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In the case of the complex plane, it is known that there exists a finite set of rational numbers
containing all possible growth orders of solutions of f (k) + ak−1(z)f (k−1) + · · · + a1(z)f ′ + a0(z)f =
0 with polynomial coefficients. In the present paper, it is shown by an example that a unit
disc counterpart of such finite set does not contain all possible T - and M-orders of solutions,
with respect to Nevanlinna characteristic and maximum modulus, if the coefficients are analytic
functions belonging either to weighted Bergman spaces or to weighted Hardy spaces. In contrast
to a finite set, possible intervals for T - and M-orders are introduced to give detailed information
about the growth of solutions. Finally, these findings yield sharp lower bounds for the sums of T -
and M-orders of functions in the solution bases.

1. Introduction

This research is a continuation of recent activity in the field of complex differential equations.
In particular, the present paper concerns linear differential equations of the type

f (k) + ak−1(z)f (k−1) + · · · + a1(z)f ′ + a0(z)f = 0, (1.1)

where the coefficients a0(z), . . . , ak−1(z) are analytic functions in the unit disc D := {z : |z| <
1} of the complex plane C. A variety of publications in the existing literature illustrate that
the connection between the growth of coefficient functions and the growth of solutions is
relatively well understood. On the one hand, the growth estimates in [1] have been proven
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to be instrumental tools in estimating the growth of solutions when the growth of coefficients
is known. On the other hand, proofs of the converse direction have taken advantage of the
method of order reduction as well as different types of logarithmic derivative estimates.

For an analytic function in D, it is known that T - andM-orders of growth, with respect
to Nevanlinna characteristic and maximum modulus, are not equal in general. This is in
contrast to the corresponding case in C. Hence, there are two distinct cases in D to work
with. First, if the growth of solutions is measured by using the T -order, then it is natural
to express the other growth aspects by means of integration as well. In particular, it is
reasonable to consider coefficient functions belonging to some weighted Bergman spaces and
use integrated estimates for logarithmic derivatives [2]. Second, if the growth of solutions
is measured by using the M-order, then it is natural to express the other growth aspects by
means of the maximum modulus function. In particular, it is sensible to restrict the growth
of the maximum modulus of coefficient functions, which leads to weighted Hardy spaces,
and work with estimates for the maximum modulus of logarithmic derivatives involving
exceptional sets [3].

The main focus of this paper is in improving the lower bounds for the growth of
solutions of (1.1) given in [2, 3] and explore some consequences, which are motivated by
the following observations.

By the classical results in C making use of Newton-Puiseux diagram, there is a finite
set containing the possible growth orders of solutions of (1.1) assuming that coefficients are
polynomials. In particular, Gundersen-Steinbart-Wang showed that this finite set consists
of rational numbers obtained from simple arithmetic with the degrees of the polynomial
coefficients in (1.1) [4, Theorem 1]. Their proof relies on classical Wiman-Valiron theory in C.
Even though a recent unit disc counterpart ofWiman-Valiron theory [5] has been successfully
applied to differential equations, the possible orders of solutions of (1.1) in D have been
obtained only by assuming that coefficients are α-polynomial regular. These α-polynomial
regular functions have similar growth properties than polynomials in the sense that maximal
growth is attained in every direction. However, they appear to be only a relatively small
subset of the Korenblum space, which characterizes finite-order solutions of (1.1) in D [6,
Theorem 6.1]. Note that in the case of C, all solutions of (1.1) are of finite order if and only if
coefficients are polynomials [7, Satz 1].

In the present paper, it is shown by an example that a unit disc counterpart of the
finite set constructed by Gundersen-Steinbart-Wang does not contain all possible orders of
solutions of (1.1), provided that the coefficients belong either to weighted Bergman spaces
or to weighted Hardy spaces. In contrast to a finite set, we introduce possible intervals for
T -orders and M-orders, giving detailed information about the growth of solutions. Finally,
these findings are applied to estimate the sums of T - andM-orders of functions in the solution
bases of (1.1) from below.

2. Results and Motivation

The results concerning T - and M-orders of solutions of (1.1) are given, respectively, in
Sections 2.1-2.2 and 2.3-2.4. Due to the similarities of the assertions, we omit the proofs of
results regardingM-orders of solutions of (1.1), excluding the sketched proof of Theorem 2.5
in Section 7.

