Marcel Riesz.

Definition 2.2. Let x = (x1, x2, . . . , xn) be a point of R
n and ω = x2

1 + x2
2 + · · · + x2

n. The elliptic
kernel of Marcel Riesz is defined by

Re
γ(x) =

ω(γ−n)/2

Wn

(
γ
) , (2.7)

where n is the dimension of R
n, γ ∈ C, and

Wn

(
γ
)
=

πn/22γΓ
(
γ/2

)

Γ
((
n − γ

)
/2

) . (2.8)

Note that n = p + q. By putting q = 0 (i.e., n = p) in (2.2) and (2.3), we can reduce
u(γ−n)/2 to ω

(γ−p)/2
p , where ωp = x2

1 + x2
2 + · · · + x2

p, and reduce Kn(γ) to

Kp

(
γ
)
=

π(p−1)/2Γ
((
1 − γ

)
/2

)
Γ
(
γ
)

Γ
((
p − γ

)
/2

) . (2.9)

Using the Legendre’s duplication formula

Γ(2z) = 22z−1π−1/2Γ(z)Γ
(
z +

1
2

)
, (2.10)
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Γ
(
1
2
+ z

)
Γ
(
1
2
− z

)
= π sec(πz), (2.11)

we obtain

Kp

(
γ
)
=

1
2
sec

(γπ
2

)
Wp

(
γ
)
. (2.12)

Thus, in case q = 0, we have

RH
γ (x) =

u(γ−p)/2

Kp

(
γ
) = 2 cos

(γπ
2

)u(γ−p)/2

Wp

(
γ
) = 2 cos

(γπ
2

)
Re

γ(x). (2.13)

In addition, if γ = 2k for some nonnegative integer k, then

RH
2k(x) = 2(−1)kRe

2k(x). (2.14)

Lemma 2.3. The convolution (−1)kRe
2k(x) ∗ RH

2k(x) is the fundamental solution of the diamond
operator iterated k times, that is,

♦k
(
(−1)kRe

2k(x) ∗ RH
2k(x)

)
= δ. (2.15)

For the proof of this Lemma, see [4, 12].
It can be shown that Re

−2k(x) ∗ RH
−2k(x) = (−1)k♦kδ, for all nonnegative integers k.

Definition 2.4. Let x = (x1, x2, . . . , xn) be a point of R
n. The function Tγ(x,m) is defined by

Tγ(x,m) =
∞∑
r=0

⎛
⎝−γ

2
r

⎞
⎠(

m2
)r
(−1)γ/2+rRe

γ+2r(x) ∗ RH
γ+2r(x), (2.16)

where γ is a complex parameter, and m is a nonnegative real number. Here, RH
γ+2r(x) and

Re
γ+2r(x) are defined by (2.2) and (2.7), respectively.

From the definition of Tγ(x,m), by putting γ = −2k, we have

T−2k(x,m) =
∞∑
r=0

(
k

r

)(
m2

)r
(−1)−k+rRe

2(−k+r)(x) ∗ RH
2(−k+r)(x). (2.17)
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Since the operator (♦ + m2)k defined by (1.14) is linearly continuous and has 1-1 mapping,
this possesses its own inverses. From Lemma 2.3, we obtain

T−2k(x,m) =
∞∑
r=0

(
k

r

)(
m2

)r♦k−rδ =
(
♦ +m2

)k
δ. (2.18)

Substituting k = 0 in (2.18) yields that we have T0(x,m) = δ. On the other hand,
putting γ = 2k in (2.16) yields

T2k(x,m) =

(−k
0

)(
m2

)0
(−1)k+0Re

2k+0(x) ∗ RH
2k+0(x)

+
∞∑
r=1

(−k
r

)(
m2

)r
(−1)k+rRe

2k+2r(x) ∗ RH
2k+2r(x).

(2.19)

The second summand of the right-hand side of (2.19) vanishes whenm = 0. Hence, we obtain

T2k(x,m = 0) = (−1)kRe
2k(x) ∗ RH

2k(x), (2.20)

which is the fundamental solution of the diamond operator.
For the proofs of Lemmas 2.5 and 2.6, see [23].

