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Technology, Technická 8, 616 00 Brno, Czech Republic

3 Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering, Brno University of
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A nonlinear stochastic differential-difference control system with delay of neutral type is
considered. Sufficient conditions for the exponential stability are derived by using Lyapunov-
Krasovskii functionals of quadratic form with exponential factors. Upper bound estimates for the
exponential rate of decay are derived.

1. Introduction

The theory and applications of functional differential equations form an important part of
modern nonlinear dynamics. Such equations are natural mathematical models for various
real life phenomena where the aftereffects are intrinsic features of their functioning. In recent
years, functional differential equations have been used to model processes in different areas
such as population dynamics and ecology, physiology and medicine, economics, and other
natural sciences [1–3]. In many of the models the initial data and parameters are subjected to
random perturbations, or the dynamical systems themselves represent stochastic processes.
For this reason, stochastic functional differential equations are widely studied [4, 5].

One of the principal problems of the corresponding mathematical analysis of
equations is a comprehensive study of their global dynamics and the related prediction of
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long-term behaviors in applied models. Of course, the problem of stability of a particular
solution plays a significant role. Therefore, the study of stability of linear equations is the first
natural and important step in the analysis of more complex nonlinear systems.

When applying the mathematical theory to real-world problems a mere statement of
the stability in the system is hardly sufficient. In addition to stability as such, it is of significant
importance to obtain constructive and verifiable estimates of the rate of convergence of
solutions in time. One of the principal tools used in the related studies is the second Lyapunov
method [6–8]. For functional differential equations, this method has been developing in two
main directions in recent years. The first one is the method of finite Lyapunov functions
with the additional assumption of Razumikhin type [9, 10]. The second one is the method
of Lyapunov-Krasovskii functionals [11, 12]. For stochastic functional differential equations,
some aspects of these two lines of research have been developed, for example, in [11, 13–19]
and [11, 18, 20–25], respectively. In the present paper, by using the method of Lyapunov-
Krasovskii functionals, we derive sufficient conditions for stability together with the rate of
convergence to zero of solutions for a class of linear stochastic functional differential equation
of a neutral type.

2. Preliminaries

In solving control problems for linear systems, very often, a scalar function u = u(x) needs to
be found such that the system

ẋ(t) = Ax(t) + bu(x(t)) (2.1)

is asymptotically stable. Frequently, such a function depends on a scalar argument which is a
linear combination of phase coordinates and its graph lies in the first and the third quadrants
of the plane. An investigation of the asymptotic stability of systems with a control function

u(x(t)) = f(σ(t)), σ(t) = cTx(t), (2.2)

that is, an investigation of systems

ẋ(t) = Ax(t) + bf(σ(t)), σ(t) = cTx(t), (2.3)

with a function f satisfying f(0) = 0, f(σ)(kσ − f(σ)) > 0 for σ /= 0 and a k > 0 is called an
analysis of the absolute stability of control systems [26]. One of the fundamental methods
(called a frequency method) was developed by Gelig et al. (see, e.g., the book [27]). Another
basic method is the method of Lyapunov’s functions and Lyapunov-Krasovskii functionals.
Very often, the appropriate Lyapunov functions and Lyapunov-Krasovskii functionals are
constructed as quadratic forms with integral terms containing a given nonlinearity [28, 29].
An overview of the present state can be found, for example, in [30, 31]. Problems of absolute
stability of stochastic equations are treated, for example, in [11, 14, 15, 24].
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3. Main Results

Consider the following control system of stochastic differential-difference equations of a
neutral type

d[x(t) −Dx(t − τ)] = [
A0x(t) +A1x(t − τ) + a2f(σ(t))

]
dt

+
[
B0x(t) + B1x(t − τ) + b2f(σ(t))

]
dw(t),

(3.1)

where

σ(t) := cT [x(t) −Dx(t − τ)], (3.2)

x : [0,∞) → R
n is an n-dimensional column vector, A0, A1, B0, B1, and D are real n × n

constant matrices, a2, b2, and c are n×1 constant vectors, f : R → R is a continuous function,
τ > 0 is a constant delay, and w(t) is a standard scalar Wiener process with

M{dw(t)} = 0, M
{
dw2(t)

}
= dt, M{dw(t1)dw(t2), t1 /= t2} = 0. (3.3)

An Ft-measurable random process {x(t) ≡ x(t, ω)} is called a solution of (3.1) if it satisfies,
with a probability one, the following integral equation

x(t) = Dx(t − τ) + [x(0) −Dx(−τ)]

+
∫ t

0

[
A0x(s) +A1x(s − τ) + a2f(σ(s))