Let M(D) and H(D) denote the sets of all meromorphic and analytic functions in D.
For simplicity, we write α+ := max{α, 0} for any α ∈ R, |f(z)| � |g(z)| if there exists a constant
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C > 0 independent of z such that |f(z)| ≤ C|g(z)|, and f(z) ∼ g(z) if there exist constants
C1 > 0 and C2 > 0 independent of z such that C1|g(z)| ≤ |f(z)| ≤ C2|g(z)|.

2.1. Growth of Solutions with Respect to Nevanlinna Characteristic

The T -order of growth of f ∈ M(D) is defined as

σT

(
f
)
:= lim sup

r→ 1−

log+T
(
r, f
)

− log(1 − r)
, (2.1)

where T(r, f) is the Nevanlinna characteristic of f . For p > 0 and α > −1, the weighted Bergman
space Ap

α consists of those f ∈ H(D) for which

∥∥f
∥∥
A

p
α
:=
(∫

D

∣∣f(z)
∣∣p
(
1 − |z|2

)α
dm(z)

)1/p

< ∞. (2.2)

Functions of maximal growth in
⋂

q<α<∞ A
p
α are distinguished by denoting f ∈ A

p
q , if q =

inf{α > −1 : f ∈ A
p
α}.

If the growth of the coefficients is expressed by means of integration, then it is natural
to consider the growth of solutions of (1.1) with respect to T -order.

Theorem A (see [2, Theorems 1 and 2]). Suppose that aj ∈ A
1/(k−j)
αj

, where αj ≥ 0 for j =
0, . . . , k − 1, and denote αk := 0.

(i) Let 0 ≤ α < ∞. Then all solutions f of (1.1) satisfy σT (f) ≤ α if and only if
maxj=0,...,k−1{αj} ≤ α.

(ii) All nontrivial solutions f of (1.1) satisfy

min
j=1,...,k

{
k
(
α0 − αj

)

j
+ αj

}

≤ σT

(
f
) ≤ max

j=0,...,k−1
{
αj

}
. (2.3)

(iii) If q ∈ {0, . . . , k − 1} is the smallest index for which αq = maxj=0,...,k−1{αj}, then each
solution base of (1.1) contains at least k − q linearly independent solutions f such that
σT (f) = αq.

The assumption aj ∈ A
1/(k−j)
αj

in Theorem A(i) cannot be replaced by aj ∈ A
1/(k−j)
αj

; see
[8]. We refine Theorem A and then further underscore its consequences.

Theorem 2.1. Suppose that aj ∈ A
1/(k−j)
αj

, where αj ≥ −1 for j = 0, . . . , k−1, and let q ∈ {0, . . . , k−1}
be the smallest index for which αq = maxj=0,...,k−1{αj}. If s ∈ {0, . . . , q}, then each solution base of
(1.1) contains at least k − s linearly independent solutions f such that

min
j=s+1,...,k

{
(k − s)

(
αs − αj

)

j − s
+ αj

}

≤ σT

(
f
) ≤ α+

q , (2.4)

where αk := −1.
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The case s = 0 clearly reduces to Theorem A(ii). If s = q, then the condition αq =
maxj=0,...,k−1{αj} implies that

min
j=q+1,...,k

{(
k − q

)(
αq − αj

)

j − q
+ αj

}

= min
j=q+1,...,k

{(
k − j

)(
αq − αj

)

j − q
+ αq

}

= αq, (2.5)

where the minimum is attained for j = k. Hence the assertion of Theorem 2.1 for s = q is
contained in Theorem A(iii). Our contribution is to extend the first inequality in (2.4) for
s ∈ {1, . . . , q − 1}. Theorem 2.1 is proved in Section 4, and the sharpness and the special cases
k = 2 and k = 3 are further discussed in Section 3.1.

Let q ∈ {0, . . . , k − 1} be the smallest index for which αq = maxj=0,...,k−1{αj}. If αq ≤ 0,
then all solutions in each solution base of (1.1) are of zero T -order by Theorem A(ii). Suppose
that αq > 0. In order to state the following corollaries of Theorem 2.1, we denote

βT (s) := min
j=s+1,...,k

{
(k − s)

(
αs − αj

)

j − s
+ αj

}

, s = 0, . . . , q, (2.6)

where αk := −1. Moreover, we define

s� := min
{
s ∈ {0, . . . , q} : βT (s) > 0

}
. (2.7)

Remark that βT (q) > 0, since (2.5) implies αq = βT (q).