Lemma 2.5. Given the equation

(
♦ +m2

)k
u(x) = δ, (2.21)

where (♦ +m2)k is the diamond Klein-Gordon operator iterated k times, defined by

(
♦ +m2

)k
=

⎡
⎢⎣
(

p∑
i=1

∂2

∂x2
i

)2

−
⎛
⎝

p+q∑
j=p+1

∂2

∂x2
j

⎞
⎠

2

+m2

⎤
⎥⎦

k

(2.22)

with a nonnegative integer k and the Dirac-delta distribution δ, then u(x) = T2k(x,m) is the
fundamental solution of the diamond Klein-Gordon operator iterated k times (♦ + m2)k, where
T2k(x,m) is defined by (2.16) with γ = 2k.

Lemma 2.6. Let T2k(x,m) be the diamond Klein-Gordon kernel defined by (2.16), then T2k(x,m) is
a tempered distribution and can be expressed by

T2k(x,m) = T2k−2v(x,m) ∗ T2v(x,m), (2.23)
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where v is a nonnegative integer and v < k. Moreover, if one puts l = k − v and h = v, then one
obtains

T2l(x,m) ∗ T2h(x,m) = T2l+2h(x,m) (2.24)

for l + h = k.

3. Properties of the Distribution eαx(♦ +m2)kδ

Lemma 3.1. The following equality holds:

eαx
(
♦ +m2

)k
δ = Lkδ, (3.1)

and eαx(♦ + m2)kδ is the tempered distribution of order 4k with support {0}, where L is the partial
differential operator and is defined by

L ≡
(
♦ +m2

)
+

n∑
r=1

α2
r� − 2

n∑
r=1

p∑
i=1

(
αr

∂3

∂x2
i ∂xr

+ αi
∂3

∂xi∂x
2
r

)

+ 2
n∑
r=1

p+q∑
j=p+1

(
αr

∂3

∂x2
j ∂xr

+ αj
∂3

∂xj∂x
2
r

)
+ 4

n∑
r=1

αr

⎛
⎝

p∑
i=1

αi
∂2

∂xi∂xr
−

p+q∑
j=p+1

αj
∂2

∂xj∂xr

⎞
⎠

− 2
n∑
r=1

α2
r

⎛
⎝

p∑
i=1

αi
∂

∂xi
−

p+q∑
j=p+1

αj
∂

∂xj

⎞
⎠ +

⎛
⎝

p∑
i=1

α2
i −

p+q∑
j=p+1

α2
j

⎞
⎠�

− 2

⎛
⎝

p∑
i=1

α2
i −

p+q∑
j=p+1

α2
j

⎞
⎠

n∑
r=1

αr
∂

∂xr
+

⎛
⎝

p∑
i=1

α2
i −

p+q∑
j=p+1

α2
j

⎞
⎠

n∑
r=1

α2
r .

(3.2)

As before, � is the ultrahyperbolic operator defined by (1.1) (with k = 1), and � is the Laplace operator
defined by

� =
∂2

∂x1
+

∂2

∂x2
+ · · · + ∂2

∂xn
. (3.3)

Proof. Let ϕ ∈ D be the space of testing functions which are infinitely differentiable with
compact supports, and let D′ be the space of distributions. Now,

〈
eαx

(
♦ +m2

)
δ, ϕ(x)

〉
=
〈
δ,
(
♦ +m2

)
eαxϕ(x)

〉
, (3.4)

for eαx(♦ +m2)δ ∈ D′. A direct computation shows that

(
♦ +m2

)
eαxϕ(x) = eαxTϕ(x), (3.5)
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where T is the partial differential operator defined by

T ≡
(
♦ +m2

)
+

n∑
r=1

α2
r� + 2

n∑
r=1

p∑
i=1

(
αr

∂3

∂x2
i ∂xr

+ αi
∂3

∂xi∂x
2
r

)

− 2
n∑
r=1

p+q∑
j=p+1

(
αr

∂3

∂x2
j ∂xr

+ αj
∂3

∂xj∂x
2
r

)
+ 4

n∑
r=1

αr

⎛
⎝

p∑
i=1

αi
∂2

∂xi∂xr
−

p+q∑
j=p+1

αj
∂2

∂xj∂xr

⎞
⎠

+ 2
n∑
r=1

α2
r

⎛
⎝

p∑
i=1

αi
∂

∂xi
−

p+q∑
j=p+1

αj
∂

∂xj

⎞
⎠ +

⎛
⎝

p∑
i=1

α2
i −

p+q∑
j=p+1

α2
j

⎞
⎠�

+ 2

⎛
⎝

p∑
i=1

α2
i −

p+q∑
j=p+1

α2
j

⎞
⎠

n∑
r=1

αr
∂

∂xr
+

⎛
⎝

p∑
i=1

α2
i −

p+q∑
j=p+1

α2
j

⎞
⎠

n∑
r=1

α2
r .

