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We will solve the inhomogeneous Bessel’s differential equation x2y′′(x) + xy′(x) + (x2 − ν2)y(x) =∑∞
m=0 amx

m, where ν is a positive nonintegral number and apply this result for approximating
analytic functions of a special type by the Bessel functions of fractional order.

1. Introduction

The stability problem for functional equations starts from the famous talk of Ulam and the
partial solution of Hyers to the Ulam problem (see [1, 2]). Thereafter, Rassias [3] attempted
to solve the stability problem of the Cauchy additive functional equation in a more general
setting.

The stability concept introduced by Rassias’s theorem significantly influenced a
number of mathematicians to investigate the stability problems for various functional
equations (see [4–14] and the references therein).

Assume that Y is a normed space and I is an open subset of R. If for any function
f : I → Y satisfying the differential inequality

∥
∥
∥an(x)y(n)(x) + an−1(x)y(n−1)(x) + · · · + a1(x)y′(x) + a0(x)y(x) + h(x)

∥
∥
∥ ≤ ε, (1.1)

for all x ∈ I and for some ε ≥ 0, there exists a solution f0 : I → Y of the differential equation

an(x)y(n)(x) + an−1(x)y(n−1)(x) + · · · + a1(x)y′(x) + a0(x)y(x) + h(x) = 0, (1.2)
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such that ‖f(x)−f0(x)‖ ≤ K(ε) for any x ∈ I, whereK(ε) depends on ε only, then we say that
the above differential equation satisfies the Hyers-Ulam stability (or the local Hyers-Ulam
stability if the domain I is not the whole space R). We may apply these terminologies for
other differential equations. For more detailed definition of the Hyers-Ulam stability, refer to
[2, 3, 6, 8, 10–12, 14].

Obłoza seems to be the first author who has investigated the Hyers-Ulam stability of
linear differential equations (see [15, 16]). Here, we will introduce a result of Alsina and Ger
(see [17]): If a differentiable function f : I → R is a solution of the differential inequality
|y′(x) − y(x)| ≤ ε, where I is an open subinterval of R, then there exists a constant c such that
|f(x) − cex| ≤ 3ε for any x ∈ I.

This result of Alsina and Ger has been generalized by Takahasi et al. They proved in
[18] that the Hyers-Ulam stability holds for the Banach space-valued differential equation
y′(x) = λy(x) (see also [19]).

Using the conventional power series method, the author has investigated the general
solution of the inhomogeneous Legendre differential equation under some specific condition,
and this result was applied to prove the Hyers-Ulam stability of the Legendre differential
equation (see [20]). In a recent paper, he has also investigated an approximation property
of analytic functions by the Legendre functions (see [21]). This study has been continued to
various special functions including the Airy functions, the exponential functions, the Hermite
functions, and the power functions (see [22–25]).

Recently, the author and Kim tried to prove the Hyers-Ulam stability of the Bessel
differential equation

x2y′′(x) + xy′(x) +
(
x2 − ν2

)
y(x) = 0. (1.3)

However, the obtained theorem unfortunately does not describe the Hyers-Ulam stability of
the Bessel differential equation in a strict sense (see [26]).

In Section 2 of this paper, by using the ideas from [21], we will determine the general
solution of the inhomogeneous Bessel differential equation

x2y′′(x) + xy′(x) +
(
x2 − ν2

)
y(x) =

∞∑

m=0

amx
m, (1.4)

where the parameter ν is a positive nonintegral number. Section 3 will be devoted to the
investigation of an approximation property of the Bessel functions.

Throughout this paper, we denote by [x] the largest integer not exceeding x for any
x ∈ R, and we define Iρ = (−ρ, 0) ∪ (0, ρ) for any ρ > 0.

2. Inhomogeneous Bessel’s Differential Equation

A function is called a Bessel function (of fractional order) if it is a solution of the Bessel
differential equation (1.3), where ν is a positive nonintegral number. The Bessel differential
equation plays a great role in physics and engineering. In particular, this equation is most
useful for treating the boundary value problems exhibiting cylindrical symmetries.
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The convergence of the power series
∑∞

m=0 amx
m seems not to guarantee the existence

of solutions to the inhomogeneous Bessel differential equation (1.4). Thus, we adopt an
additional condition to ensure the existence of solutions to the equation.