Corollary 2.2. Suppose that aj ∈ A
1/(k−j)
αj

, where αj ≥ −1 for j = 0, . . . , k − 1, and let q ∈ {0, . . . , k −
1} be the smallest index for which αq = maxj=0,...,k−1{αj} > 0. Then each solution base of (1.1) admits
at most s� ≤ q solutions f satisfying σT (f) < βT (s�). In particular, there are at most s� ≤ q solutions
f satisfying σT (f) = 0.

To estimate the quantity
∑k

j=1 σT (fj) by using Theorem 2.1, we set

γT
(
j
)
:= max

{
βT (0), . . . , βT

(
j
)}

, j = 0, . . . , q. (2.8)

Evidently γT (j) > 0 for j ∈ {s�, . . . , q}, and γT (j) ≤ 0 for j ∈ {0, . . . , s� − 1}.

Corollary 2.3. Suppose that aj ∈ A
1/(k−j)
αj

, where αj ≥ −1 for j = 0, . . . , k − 1, and let q ∈ {0, . . . , k −
1} be the smallest index for which αq = maxj=0,...,k−1{αj} > 0. Let {f1, . . . , fk} be a solution base of
(1.1). If q = 0, then

∑k
j=1 σT (fj) = kα0, while if q ≥ 1, then

(
k − q

)
αq +

q−1∑

j=s�
γT
(
j
) ≤

k∑

j=1

σT

(
fj
) ≤ kαq. (2.9)

Note that the sum in (2.9) is considered to be empty, if s� = q.
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2.2. Gundersen-Steinbart-Wang Method for T-Order

We proceed to give an alternative statement of Theorem 2.1 and its corollaries by modifying
the key steps in [4]. This yields a natural way to define possible intervals for T -orders of
solutions of (1.1). As a consequence, we get a useful estimate following from Corollary 2.3.

Set δj := (αj +1)(k− j) for all j = 0, . . . , k−1. Let s1 ∈ {0, . . . , k−1} be the smallest index
satisfying αs1 = maxj=0,...,k−1{αj} > 0, which is equivalent to

δs1
k − s1

= max
j=0,...,k−1

{
δj

k − j

}

> 1. (2.10)

If s1 cannot be found, then all solutions of (1.1) are of zero T -order by Theorem A(ii).
Otherwise, for a given sm, m ∈ N, let sm+1 ∈ {0, . . . , sm − 1} be the smallest index satisfying

δsm+1 − δsm
sm − sm+1

= max
j=0,...,sm−1

{
δj − δsm
sm − j

}

> 1. (2.11)

Eventually this process will stop, yielding a finite list of indices s1, . . . , sp such that p ≤ k and
s1 > s2 > · · · > sp ≥ 0. Further, set

BT (t) :=
δst − δst−1
st−1 − st

− 1, t = 1, . . . , p, (2.12)

where s0 := k and δk := 0. Due to resemblance between (2.12) and [4, Equation (2.4)], it seems
plausible that the possible nonzero T -orders of solutions of (1.1) in the unit disc case could be
found among the numbers BT (t), where t = 1, . . . , p. However, Example 3.1 shows that this is
not the case.

The following lemma allows us to view the results in Section 2.1 in a new perspective.
In particular, Lemma 2.4 emphasizes the connection between BT and γT .

Lemma 2.4. One has the following:

(i) BT (1) > BT (2) > · · · > BT (p) > 0;

(ii) βT (st) = BT (t) for all t ∈ {1, . . . , p};
(iii) γT (q) = BT (1), γT (j) = BT (t) for all st ≤ j < st−1 and t ∈ {2, . . . , p}, and γT (j) ≤ 0 for all

j < sp. In particular, sp = s�.