]
ds

+
∫ t

0

[
B0x(s) + B1x(s − τ) + b2f(σ(s))

]
dw(s), t ≥ 0

(3.4)

and the initial conditions

x(t) = ϕ(t), x′(t) = ψ(t), t ∈ [−τ, 0], (3.5)

where ϕ, ψ : [−τ, 0] → R
n are continuous functions. Here and in the remaining part of the

paper, we will assume that the initial functions ϕ and ψ are continuous random processes.
Under those assumptions, a solution to the initial value problem (3.1), (3.5) exists and is
unique for all t ≥ 0 up to its stochastic equivalent solution on the space (Ω, F, P) [4].
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We will use the following norms of matrices and vectors

‖A‖ :=
√
λmax

(
ATA

)
,

‖x(t)‖ :=

√√√
√

n∑

i=1

x2
i (t),

‖x(t)‖τ := max
−τ≤s≤0

{‖x(t + s)‖},

‖x(t)‖2τ,γ :=
∫ t

t−τ
e−γ(t−s)‖x(s)‖2ds,

(3.6)

where λmax(∗) is the largest eigenvalue of the given symmetric matrix (similarly, the symbol
λmin(∗) denotes the smallest eigenvalue of the given symmetric matrix), and γ is a positive
parameter.

Throughout this paper, we assume that the function f satisfies the inequality

0 ≤ f(σ)σ ≤ kσ2 (3.7)

if σ ∈ R where k is a positive constant.
For the reader’s convenience, we recall that the zero solution of (3.1) is called stable

in the square mean if, for every ε > 0, there exists a δ = δ(ε) > 0 such that every solution
x = x(t) of (3.1) satisfies M{‖x(t)‖2} < ε provided that the initial conditions (3.5) are such
that ‖ϕ(0)‖τ < δ and ‖ψ(0)‖τ < δ. If the zero solution is stable in the square mean and,
moreover,

lim
t→+∞

M
{
‖x(t)‖2

}
= 0, (3.8)

then it is called asymptotically stable in the square mean.

Definition 3.1. If there exist positive constantsN, γ , and θ such that the inequality

M
{
‖x(t)‖2τ,γ

}
≤N ‖x(0)‖2τ e−θt (3.9)

holds on [0,∞), then the zero solution of (3.1) is called exponentially γ-integrally stable in
the square mean.

In this paper, we prove the exponential γ-integral stability in the square mean of
the differential-difference equation with constant delay (3.1). We employ the method of
stochastic Lyapunov-Krasovskii functionals. In [11, 18, 22, 24] the Lyapunov-Krasovskii
functional is chosen to be of the form

V [x(t), t] = h[x(t) − cx(t − τ)]2 + g
∫0

−τ
x2(t + s)ds, (3.10)
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where constants h > 0 and g > 0 are such that the total stochastic differential of the functional
along solutions is negative definite.

In the present paper, we consider the Lyapunov-Krasovskii functional in the following
form:

V [x(t), t] = [x(t) −Dx(t − τ)]TH[x(t) −Dx(t − τ)]

+
∫ t

t−τ
e−γ(t−s)xT (s)Gx(s)ds + β

∫σ(t)

0
f(ξ)dξ,

(3.11)

where constants γ > 0, β > 0 and n × n positive definite symmetric matrices G, H are to be
restricted later on. This allows us not only to derive sufficient conditions for the stability of
the zero solution but also to obtain coefficient estimates of the rate of the exponential decay
of solutions.

We set

P :=

(
H −HD

−DTH DTHD

)

. (3.12)

Then, by using introduced norms, the functional (3.11) yields two-sided estimates

λmin(G)‖x(t)‖2τ,γ ≤ V [x(t), t] ≤
[
λmax(P) + 0.5βk‖c‖2

]
‖x(t)‖2

+
[
λmax(P) + 0.5βk

∥∥∥cTD
∥∥∥
2
]
‖x(t − τ)‖2 + λmax(G)‖x(t)‖2τ,γ ,

(3.13)

where t ∈ [0,∞).
We will use an auxiliary (2n + 1) × (2n + 1)-dimensional matrix:

S = S
(
β, γ, ν, G,H

)
:=

⎛

⎜⎜
⎝

s11 s12 s13

s21 s22 s23

s31 s32 s33

⎞

⎟⎟
⎠, (3.14)
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where

s11 := −A0H −HA0 − BT0HB0 −G,

s12 := AT
0HD −HA1 − BT0HB1,

s13 := −Ha2 − BT0Hb2 − 1
2
(
βA0 + νI

)T
c,

s21 := sT12,

s22 := DTHA1 +AT
1HD − BT1HB1 + e−γτG,

s23 := DTHa2 − BT1Hb2 − 1
2
βA1c,

s31 := sT13,

s32 := sT23,

s33 :=
ν

k
− bT2Hb2 − βcTa2,

(3.15)

where ν is a parameter.
Now we establish our main result on the exponential γ-integral stability of a trivial

solution in the square mean of system (3.1) when t → ∞.