Theorem 2.1. Let ν be a positive nonintegral number, and let ρ be a positive constant. Assume that
the radius of convergence of power series

∑∞
m=0 amx

m is at least ρ and there exists a constant σ > 0
satisfying the condition

|am+2| ≤ m2

σ2 |cm|, (2.1)

for all sufficiently large integersm, where

cm =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−
[m/2]∑

i=0

a2i

[m/2]∏

j=i

1

ν2 − (2j)2
(for even m),

−
[m/2]∑

i=0

a2i+1

[m/2]∏

j=i

1

ν2 − (2j + 1
)2 (for odd m),

(2.2)

for all m ∈ N0. Let ρ0 = min{ρ, σ}. Then every solution y : Iρ0 → C of the Bessel’s differential
equation (1.4) can be expressed by

y(x) = yh(x) +
∞∑

m=0

cmx
m, (2.3)

for all x ∈ Iρ0 , where yh(x) is a solution of the homogeneous Bessel equation (1.3).

Proof. We assume that y : Iρ0 → C is a function given in the form (2.3), and we define
yp(x) = y(x) − yh(x) =

∑∞
m=0 cmx

m. Then, it follows from (2.1) and (2.2) that

lim
m→∞

∣
∣
∣
∣
cm+2

cm

∣
∣
∣
∣ = lim

m→∞
1

(m + 2)2 − ν2

∣
∣
∣
∣
am+2

cm
− 1
∣
∣
∣
∣ ≤

1
σ2

, (2.4)

since we can deduce the relation cm+2 = (am+2 − cm)/((m + 2)2 − ν2) from (2.2) by some
manipulations. That is, the power series for yp(x) converges for all x ∈ Iρ0 . Hence, we see
that the domain of y(x) is well defined.
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We now prove that the function yp(x) satisfies the inhomogeneous equation (1.4).
Indeed, it follows from (2.2) that

x2y′′
p(x) + xy′

p(x) +
(
x2 − ν2

)
yp(x)

=
∞∑

m=2

m(m − 1)cmxm +
∞∑

m=1

mcmx
m +

∞∑

m=0

cmx
m+2 −

∞∑

m=0

ν2cmx
m

= c1x − ν2c0 − ν2c1x +
∞∑

m=2

[
cm−2 +

(
m2 − ν2

)
cm
]
xm

= a0 + a1x +
∞∑

m=2

amx
m,

(2.5)

since we obtain

c0 = − 1
ν2

a0, c1 =
1

1 − ν2
a1, cm−2 +

(
m2 − ν2

)
cm = am, for m ≥ 2, (2.6)

which proves that yp(x) is a particular solution of the inhomogeneous equation (1.4).
On the other hand, since every solution to (1.4) can be expressed as a sum of a solution

yh(x) of the homogeneous equation and a particular solution yp(x) of the inhomogeneous
equation, every solution of (1.4) is certainly of the form (2.3).

3. Approximate Bessel’s Differential Equation

In this section, assume that ν is a positive nonintegral number and ρ is a positive constant.
For a givenK ≥ 0, we denote by CK the set of all functions y : Iρ → C with the properties (a)
and (b):

(a) y(x) is expressible by a power series
∑∞

m=0 bmx
m whose radius of convergence is at

least ρ;

(b)
∑∞

m=0 |amx
m| ≤ K|∑∞

m=0 amx
m| for any x ∈ Iρ, where am = bm−2 + (m2 − ν2)bm for all

m ∈ N0 and set b−2 = b−1 = 0.

For a positive nonintegral number ν, define

Me(x) = max

⎧
⎨

⎩

k∏

j=i

x2
∣
∣
∣ν2 − (2j)2

∣
∣
∣
: 0 ≤ i ≤ k ≤ μ

⎫
⎬

⎭
,

Mo(x) = max

⎧
⎨

⎩

k∏

j=i

x2
∣
∣
∣ν2 − (2j + 1

)2
∣
∣
∣
: 0 ≤ i ≤ k ≤ μ

⎫
⎬

⎭
,

M(x) = max{Me(x),Mo(x), 1},

(3.1)
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where μ = [
√
ν2 + x2/2] and

Lν =
∞∑

m=0

1

(m − ν)2
< ∞. (3.2)

We remark that M(x) → 1 as |x| → 0.
We will now solve the approximate Bessel differential equations in a special class of

analytic functions, CK.