By relying on Lemma 2.4, Theorem 2.1, and Corollary 2.2, we proceed to state possible
intervals for T -orders of functions in solution bases of (1.1) in the case aj ∈ A

1/(k−j)
αj

, where
αj ≥ −1 for j = 0, . . . , k − 1. In fact, each solution base of (1.1) contains the following:

(i) at least k − s1 solutions f satisfying σT (f) = BT (1);

(ii) at least k − st solutions f satisfying σT (f) ∈ [BT (t),BT (1)] for t = 2, . . . , p;

(iii) at most sp solutions f satisfying σT (f) ∈ [0,BT (sp)).
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For the following application, let {f1, . . . , fk} be a solution base of (1.1). Knowing the possible
intervals for T -orders, we get

k∑

j=1

σT

(
fj
) ≥ (k − s1)BT (1) + · · · + (sp−1 − sp

)BT

(
p
)
+ sp · 0 = δsp + sp − k. (2.13)

In view of Lemma 2.4, the lower estimates in (2.9) and (2.13) are equal.
Finally, we point out a useful consequence of (2.13). If sp = 0, then δsp + sp = δ0. If

sp > 0, then (δ0 − δsp)/sp ≤ 1 by (2.11), and δsp + sp ≥ δ0. Hence, in both cases we can state
that

k∑

j=1

σT

(
fj
) ≥ δsp + sp − k ≥ δ0 − k ≥ α0k, (2.14)

where the equalities hold, if α0 = maxj=0,...,k−1{αj} > 0.

2.3. Growth of Solutions with Respect to Maximum Modulus

Alongside of the T -order, we may also define the M-order of growth of f ∈ H(D) by

σM

(
f
)
:= lim sup

r→ 1−

log+log+M
(
r, f
)

− log(1 − r)
, (2.15)

where M(r, f) := max|z|=r |f(z)| is the maximum modulus of f . It is well known that the
inequalities

σT

(
f
) ≤ σM

(
f
) ≤ σT

(
f
)
+ 1 (2.16)

are satisfied for all f ∈ H(D), and all possibilities allowed by (2.16) can be assumed [9,
Theorems 3.5–3.7]. A function f ∈ H(D) is said to belong to the weighted Hardy space H∞

α , if
there exists α ≥ 0 such that

sup
z∈D

(
1 − |z|2

)α ∣∣f(z)
∣∣ < ∞. (2.17)

Functions of maximal growth in
⋂

α>p H
∞
α are distinguished by denoting f ∈ H

∞
p , if p =

inf{α ≥ 0 : f ∈ H∞
α }. Remark that H∞

0 = H∞ is the space of all bounded analytic functions
in D. The union

⋃
α>0 H

∞
α is also known as the Korenblum spaceA−∞ [10], and since [11] H

∞
p is

also known as Gp.
If the growth of coefficients is measured by means of maximum modulus estimates,

then it is natural to consider the growth of solutions with respect toM-order.

Theorem B (see [3, Theorem 1.4]). Suppose that aj ∈ H
∞
(pj+1)(k−j), where pj ≥ −1 for j = 0, . . . , k−

1, and denote pk := −1.
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(i) Suppose that

min
j=1,...,k

{
k
(
p0 − pj

)

j
+ pj

}

> 1, (2.18)

and let 1 ≤ α < ∞. Then all solutions f of (1.1) satisfy σM(f) ≤ α if and only if
maxj=0,...,k−1{pj} ≤ α.

(ii) All nontrivial solutions f of (1.1) satisfy σM(f) ≤ maxj=0,...,k−1{p+j }, and

min
j=1,...,k

{
k
(
p0 − pj

)

j
+ pj

}

≤ max
{
σM

(
f
)
, 1
}
. (2.19)

(iii) Suppose that (2.18) holds. If q ∈ {0, . . . , k − 1} is the smallest index for which
pq = maxj=0,...,k−1{pj}, then each solution base of (1.1) contains at least k − q linearly
independent solutions f such that σM(f) = pq.

To conclude [3, Equation (4.17)] in the proof of Theorem B, the inequality [3,
Equation (1.9)], corresponding to (2.18), must be strict. By a simple modification of the proof
of Theorem B, the assumption (2.18) can be relaxed to

max
j=0,...,k−1

{
pj
}

> 1, (2.20)

which allows us to apply Theorem B(iii) also in the case that there are solutions f satisfying
σM(f) ≤ 1. To see that (2.20) is in fact a weaker assumption than (2.18), we refer to [2,
Example 10], which is further considered in Section 3.2. In this case

min
j=1,...,k

{
k
(
p0 − pj

)

j
+ pj

}

= −4, max
j=0,...,k−1

{
pj
}
> 1. (2.21)

Note that by taking j = k in (2.18), we obtain p0 > 1. Hence (2.18) implies (2.20).
Theorem 2.5 corresponds to Theorem 2.1.