Theorem 3.2. Let ‖D‖ < 1. Let there exist positive constants β, γ , ν and positive definite symmetric
matricesG,H such that the matrix S is positively definite as well. Then the zero solution of the system
(3.1) is exponentially γ-integrally stable in the square mean on [0,∞). Moreover, every solution x(t)
of (3.1) satisfies the inequality

M
{
‖x(t)‖2τ,γ

}
≤N‖x(0)‖2τ e−θt (3.16)

for all t ≥ 0 where

N :=
1

λmin(G)
·
(
2λmax(P) + 0.5βk‖c‖2 + 0.5βk

∥∥∥cTD
∥∥∥
2
+
1
γ
λmax(G)

)
,

θ := min

{
γλmin(G)
λmax(G)

,
λmin(S)

λmax(P) + 0.5βk‖c‖2
}

.

(3.17)
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Proof. We will apply the method of Lyapunov-Krasovskii functionals using functional (3.11).
Using the Itô formula, we compute the stochastic differential of (3.11) as follows

dV [x(t), t] =
([
A0x(t) +A1x(t − τ) + a2f(σ(t))

]T
dt

+
[
B0x(t) + B1x(t − τ) + b2f(σ(t))

]T
dw(t)

)

×H[x(t) −Dx(t − τ)] + [x(t) −Dx(t − τ)]T

×H
([
A0x(t) +A1x(t − τ) + a2f(σ(t))

]
dt

+
[
B0x(t) + B1x(t − τ) + b2f(σ(t))

]T
dw(t)

)

+
[
B0x(t) + B1x(t − τ) + b2f(σ(t))

]T

×H[
B0x(t) + B1x(t − τ) + b2f(σ(t))

]
d
(
w2(t)

)

+ xT (t)Gx(t)dt − e−γτxT (t − τ)Gx(t − τ)dt + βf(σ(t))cT

×
([
A0x(t) +A1x(t − τ) + a2f(σ(t))

]
dt

+
[
B0x(t) + B1x(t − τ) + b2f(σ(t))

]T
dw(t)

)

− γ
∫ t

t−τ
e−γ(t−s)xT (s)Gx(s)dsdt.

(3.18)

Taking the mathematical expectation we obtain (we use properties (3.3))

M{dV [x(t), t]} =M
{[
A0x(t) +A1x(t − τ) + a2f(σ(t))

]T

×H[x(t) −Dx(t − τ)]dt
}

+M
{
[x(t) −Dx(t − τ)]T

×H[
A0x(t) +A1x(t − τ) + a2f(σ(t))

]
dt
}

+M
{[
B0x(t) + B1x(t − τ) + b2f(σ(t))

]T

×H[
B0x(t) + B1x(t − τ) + b2f(σ(t))

]
d
(
w2(t)

)}

+M
{[
xT (t)Gx(t)dt − e−γτxT (t − τ)Gx(t − τ)dt

]}

+ βM
{
f(σ(t))cT

[
A0x(t) +A1x(t − τ) + a2f(σ(t))

]
dt
}

− γM
{∫ t

t−τ
e−γ(t−s)xT (s)Gx(s)dsdt

}

.

(3.19)
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Utilizing the matrix S defined by (3.14), the last expression can be rewritten in the following
vector matrix form

d

dt
M{V [x(t), t]} = −M

{(
xT (t), xT (t − τ), f(σ(t))

)
× S ×

(
xT (t), xT (t − τ), f(σ(t))

)T}

− ν
[
σ(t) − f(σ(t))

k

]
f(σ(t)) − γM

{∫ t

t−τ
e−γ(t−s)xT (s)Gx(s)ds

}

.

(3.20)

We will show next that solutions of (3.1) decay exponentially by calculating the correspond-
ing exponential rate.

The full derivative of the mathematical expectation for the Lyapunov-Krasovskii
functional (3.11) satisfies

d

dt
M{V [x(t), t]} ≤ −λmin(S)M

{
‖x(t)‖2

}

− λmin(S)M
{
‖x(t − τ)‖2

}

− γλmin(G)M
{
‖x(t)‖2τ,γ

}
.