Theorem 3.1. Let ν be a positive nonintegral number, and let p be a nonnegative integer with p <
ν < p + 1. Assume that a function y ∈ CK satisfies the differential inequality

∣
∣
∣x2y′′(x) + xy′(x) +

(
x2 − ν2

)
y(x)

∣
∣
∣ ≤ ε, (3.3)

for all x ∈ Iρ and for some ε ≥ 0. If the sequence {bm} satisfies the condition

bm+2 = O(bm) as m −→ ∞ (3.4)

with a Landau constant C ≥ 0, then there exists a solution yh(x) of the Bessel differential equation
(1.3) such that

∣
∣y(x) − yh(x)

∣
∣ ≤ KLνM(x)ε, (3.5)

for any x ∈ Iρ0 , where ρ0 = min{ρ, 1/√C∗} and C∗ is a positive number larger than C. If C and ρ
are sufficiently small and large; respectively, then

M(x) ≤ max

⎧
⎪⎨

⎪⎩

|x||x|+2

|ν2 − p2||x|/2+1
,

|x||x|+2
∣
∣
∣ν2 − (p + 1

)2
∣
∣
∣
|x|/2+1

⎫
⎪⎬

⎪⎭
(3.6)

for all sufficiently large |x|.

Proof. Since y belongs to CK, it follows from (a) and (b) that

x2y′′(x) + xy′(x) +
(
x2 − ν2

)
y(x) =

∞∑

m=0

[
bm−2 +

(
m2 − ν2

)
bm
]
xm =

∞∑

m=0

amx
m, (3.7)

for all x ∈ Iρ. By considering (3.3) and (3.7), we get

∣
∣
∣
∣
∣

∞∑

m=0

amx
m

∣
∣
∣
∣
∣
≤ ε, (3.8)
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for any x ∈ Iρ. This inequality, together with (b), yields

∞∑

m=0
|amx

m| ≤ K

∣
∣
∣
∣
∣

∞∑

m=0

amx
m

∣
∣
∣
∣
∣
≤ Kε, (3.9)

for each x ∈ Iρ.
Now, it follows from (b) that

n∑

i=0

a2i

n∏

j=i

1

ν2 − (2j)2
=

n∑

i=0

b2i−2
n∏

j=i

1

ν2 − (2j)2
−

n∑

i=0

b2i
n∏

j=i+1

1

ν2 − (2j)2

=
n−1∑

i=−1
b2i

n∏

j=i+1

1

ν2 − (2j)2
−

n∑

i=0

b2i
n∏

j=i+1

1

ν2 − (2j)2

= b−2
n∏

j=0

1

ν2 − (2j)2
− b2n

= −b2n,

(3.10)

since b−2 = 0. Similarly, we obtain

n∑

i=0

a2i+1

n∏

j=i

1

ν2 − (2j + 1
)2 = −b2n+1, (3.11)

for all n ∈ N0, that is,

bm =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−
[m/2]∑

i=0

a2i

[m/2]∏

j=i

1

ν2 − (2j)2
(for even m),

−
[m/2]∑

i=0

a2i+1

[m/2]∏

j=i

1

ν2 − (2j + 1
)2 (for odd m),

(3.12)

for all m ∈ N0.
On the other hand, by (b) and (3.4), we have

|am+2| =
∣
∣
∣bm +

[
(m + 2)2 − ν2

]
bm+2

∣
∣
∣

≤ |bm| + (m + 2)2|bm+2|

≤ m2

(
1/

√
C∗
)2 |bm|,

(3.13)

for all sufficiently large integers m, where C∗ is a positive number larger than C. Hence,
in view of (3.12) and (3.13), the condition (2.1) is satisfied with σ = 1/

√
C∗. Moreover, we
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know that the radius of convergence of power series
∑∞

m=0 amx
m is at least ρ because the

convergence radius of the power series expression for y(x) is at least ρ (see (a) and (3.7)).
According to (3.7) and Theorem 2.1, there exists a solution yh(x) of the homogeneous

Bessel differential equation (1.3) satisfying (2.3) for all x ∈ Iρ0 . Thus, it follows from (2.2) and
(3.12) that

∣
∣y(x) − yh(x)