Theorem 2.5. Suppose that aj ∈ H
∞
(pj+1)(k−j), where pj ≥ −1 for j = 0, . . . , k − 1, and let q ∈

{0, . . . , k − 1} be the smallest index for which pq = maxj=0,...,k−1{pj}. If s ∈ {0, . . . , q}, then each
solution base of (1.1) contains at least k − s linearly independent solutions f such that

min
j=s+1,...,k

{
(k − s)

(
ps − pj

)

j − s
+ pj

}

≤ max
{
σM

(
f
)
, 1
}
. (2.22)
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Note that (2.22) gives information on σM(f) only in the case when the minimum in
(2.22) is strictly greater than 1. The case s = 0 in Theorem 2.5 reduces to Theorem B(ii), and
the case s = q reduces to Theorem B(iii) with the assumption (2.20), since now

min
j=q+1,...,k

{(
k − q

)(
pq − pj

)

j − q
+ pj

}

= pq = max
j=0,...,k−1

{
pj
}
, (2.23)

where the minimum is attained for j = k. For a similar argumentation, see (2.5). Our
contribution is to extend (2.22) for s ∈ {1, . . . , q − 1}. The proof of Theorem 2.5 is sketched
in Section 7, and the sharpness and the the special cases k = 2 and k = 3 are further discussed
in Section 3.2.

Let q ∈ {0, . . . , k − 1} be the smallest index for which pq = maxj=0,...,k−1{pj}. If pq ≤ 1,
then all solutions f in each solution base of (1.1) satisfy σM(f) ≤ 1 by Theorem B(ii). Suppose
that pq > 1. In order to state the following corollaries of Theorem 2.5, we denote

βM(s) := min
j=s+1,...,k

{
(k − s)

(
ps − pj

)

j − s
+ pj

}

, s = 0, . . . , q, (2.24)

where pk := −1. Moreover, we define

s� := min
{
s ∈ {0, . . . , q} : βM(s) > 1

}
. (2.25)

Remark that βM(q) > 1, since (2.23) implies pq = βM(q).

Corollary 2.6. Suppose that aj ∈ H
∞
(pj+1)(k−j), where pj ≥ −1 for j = 0, . . . , k − 1, and let q ∈

{0, . . . , k − 1} be the smallest index for which pq = maxj=0,...,k−1{pj} > 1. Then each solution base of
(1.1) admits at most s� ≤ q solutions f satisfying σM(f) < βM(s�). In particular, there are at most
s� ≤ q solutions f satisfying σM(f) ≤ 1.

To estimate the quantity
∑k

j=1 σM(fj) by using Theorem 2.5, we set

γM
(
j
)
:= max

{
βM(0), . . . , βM

(
j
)}
, j = 0, . . . , q. (2.26)

Evidently γM(j) > 1 for j ∈ {s�, . . . , q}, and γM(j) ≤ 1 for j ∈ {0, . . . , s� − 1}.

Corollary 2.7. Suppose that aj ∈ H
∞
(pj+1)(k−j), where pj ≥ −1 for j = 0, . . . , k − 1, and let q ∈

{0, . . . , k − 1} be the smallest index for which pq = maxj=0,...,k−1{pj} > 1. Let {f1, . . . , fk} be a
solution base of (1.1). If q = 0, then

∑k
j=1 σM(fj) = kp0, while if q ≥ 1, then

(
k − q

)
pq +

q−1∑

j=s�
γM
(
j
) ≤

k∑

j=1

σM

(
fj
) ≤ kpq. (2.27)

Note that the sum in (2.27) is considered to be empty, if s� = q.
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2.4. Gundersen-Steinbart-Wang Method for M-Order

We proceed to give an alternative statement of Theorem 2.5 and its corollaries by modifying
the key steps in [4]. This yields a natural way to define the possible intervals forM-orders of
solutions of (1.1). As a consequence, we get a useful estimate following from Corollary 2.7.