(3.21)

In the following we will use inequalities being a consequence of (3.13).

λmin(G)M
{
‖x(t)‖2τ,γ

}
≤M{V [x(t)]}

≤
[
λmax(P) + 0.5βk‖c‖2

]
×M

{
‖x(t)‖2

}

+
[
λmax(P) + 0.5βk

∥∥∥cTD
∥∥∥
2
]
M
{
‖x(t − τ)‖2

}

+ λmax(G)M
{
‖x(t)‖2τ,γ

}
.

(3.22)

Let us derive conditions for the coefficients of (3.1) and parameters of the Lyapunov-
Krasovskii functional (3.11) such that the following inequality:

d

dt
M{V [x(t), t]} ≤ −θM{V [x(t), t]} (3.23)

holds. We use a sequence of the following calculations supposing that either inequality

γλmin(G) − λmin(S)

λmax(P) + 0.5βk|c|2
λmax(G) ≥ 0 (3.24)
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holds, or the opposite inequality

γλmin(G) − λmin(S)

λmax(P) + 0.5βk|c|2
λmax(G) ≤ 0 (3.25)

is valid.
(1) Let inequality (3.24) holds. Rewrite the right-hand part of inequality (3.22) in the

form

−M
{
‖x(t)‖2

}
≤ 1

λmax(P) + 0.5βk‖c‖2

×
[
−M{V [x(t), t]} + λmax(G)M

{
‖x(t)‖2τ,γ

}

+
[
λmax(P) + 0.5βk

∥∥∥cTD
∥∥∥
2
]
M
{
‖x(t − τ)‖2

}]

(3.26)

and substitute the latter into inequality (3.21). This results in

d

dt
M{V [x(t), t]} ≤ − λmin(S)

λmax(P) + 0.5βk‖c‖2

×
[
−M{V [x(t), t]} + λmax(G)M

{
‖x(t)‖2τ,γ

}

+
[
λmax(P) + 0.5βk

∥∥∥cTD
∥∥∥
2
]
M
{
‖x(t − τ)‖2

}]

− γλmin(G)M
{
‖x(t)‖2τ,γ

}
− λmin(S)M

{
‖x(t − τ)‖2

}
,

(3.27)

or, equivalently,

d

dt
M{V [x(t), t]} ≤ − λmin(S)

λmax(P) + 0.5βk‖c‖2
M{V [x(t), t]}

− λmin(S)

(

1 − λmax(P) + 0.5βk
∥∥cTD

∥∥2

λmax(P) + 0.5βk‖c‖2
)

M
{
‖x(t − τ)‖2

}

−
(

γλmin(G) − λmin(S)

λmax(P) + 0.5βk‖c‖2
λmax(G)

)

M
{
‖x(t)‖2τ,γ

}
.

(3.28)

The inequality

λmax(P) + 0.5βk
∥∥cTD

∥∥2

λmax(P) + 0.5βk‖c‖2
≤ 1 (3.29)
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always holds. Because inequality (3.24) is valid, a differential inequality

d

dt
M{V [x(t), t]} ≤ − λmin(S)

λmax(P) + 0.5βk‖c‖2
M{V [x(t), t]}

≤ −θM{V [x(t), t]}
(3.30)

will be true as well.
(2) Let inequality (3.25) hold. We rewrite the right-hand side of inequality (3.22) in the

form

−M
{
‖x(t)‖2τ,γ

}
≤ 1
λmax(G)

×
(
−M{V [x(t), t]} +

(
λmax(P) + 0.5βk‖c‖2

)
M
{
‖x(t)‖2

}

+
[
λmax(P) + 0.5βk

∥∥∥cTD
∥∥∥
2
]
M
{
‖x(t − τ)‖2

}) (3.31)

and substitute the latter again into inequality (3.21). This results in

d

dt
M{V [x(t), t]} ≤ −λmin(S)M

{
‖x(t)‖2

}
− λmin(S)M

{
‖x(t − τ)‖2

}
+ γ

λmin(G)
λmax(G)

×
{
−M{V [x(t), t]} +

(
λmax(P) + 0.5βk‖c‖2

)
M
{
‖x(t)‖2

}

+
[
λmax(P) + 0.5βk

∥∥∥cTD
∥∥∥
2
]
M
{
‖x(t − τ)‖2

}}

(3.32)

or in

d

dt
M{V [x(t), t]} ≤ −γ λmin(G)

λmax(G)
M{V [x(t), t]}

−
(

λmin(S) −
λmax(P) + 0.5βk‖c‖2

λmax(G)
γλmin(G)

)

M
{
‖x(t)‖2

}

−

⎛

⎜
⎝λmin(S) −

γλmin(G)
[
λmax(P) + 0.5βk

∥∥cTD
∥∥2
]

λmax(G)

⎞

⎟
⎠M

{
‖x(t − τ)‖2

}
.