∣
∣ =

∣
∣
∣
∣
∣

∞∑

n=0

c2nx
2n +

∞∑

n=0

c2n+1x
2n+1

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
−

∞∑

n=0

x2n
n∑

i=0

a2i

n∏

j=i

1

ν2 − (2j)2
−

∞∑

n=0

x2n+1
n∑

i=0

a2i+1

n∏

j=i

1

ν2 − (2j + 1
)2

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∞∑

n=0

1

ν2 − (2n)2

n∑

i=0

a2ix
2i

n−1∏

j=i

x2

ν2 − (2j)2

+
∞∑

n=0

1

ν2 − (2n + 1)2

n∑

i=0

a2i+1x
2i+1

n−1∏

j=i

x2

ν2 − (2j + 1
)2

∣
∣
∣
∣
∣
∣
,

(3.14)

for any x ∈ Iρ0 . Moreover, we have

∣
∣y(x) − yh(x)

∣
∣ ≤

μ+1∑

n=0

1
∣
∣
∣ν2 − (2n)2

∣
∣
∣

n∑

i=0

∣
∣
∣a2ix

2i
∣
∣
∣
n−1∏

j=i

x2
∣
∣
∣ν2 − (2j)2

∣
∣
∣

+
∞∑

n=μ+2

1
∣
∣
∣ν2 − (2n)2

∣
∣
∣

μ∑

i=0

∣
∣
∣a2ix

2i
∣
∣
∣
n−1∏

j=i

x2
∣
∣
∣ν2 − (2j)2

∣
∣
∣

+
∞∑

n=μ+2

1
∣
∣
∣ν2 − (2n)2

∣
∣
∣

n∑

i=μ+1

∣
∣
∣a2ix

2i
∣
∣
∣
n−1∏

j=i

x2
∣
∣
∣ν2 − (2j)2

∣
∣
∣

+
μ+1∑

n=0

1
∣
∣
∣ν2 − (2n + 1)2

∣
∣
∣

n∑

i=0

∣
∣
∣a2i+1x

2i+1
∣
∣
∣
n−1∏

j=i

x2
∣
∣
∣ν2 − (2j + 1

)2
∣
∣
∣

+
∞∑

n=μ+2

1
∣
∣
∣ν2 − (2n + 1)2

∣
∣
∣

μ∑

i=0

∣
∣
∣a2i+1x

2i+1
∣
∣
∣
n−1∏

j=i

x2
∣
∣
∣ν2 − (2j + 1

)2
∣
∣
∣

+
∞∑

n=μ+2

1
∣
∣
∣ν2 − (2n + 1)2

∣
∣
∣

n∑

i=μ+1

∣
∣
∣a2i+1x

2i+1
∣
∣
∣
n−1∏

j=i

x2
∣
∣
∣ν2 − (2j + 1

)2
∣
∣
∣
,

(3.15)

for all x ∈ Iρ0 , where μ = [
√
ν2 + x2/2].
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We know that x2/|ν2−(2j)2| < 1 and x2/|ν2−(2j + 1)2| < 1 for j ≥ μ+1 and x2/|ν2−(2j)2|
or x2/|ν2 − (2j + 1)2| is not perhaps less than 1 for j ≤ μ. Then, we have

n−1∏

j=i

x2
∣
∣
∣ν2 − (2j)2

∣
∣
∣
=

⎛

⎝
μ∏

j=i

x2
∣
∣
∣ν2 − (2j)2

∣
∣
∣

⎞

⎠

⎛

⎝
n−1∏

j=μ+1

x2
∣
∣
∣ν2 − (2j)2

∣
∣
∣

⎞

⎠ ≤ Me(x) ≤ M(x), (3.16)

for all n ≥ μ + 2 and i = 0, 1, . . . , μ. Similarly, we get

n−1∏

j=i

x2
∣
∣
∣ν2 − (2j + 1

)2
∣
∣
∣
≤ M(x), (3.17)

for all n ≥ μ + 2 and i = 0, 1, . . . , μ.
Thus, it follows from (3.9) and (3.15) that

∣
∣y(x) − yh(x)