Set δj := (pj +1)(k− j) for all j = 0, . . . , k−1. Let s1 ∈ {0, . . . , k−1} be the smallest index
satisfying ps1 = maxj=0,...,k−1{pj} > 1, which is equivalent to

δs1
k − s1

= max
j=0,...,k−1

{
δj

k − j

}

> 2. (2.28)

If s1 cannot be found, then all solutions f of (1.1) satisfy σM(f) ≤ 1 by Theorem B(ii).
Otherwise, for a given sm, m ∈ N, let sm+1 ∈ {0, . . . , sm − 1} be the smallest index satisfying

δsm+1 − δsm
sm − sm+1

= max
j=0,...,sm−1

{
δj − δsm
sm − j

}

> 2. (2.29)

Eventually this process will stop, yielding a finite list of indices s1, . . . , sp such that p ≤ k and
s1 > s2 > · · · > sp ≥ 0. Further, set

BM(t) :=
δst − δst−1
st−1 − st

− 1, t = 1, . . . , p, (2.30)

where s0 := k and δk := 0. By Example 3.1, it is possible that (1.1) possesses a solution f of
M-order strictly greater than one such that σM(f)/=BM(t) for all t = 1, . . . , p.

The following lemma, which can be proved similarly than Lemma 2.4, allows us to
view the results in Section 2.3 in a new perspective.

Lemma 2.8. One has the following:

(i) BM(1) > BM(2) > · · · > BM(p) > 1;

(ii) βM(st) = BM(t) for all t ∈ {1, . . . , p};
(iii) γM(q) = BM(1), γM(j) = BM(t) for all st ≤ j < st−1 and t ∈ {2, . . . , p}, and γM(j) ≤ 1 for

all j < sp. In particular, sp = s�.

By relying on Lemma 2.8, Theorem 2.5, and Corollary 2.6, we proceed to state possible
intervals for M-orders of functions in solution bases of (1.1) in the case aj ∈ H

∞
(pj+1)(k−j), where

pj ≥ −1 for j = 0, . . . , k − 1. In fact, each solution base of (1.1) contains the following:

(i) at least k − s1 solutions f satisfying σM(f) = BM(1);

(ii) at least k − st solutions f satisfying σM(f) ∈ [BM(t),BM(1)] for t = 2, . . . , p;

(iii) at most sp solutions f satisfying σM(f) ∈ [0,BM(sp)).

For results of the same type, we refer to [12, Theorem 1] and [13, Corollary 1]. To
compare (i) and (ii) to the estimates given in [13, Corollary 1], note that there is −1 in (2.30)
instead of −2 in [13, Equation (1.3)]. Evidently, assertions (i) and (ii) improve the estimates
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given for the M-orders of solutions in [13, Corollary 1]. Moreover, by means of (2.16) we
see that (i) and (ii) reduce to [13, Corollary 1], if we consider the growth of solutions of (1.1)
with respect to T -order.

For the following application, let {f1, . . . , fk} be a solution base of (1.1). Knowing the
possible intervals forM-orders, we get

k∑

j=1

σM

(
fj
) ≥ (k − s1)BM(1) + · · · + (sp−1 − sp

)BM

(
p
)
+ sp · 0 = δsp + sp − k. (2.31)

Corresponding to the case in Section 2.2, by means of Lemma 2.8 we see that the lower
estimates in (2.27) and (2.31) are equal.

Finally, we point out a practical estimate, which is a consequence of (2.31). If sp = 0,
then δsp + sp = δ0 − sp. If sp > 0, then (δ0 − δsp)/sp ≤ 2 by (2.29), and δsp + sp ≥ δ0 − sp. Hence,
in both cases we can state that

k∑

j=1

σM

(
fj
) ≥ δ0 − sp − k ≥ p0k − sp. (2.32)

We conclude that if s1 = 0, then the equalities hold in (2.32), since in this case sp = s1 = 0.
Note that if (2.18) holds, then we can conclude that sp = 0.

3. Sharpness Discussion

3.1. Sharpness of Theorem 2.1

We may assume that maxj=0,...,k−1{αj} > 0, for otherwise all solutions are of zero T -order. If
k = 2, then the statement of Theorem 2.1 is contained in Theorem A, and all the assertions are
sharp [2, Examples 3 and 6].

If k = 3, then we have three different cases to consider.

(A1) If α1, α2 ≤ α0, then all nontrivial solutions f of (1.1) satisfy σT (f) = α0. In this case
s = 0 = q.

(A2) If α0 < α1 and α2 ≤ α1, then in every solution base {f1, f2, f3} of (1.1) there are at
least two solutions f1 and f2 such that σT (fj) = α1 for both j = 1, 2, and all solutions
fj satisfy

σT

(
fj
) ≥ min

{
3α0 − 2α1,

3
2
α0 − 1

2
α2, α0

}
, j = 1, 2, 3. (3.1)

In this case s = 0 or s = 1 = q.