(3.6)

Thus,

〈
δ,
(
♦ +m2

)
eαxϕ(x)

〉
=
〈
δ, eαxTϕ(x)

〉
= Tϕ(0). (3.7)

Since 〈eαx(♦ + m2)kδ, ϕ(x)〉 = 〈(♦ + m2)kδ, eαxϕ(x)〉 for every ϕ(x) ∈ D and eαx(♦ +
m2)kδ ∈ D′, we have

〈(
♦ +m2

)k
δ, eαxϕ(x)

〉
=
〈(

♦ +m2
)k−1

δ,
(
♦ +m2

)
eαxϕ(x)

〉

=
〈(

♦ +m2
)k−1

δ, eαxTϕ(x)
〉

=
〈(

♦ +m2
)k−2

δ,
(
♦ +m2

)
eαxTϕ(x)

〉

=
〈(

♦ +m2
)k−2

δ, eαxT
(
Tϕ(x)

)〉

=
〈(

♦ +m2
)k−2

δ, eαxT2ϕ(x)
〉
.

(3.8)

Repeating this process (♦ +m2) with k − 2 times, we finally obtain

〈(
♦ +m2

)k−2
δ, eαxT2ϕ(x)

〉
=
〈
δ, eαxTkϕ(x)

〉
= Tkϕ(0), (3.9)

where Tk is the operator of (3.6) iterated k times. Now,

Tkϕ(0) =
〈
δ, Tkϕ(x)

〉
=
〈
Lδ, Tk−1ϕ(x)

〉
, (3.10)
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by the operator L in (3.2) and the derivative of distribution. Continuing this process, we
obtain Tkϕ(0) = 〈Lkδ, ϕ(x)〉 or 〈eαx(♦ + m2)kδ, ϕ(x)〉 = 〈Lkδ, ϕ(x)〉. By equality of distribu-
tions, we obtain (3.1) as required. Since δ and its partial derivatives have support {0} which
is compact, hence, by Schwartz [25], Lkδ are tempered distributions and Lkδ has order 4k. It
follows that eαx(♦ + m2)kδ is a tempered distribution of order 4k with point support {0} by
(3.1). This completes the proof.

Lemma 3.2 (boundedness property). Let D be the space of testing functions and D′ the space of
distributions. For every ϕ ∈ D and eαx(♦ +m2)kδ ∈ D′,

∣∣∣∣
〈
eαx

(
♦ +m2

)k
δ, ϕ(x)

〉∣∣∣∣ ≤ M, (3.11)

for some constant M.

Proof. Note that we have 〈eαx(♦ + m2)kδ, ϕ(x)〉 = 〈(♦ + m2)kδ, eαxϕ(x)〉 for every ϕ(x) ∈ D
and eαx(♦ +m2)kδ ∈ D′. Hence,

〈(
♦ +m2

)k
δ, eαxϕ(x)

〉
=
〈(

♦ +m2
)k−1

δ,
(
♦ +m2

)
eαxϕ(x)

〉
=
〈(

♦ +m2
)k−1

δ, eαxTϕ(x)
〉
,

(3.12)

where T is defined by (3.6). Continuing this process for k − 1 times, we will obtain

〈
eαx

(
♦ +m2

)k
δ, ϕ(x)

〉
=
〈
δ, eαxTkϕ(x)

〉
= Tkϕ(0). (3.13)

Since ϕ ∈ D, so ϕ(0) is bounded, and also Tkϕ(0) is bounded. It then follows that

∣∣∣∣
〈
eαx

(
♦ +m2

)k
δ, ϕ(x)

〉∣∣∣∣ = Tkϕ(0) ≤ M, (3.14)

for some constant M.