∣
∣ ≤

μ+1∑

n=0

M(x)
∣
∣
∣ν2 − (2n)2

∣
∣
∣

n−1∑

i=0

∣
∣
∣a2ix

2i
∣
∣
∣ +

μ+1∑

n=0

∣
∣a2nx

2n
∣
∣

∣
∣
∣ν2 − (2n)2

∣
∣
∣

+
∞∑

n=μ+2

M(x)
∣
∣
∣ν2 − (2n)2

∣
∣
∣

μ∑

i=0

∣
∣
∣a2ix

2i
∣
∣
∣

+
∞∑

n=μ+2

1
∣
∣
∣ν2 − (2n)2

∣
∣
∣

n∑

i=μ+1

∣
∣
∣a2ix

2i
∣
∣
∣

+
μ+1∑

n=0

M(x)
∣
∣
∣ν2 − (2n + 1)2

∣
∣
∣

n−1∑

i=0

∣
∣
∣a2i+1x

2i+1
∣
∣
∣ +

μ+1∑

n=0

∣
∣a2n+1x

2n+1
∣
∣

∣
∣
∣ν2 − (2n + 1)2

∣
∣
∣

+
∞∑

n=μ+2

M(x)
∣
∣
∣ν2 − (2n + 1)2

∣
∣
∣

μ∑

i=0

∣
∣
∣a2i+1x

2i+1
∣
∣
∣

+
∞∑

n=μ+2

1
∣
∣
∣ν2 − (2n + 1)2

∣
∣
∣

n∑

i=μ+1

∣
∣
∣a2i+1x

2i+1
∣
∣
∣

≤ M(x)

⎛

⎝
∞∑

n=0

1
∣
∣
∣ν2 − (2n)2

∣
∣
∣

n∑

i=0

∣
∣
∣a2ix

2i
∣
∣
∣ +

∞∑

n=0

1
∣
∣
∣ν2 − (2n + 1)2

∣
∣
∣

n∑

i=0

∣
∣
∣a2i+1x

2i+1
∣
∣
∣

⎞

⎠

≤ M(x)Kε
∞∑

m=0

1
|ν2 −m2|

≤ KLνM(x)ε,
(3.18)

for x ∈ Iρ0 .
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Finally, assume that C is sufficiently small and ρ is sufficiently large. Then ρ0 is
sufficiently large. For any j ≥ 0 and x ∈ Iρ0 , we have

x2
∣
∣
∣ν2 − (2j)2

∣
∣
∣
≤ max

⎧
⎨

⎩

x2
∣
∣ν2 − p2

∣
∣
,

x2
∣
∣
∣ν2 − (p + 1

)2
∣
∣
∣

⎫
⎬

⎭
. (3.19)

If |x| is so large that

μ =
[
1
2

√
ν2 + x2

]

=
[ |x|
2

]

≤ |x|
2
, (3.20)

then it follows from the definition of M(x) that

M(x) ≤ max

⎧
⎪⎨

⎪⎩

|x||x|+2
∣
∣ν2 − p2

∣
∣|x|/2+1

,
|x||x|+2

∣
∣
∣ν2 − (p + 1

)2
∣
∣
∣
|x|/2+1

⎫
⎪⎬

⎪⎭
, (3.21)

for all sufficiently large |x|.

If ν is large enough, then we can prove the (local) Hyers-Ulam stability of the Bessel
differential equation (1.3) as we see in the following corollary.

Corollary 3.2. Let ν be a positive nonintegral number and let p be a nonnegative integer with p <
ν < p + 1. Assume that a function y ∈ CK satisfies the differential inequality (3.3) for all x ∈ Iρ and
for some ε ≥ 0. Suppose the sequence{bm} satisfies the condition (3.4) with a Landau constant C ≥ 0
and define ρ0 = min{ρ, 1/√C∗} for a positive number C∗ > C. If

x2
∣
∣ν2 − p2

∣
∣
≤ 1,

x2
∣
∣
∣ν2 − (p + 1

)2
∣
∣
∣
≤ 1, (3.22)

for all x ∈ Iρ0 , then there exists a solution yh(x) of the Bessel differential equation (1.3) such that

∣
∣y(x) − yh(x)

∣
∣ ≤ KLνε, (3.23)

for any x ∈ Iρ0 .

Proof. For any j ≥ 0 and x ∈ Iρ0 , we have

max

⎧
⎨

⎩

x2
∣
∣
∣ν2 − (2j)2

∣
∣
∣
,

x2
∣
∣
∣ν2 − (2j + 1

)2
∣
∣
∣

⎫
⎬

⎭
≤ max

⎧
⎨

⎩

x2
∣
∣ν2 − p2

∣
∣
,

x2
∣
∣
∣ν2 − (p + 1

)2
∣
∣
∣

⎫
⎬

⎭
≤ 1. (3.24)
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Thus, we get

M(x) ≤ max

⎧
⎨

⎩

x2
∣
∣ν2 − p2

∣
∣
,

x2
∣
∣
∣ν2 − (p + 1

)2
∣
∣
∣
, 1

⎫
⎬

⎭
= 1, (3.25)

and the assertion is true due to Theorem 3.1.