(A3) If α0, α1 < α2, then in every solution base {f1, f2, f3} of (1.1) there is at least one
solution f1 such that σT (f1) = α2, two solutions f1 and f2 such that

σT

(
fj
) ≥ min{2α1 − α2, α1}, j = 1, 2, (3.2)

and all solutions fj satisfy (3.1). In this case s = 0, s = 1, or s = 2 = q.
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It is clear that the assertion in (A1) is sharp, and so are the ones in (A2) by [2, Example
10]. Moreover, [2, Example 9] shows that the assertions in (A3) are sharp for s = 0 and s = 2.
Example 3.2 shows the sharpness of the assertions in (A3) for s = 0, 1, 2. That is, in all cases
there exists a solution for which the lower bound for the T -order of growth is attained.

3.2. Sharpness of Theorem 2.5

We may assume that maxj=0,...,k−1{pj} > 1, for otherwise all solutions f of (1.1) satisfy
max{σM(f), 1} = 1, and we cannot conclude anything from (2.22). If k = 2, then the statement
of Theorem 2.5 is contained in Theorem B, and all the assertions are sharp by [2, Examples 3
and 6]. In the case of [2, Examples 3 and 6], for β > 1, linearly independent solutions f1 and
f2 satisfy σM(f1) = β and σM(f2) = β + 2. Moreover, aj ∈ H

∞
(pj+1)(2−j), where p0 = β + 1 and

p1 = β + 2. Note that max{p0, p1} = p1 = β + 2 > 1, and hence q = 1. An easy computation
shows the sharpness for s = 0 and for s = q = 1. In the case of [2, Example 6], for β > 1,
linearly independent solutions f1 and f2 satisfy σM(f1) = β and σM(f2) = β. Moreover,
aj ∈ H

∞
(pj+1)(2−j), where p0 = β and p1 = −1/2. Note now that max{p0, p1} = p0 = β > 1,

and hence q = 0. This example shows the sharpness for s = q = 0. For another example, see
[3, Example 2].

If k = 3, then we have three different cases to consider.

(B1) If p1, p2 ≤ p0, then s = 0 = q, and all nontrivial solutions f of (1.1) satisfy σM(f) = p0
by (2.23).

(B2) If p0 < p1, and p2 ≤ p1, then in every solution base {f1, f2, f3} of (1.1) there are at
least two solutions f1 and f2 such that σM(fj) = p1 for both j = 1, 2, and all solutions
fj satisfy

max
{
σM

(
fj
)
, 1
} ≥ min

{
3p0 − 2p1,

3
2
p0 − 1

2
p2, p0

}
, j = 1, 2, 3. (3.3)

In this case s = 0 or s = 1 = q.

(B3) If p0, p1 < p2, then in every solution base {f1, f2, f3} of (1.1) there is at least one
solution f1 such that σM(f1) = p2, two solutions f1 and f2 such that

max
{
σM

(
fj
)
, 1
} ≥ min

{
2p1 − p2, p1

}
, j = 1, 2, (3.4)

and all solutions fj satisfy (3.3). In this case s = 0, s = 1, or s = 2 = q.

It is clear that the assertion in (B1) is sharp. By [2, Example 10], we see that the asser-
tion in (B2) corresponding to s = 1 is sharp. In this case, for β > 1, linearly independent
solutions f1, f2, and f3 satisfy σM(f1) = σM(f2) = β and σM(f3) = 0. Now aj ∈ H

∞
(pj+1)(3−j),

where p0 = (2/3)β, p1 = β + 2, and p2 = 0. Moreover, by [2, Example 9], we see that the
assertions in (B3) are sharp for s = 0 and s = 2. In this case for β > 1, linearly indepen-
dent solutions f1, f2, and f3 satisfy σM(f1) = σM(f2) = β and σM(f3) = 2β. Moreover, aj ∈
H

∞
(pj+1)(3−j), where p0 = (4/3)β, p1 = β, and p2 = 2β. Example 3.2 shows the sharpness of the

assertions in (B3) for s = 0, 1, 2. That is, in all cases there exists a solution for which equality
holds in (2.22).
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3.3. Examples

Example 3.1 shows that a unit disc counterpart of the finite set constructed by Gundersen-
Steinbart-Wang does not contain growth orders of solutions of

f ′′ + a1(z)f ′ + a0(z)f = 0, (3.5)

if coefficients belong either to weighted Bergman spaces or to weighted Hardy spaces.