4. The Application of Distribution eαx(♦ +m2)kδ

Theorem 4.1. Let L be the partial differential operator defined by (3.2), and consider the equation

Lu(x) = δ, (4.1)

where u(x) is any distribution in D′, then u(x) = eαxT2(x,m) is the fundamental solution of the
operator L, where T2(x,m) is defined by (2.16) with γ = 2.
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Proof. From (3.1) and (4.1), we can write eαx(♦ +m2)δ ∗ u(x) = Lu(x) = δ. Convolving both
sides by eαxT2(x,m), we have

eαxT2(x,m) ∗ eαx
(
♦ +m2

)
δ ∗ u(x) = eαxT2(x,m) ∗ δ, (4.2)

then

eαx
(
T2(x,m) ∗

(
♦ +m2

)
δ
)
∗ u(x) = eαxT2(x,m), (4.3)

or equivalently,

eαx
((

♦ +m2
)
T2(x,m)

)
∗ u(x) = eαxT2(x,m). (4.4)

Since (♦ +m2)T2(x,m) = δ by Lemma 2.5 with k = 1, we obtain

(eαxδ) ∗ u(x) = eαxT2(x,m). (4.5)

Moreover, since eαxδ = δ, we have δ ∗ u(x) = eαxT2(x,m). It then follows that u(x) =
eαxT2(x,m) is the fundamental solution of the operator L.

Theorem 4.2 (the generalization of Theorem 4.1). From Lemma 3.1, consider that

eαx
(
♦ +m2

)k
δ ∗ u(x) = δ, (4.6)

or

Lku(x) = δ, (4.7)

then u(x) = eαxT2k(x,m) is the fundamental solution of the operator Lk.

Proof. We can prove it by using either (4.6) or (4.7). If we start with (4.6), by convolving both
sides by eαxT2k(x,m), we obtain

eαxT2k(x,m) ∗
(
eαx

(
♦ +m2

)k
δ ∗ u(x)

)
= eαxT2k(x,m) ∗ δ, (4.8)

or eαx((♦ +m2)kT2k(x,m)) ∗ u(x) = eαxT2k(x,m). Since (♦ +m2)kT2k(x,m) = δ by Lemma 2.5,
we have (eαxδ) ∗ u(x) = eαxT2k(x,m) or u(x) = eαxT2k(x,m) as required.

If we use (4.7), by convolving both sides by eαxT2(x,m), we obtain

eαxT2(x,m) ∗ Lku(x) = eαxT2(x,m) ∗ δ, (4.9)
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or L(eαxT2(x,m))∗Lk−1u(x) = eαxT2(x,m). By Theorem 4.1, we obtain Lk−1u(x) = eαxT2(x,m).
Keeping on convolving eαxT2(x,m) for k − 1 times, we finally obtain

u(x) = eαx(T2(x,m) ∗ T2(x,m) ∗ · · · ∗ T2(x,m)) = eαxT2k(x,m), (4.10)

by Lemma 2.6 and [26, page 196].

In particular, if we put α = (α1, α2, . . . , αn) = 0 in (4.6), then (4.6) reduces to (2.21),
and we obtain u(x) = T2k(x,m) as the fundamental solution of the diamond Klein-Gordon
operator iterated k times.

Theorem 4.3. Given the convolution equation

eαx
(
♦ +m2

)k
δ ∗ u(x) = eαx

M∑
r=0

Cr

(
♦ +m2

)r
δ, (4.11)

where (♦ +m2)k is the diamond Klein-Gordon operator iterated k times defined by

(
♦ +m2

)k
=

⎛
⎝

p∑
i=1

∂2

∂x2
i

−
p+q∑
j=p+1

∂2

∂x2
j

+m2

⎞
⎠

k

, (4.12)

the variable x = (x1, x2, . . . , xn) ∈ R
n, the constant α = (α1, α2, . . . , αn) ∈ R

n, m is a nonnegative
real number, δ is the Dirac-delta distribution with (♦ +m2)0δ = δ, (♦ +m2)1δ = (♦ +m2)δ, and Cr

is a constant, then the type of solution u(x) of (4.11) depends on k,M, and α as follows:

(1) ifM < k and M = 0, then the solution of (4.11) is

u(x) = C0e
αxT2k(x,m), (4.13)

where T2k(x,m) is defined by (2.16) with γ = 2k. If 2k ≥ n and for any α, then
eαxT2k(x,m) is the ordinary function,