4. Examples

We will show that there exist functions y(x) which satisfy all the conditions given in
Theorem 3.1 and Corollary 3.2. Let us define a function y : I10 → R by

y(x) = J100.5(x) + cx2 =
∞∑

m=0

bmx
m, (4.1)

where J100.5(x) is the Bessel function of the first kind of order 100.5, n is a positive integer,
and c is a constant satisfying

c =
ε

999625
, (4.2)

for some ε > 0. It is obvious that the convergence radius of the power series
∑∞

m=0 bmx
m is

infinity. (So we can set ρ = 10.) In fact, the infinite series
∑∞

m=0 bm11
m converges. So we have

lim sup
m→∞

∣
∣
∣
∣
∣

11m+1bm+1

11mbm

∣
∣
∣
∣
∣
≤ 1, lim sup

m→∞

∣
∣
∣
∣
∣

11m+2bm+2

11m+1bm+1

∣
∣
∣
∣
∣
≤ 1. (4.3)

Thus, it holds true that

lim sup
m→∞

∣
∣
∣
∣
bm+2

bm

∣
∣
∣
∣ = lim sup

m→∞

∣
∣
∣
∣
bm+2

bm+1

∣
∣
∣
∣lim sup

m→∞

∣
∣
∣
∣
bm+1

bm

∣
∣
∣
∣ ≤

1
121

(4.4)

which implies that the sequence {bm} satisfies the condition (3.4) with a Landau constant
C = 1/121. If we take C∗ = 1/100, then ρ0 = min{ρ, 1/√C∗} = 10.

Since J100.5(x) is a particular solution of the Bessel differential equation (1.3) with ν =
100.5, it follows from (4.1) that

x2y′′(x) + xy′(x) +
(

x2 − 40401
4

)

y(x) = −40385
4

cx2 + cx4, (4.5)

for any x ∈ I10.



Abstract and Applied Analysis 11

If we set

am =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−40385
4

c for m = 2,

c for m = 4,

0 otherwise,

(4.6)

then we have

x2y′′(x) + xy′(x) +
(

x2 − 40401
4

)

y(x) =
∞∑

m=0

amx
m,

∣
∣
∣
∣x

2y′′(x) + xy′(x) +
(

x2 − 40401
4

)

y(x)
∣
∣
∣
∣ =

∣
∣
∣
∣
∣

∞∑

m=0

amx
m

∣
∣
∣
∣
∣
= c

(
40385
4

x2 − x4
)

< 999625c = ε,

(4.7)

for all x ∈ I10.
Moreover, we have

|∑∞
m=0 amx

m|
∑∞

m=0|amxm| =
(40385/4) cx2 − cx4

(40385/4)cx2 + cx4
>

39985
40785

, (4.8)

and hence, we get

∞∑

m=0
|amx

m| < 8157
7997

∣
∣
∣
∣
∣

∞∑

m=0

amx
m

∣
∣
∣
∣
∣
, (4.9)

for all x ∈ I10. That is, {am} satisfies the property (b)with K = 8157/7997.
It holds true that

x2
∣
∣ν2 − p2

∣
∣
< 1,

x2
∣
∣
∣ν2 − (p + 1

)2
∣
∣
∣
< 1, (4.10)
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for all x ∈ I10, and since

L100.5 =
∞∑

m=0

1

(m − 100.5)2

=
1

(−100.5)2
+

1

(−99.5)2
+

1

(−98.5)2
+ · · · + 1

(−0.5)2

+
1

0.52
+

1
1.52

+
1

2.52
+

1
3.52

+ · · ·

≤ 1
1002

+
1
992

+
1
982

+ · · · + 1
12

+
(

1
0.52

+
1

0.52

)

+
1
12

+
1
22

+
1
32

+ · · ·

≤ 2ζ(2) + 8 =
π2

3
+ 8,

(4.11)

it follows from Corollary 3.2 that there exists a solution yh(x) of the Bessel differential
equation (1.3) such that

∣
∣y(x) − yh(x)

∣
∣ ≤ 8157

7997
L100.5ε <

8157
7997

(
π2

3
+ 8

)

ε, (4.12)

for any x ∈ I10.
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