(3.33)

Because inequality (3.25) is valid, a differential inequality

d

dt
M{V [x(t), t]} ≤ −γ λmin(G)

λmax(G)
M{V [x(t), t]} ≤ −θM{V [x(t), t]} (3.34)

will be valid as well.
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Analysing inequalities (3.30) and (3.34)we conclude that (3.23) always holds. Solving
inequality (3.23) we obtain

M{V [x(t), t]} ≤M{V [x(0), 0]}e−θt. (3.35)

Nowwe derive estimates of the rate of the exponential decay of solutions. We use inequalities
(3.22), (3.35). It is easy to see that

λmin(G)M
{
‖x(t)‖2τ,γ

}
≤M{V [x(t), t]} ≤M{V [x(0), 0]}e−θt

≤
((

λmax(P) + 0.5βk‖c‖2
)
‖x(0)‖2

+
[
λmax(P) + 0.5βk

∥∥∥cTD
∥∥∥
2
]
‖x(−τ)‖2 + λmax(G)‖x(0)‖2τ,γ

)
e−θt

≤
(
2λmax(P) + 0.5βk‖c‖2 + 0.5βk

∥∥∥cTD
∥∥∥
2
+
1
γ
λmax(G)

)
‖x(0)‖2τe−θt.

(3.36)

Now, inequality (3.16) is a simple consequence of the latter chain of inequalities.

4. A Scalar Case

As an example, we will apply Theorem 3.2 to a scalar control stochastic differential-difference
equation of a neutral type

d[x(t) − d0x(t − τ)] =
[
a0x(t) + a1x(t − τ) + a2f(σ(t))

]
dt

+
[
b0x(t) + b1x(t − τ) + b2f(σ(t))

]
dw(t),

(4.1)

where σ(t) = c[x(t) − d0x(t − τ)], x ∈ R, a0, a1, a2, b0, b1, d2, d0, and c are real constants,
τ > 0 is a constant delay, and w(t) is a standard scalar Wiener process satisfying (3.3). An
Ft-measurable random process {x(t) ≡ x(t, ω)} is called a solution of (4.1) if it satisfies, with
a probability one, the following integral equation:

x(t) = d0x(t − τ) + [x(0) − d0x(−τ)]

+
∫ t

0

[
a0x(s) + a1x(s − τ) + a2f(σ(t))

]
ds

+
∫ t

0

[
b0x(s) + b1x(s − τ) + b2f(σ(t))

]
dw(s), t ≥ 0.

(4.2)
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The Lyapunov-Krasovskii functional V reduces to

V [x(t), t] = [x(t) − d0x(t − τ)]2 + g
∫ t

t−τ
e−γ(t−s)x2(s)ds + β

∫σ(t)

0
f(ξ)dξ, (4.3)

where we assume g > 0 and β > 0. The matrix S reduces to (for simplicity we setH = (1))

S = S
(
g, β, γ, ν

)
:=

⎛

⎜⎜
⎝

s11 s12 s13

s21 s22 s23

s31 s32 s33

⎞

⎟⎟
⎠ (4.4)

and has entries

s11 := −2a0 − b20 − g,
s12 := a0d0 − a1 − b0b1,

s13 := −a2 − b0b2 − 1
2
(
βa0 + ν

)
c,

s21 := s12,

s22 := 2a1d0 − b21 + e−γτg,
s23 := a2d0 − b1b2 − 0.5βa1c,

s31 := s13,

s32 := s23,

s33 :=
ν

k
− b22 − βca2,

(4.5)

where ν is a parameter. Therefore, the above calculation yields the following result.

Theorem 4.1. Let |d0| < 1. Assume that positive constants β, γ , g, and ν are such that the matrix
S is positive definite. Then the zero solution of (4.1) is exponentially γ-integrally stable in the square
mean on [0,∞). Moreover, every solution x(t) satisfies the following convergence estimate:

M
{
‖x(t)‖2τ,γ

}
≤N‖x(0)‖2τe−θt (4.6)

for all t ≥ 0 where

N :=
1
g

(
2 + 2d2

0 + 0.5βkc2 + 0.5βk(cd0)
2
)
+
1
γ
,

θ := min

{

γ,
λmin(S)

1 + d2
0 + 0.5βkc2

}

.

(4.7)
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