(2) if 0 < M < k, then the solution of (4.11) is

u(x) = eαx
M∑
r=1

CrT2k−2r(x,m), (4.14)

which is an ordinary function for 2k − 2r ≥ n with any arbitrary constant α,

(3) ifM ≥ k and for any α one supposes that k ≤ M ≤ N, then (4.11) has

u(x) = eαx
N∑
r=k

Cr

(
♦ +m2

)r−k
δ (4.15)

as a solution which is the singular distribution.
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Proof. (1) For M < k and M = 0, then (4.11) becomes

eαx
(
♦ +m2

)k
δ ∗ u(x) = C0e

αxδ = C0δ, (4.16)

and by Theorem 4.2, we obtain

u(x) = C0e
αxT2k(x,m). (4.17)

Now, by (2.2) and (2.7), Re
2k(x) and RH

2k(x) are ordinary functions, respectively, for 2k ≥ n. It
then follows that C0e

αxT2k(x,m) is an ordinary function for 2k ≥ n with any α.

(2) For 0 < M < k, then we can write (4.11) as

eαx
(
♦ +m2

)k
δ ∗ u(x) = eαx

[
C1

(
♦ +m2

)
δ + C2

(
♦ +m2

)2
δ + · · · + CM

(
♦ +m2

)M
δ

]
. (4.18)

Convolving both sides by eαxT2k(x,m) and applying Lemma 2.5, we obtain

u(x) = eαx
[
C1

(
♦ +m2

)
T2k(x,m) + C2

(
♦ +m2

)2
T2k(x,m) + · · · + CM

(
♦ +m2

)M
T2k(x,m)

]
.

(4.19)

It is known that (♦ + m2)kT2k(x,m) = δ, thus (♦ + m2)k−r(♦ + m2)rT2k(x,m) = δ for r < k.
Convolving both sides by T2k−2r(x,m), we obtain

T2k−2r(x,m) ∗
(
♦ +m2

)k−r(♦ +m2
)r
T2k(x,m) = T2k−2r(x,m), (4.20)

or

(
♦ +m2

)k−r
T2k−2r(x,m) ∗

(
♦ +m2

)r
T2k(x,m) = T2k−2r(x,m), (4.21)

which leads to

(
♦ +m2

)r
T2k(x,m) = T2k−2r(x,m), (4.22)

for r < k. It follows that

u(x) = eαx[C1T2k−2(x,m) + C2T2k−4(x,m) + · · · + CMT2k−2M(x,m)], (4.23)

or

u(x) = eαx
M∑
r=1

CrT2k−2r(x,m). (4.24)
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Similarly, by case (1), eαxT2k−2r(x,m) is the ordinary function for 2k − 2r ≥ n with any α. It
follows that

u(x) = eαx
M∑
r=1

CrT2k−2r(x,m) (4.25)

is also the ordinary function with any α.

(3) ifM ≥ k and for any α, we suppose that k ≤ M ≤ N, then (4.11) becomes

eαx
(
♦ +m2

)k
δ ∗ u(x) = eαx

[
Ck

(
♦ +m2

)k
δ + Ck+1

(
♦ +m2

)k+1
δ + · · · + CN

(
♦ +m2

)N
δ

]
.

(4.26)

Convolving both sides by eαxT2k(x,m) and applying Lemma 2.5, we have

u(x)=eαx
[
Ck

(
♦+m2

)k
T2k(x,m)+Ck+1

(
♦+m2

)k+1
T2k(x,m)+· · ·+CN

(
♦+m2

)N
T2k(x,m)

]
.

(4.27)

Now,

(
♦ +m2

)M
T2k(x,m) =

(
♦ +m2

)M−k(♦ +m2
)k

T2k(x,m) =
(
♦ +m2

)M−k
, (4.28)

for k ≤ M ≤ N. Thus,

u(x) = eαx
[
Ckδ + Ck+1

(
♦ +m2

)
δ + Ck+2

(
♦ +m2

)2
δ + · · · + CN

(
♦ +m2

)N−k
δ

]

= eαx
N∑
r=k

Cr

(
♦ +m2

)r−k
δ.

(4.29)

Now, by (3.1) and (3.2), we have

eαx
(
♦ +m2

)r−k
δ =

(
♦ +m2

)r−k
δ +

(
terms of lower order of partial derivative of δ

)
(4.30)

for k ≤ r ≤ N. Since all terms on the right-hand side of this equation are singular distribution,
it follows that

u(x) = eαx
N∑
r=k

Cr

(
♦ +m2

)r−k
δ (4.31)

is the singular distribution. This completes the proof.
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