Example 3.1. Let α, β ∈ R be constants satisfying 1 < β < α < 2β − 1. Then the functions

f1(z) = (1 − z)α+β exp

((
1

1 − z

)α

+
(

1
1 + z

)β
)

,

f2(z) = (1 − z)α+β exp
(

1
1 + z

)β
(3.6)

are linearly independent analytic solutions of (3.5), where

a0(z) =
β2

(1 + z)2+2β
+
β
(
α + 3β

)(
γ + z

)

(1 − z)(1 + z)2+β
− α
(
α + β

)

(1 − z)2+α

− αβ

(1 − z)1+α(1 + z)1+β
+
β
(
α + β

)

(1 − z)2
,

a1(z) =
2β

(1 + z)1+β
− α

(1 − z)1+α
+
α + 2β − 1

1 − z

(3.7)

belong toH(D), and γ = (α + β − 2)/(α + 3β) ∈ (0, 1/2).
It is clear that aj ∈ A

1/(2−j)
αj

, where α0 = β − 1 and α1 = α − 1. We calculate that s1 = 1,
s2 = 0, BT (1) = α − 1, and BT (2) = 2β − α − 1. Hence [2β − α − 1, α − 1] is the only possible
interval for T -orders of solutions of (3.5). Since σT (f2) = β − 1, we conclude that the T -order
of a solution does not have to be one of the endpoints.

On the other hand, it is also clear that aj ∈ H
∞
(pj+1)(2−j), where p0 = β and p1 = α. We

calculate that s1 = 1, s2 = 0, BM(1) = α, and BM(2) = 2β − α. Hence [2β − α, α] is the only
possible interval for M-orders of solutions of (3.5). Since σM(f2) = β, we conclude that the
M-order of a solution does not have to be one of the endpoints.

The following example demonstrates the sharpness of Theorems 2.1 and 2.5 in the case
that they do not reduce to known results.

Example 3.2. Let β > 1, and denote g(z) = (5/(1 − z))β. Then the functions

fj(z) = (1 − z)β exp
(
g(z)j

)
, j = 1, 2, 3, (3.8)
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are linearly independent solutions of f ′′′ + a2(z)f ′′ + a1(z)f ′ + a0(z)f = 0, where

a2(z) =
P2
(
g(z)

)

(1 − z)Q
(
g(z)

) , a1(z) =
P1
(
g(z)

)

(1 − z)2Q
(
g(z)

) , a0(z) =
β3P0

(
g(z)

)

(1 − z)3Q
(
g(z)

) (3.9)

are such that

P2(ζ) = 54βζ8 − 27βζ7 − 24βζ6 +
(
108β + 54

)
ζ5 − (82β + 63

)
ζ4 + 3βζ3

+
(
22β + 39

)
ζ2 − (6β + 24

)
ζ + 6,

P1(ζ) = −108β2ζ10 + 72β2ζ9 +
(
27β2 − 54β

)
ζ8 +

(
27β − 135β2

)
ζ7

+
(
24β + 15β2

)
ζ6 +

(
64β2 − 108β − 18

)
ζ5 +

(
21 + 82β − 51β2

)
ζ4

−
(
3β + 15β2

)
ζ3 +

(
31β2 − 22β − 13

)
ζ2 +

(
8 + 6β − 14β2

)
ζ + 2β2 − 2,

P0(ζ) = 108ζ11 − 234ζ10 + 126ζ9 + 123ζ8 − 276ζ7 + 183ζ6 − 104ζ5 + 40ζ4

− 6ζ3 − 4ζ2,

Q(ζ) = −18ζ5 + 21ζ4 − 13ζ2 + 8ζ − 2.

(3.10)

The zeros of Q(ζ) lie in the open disc of radius 1 + 21/18 centered at the origin by [14, Lem-
ma 1.3.2]. Since |g(z)| > |5/(1 − z)| > 5/2 > 39/18 for all z ∈ D, we conclude that a0, a1, a2 ∈
H(D). In fact, the coefficients a0, a1, and a2 satisfy

a2(z) ∼
(

1
1 − z

)3β+1

, a1(z) ∼
(

1
1 − z

)5β+2

, a0(z) ∼
(

1
1 − z

)6β+3

, (3.11)

in a neighborhood of z = 1, while they are bounded in a neighborhood of any boundary point
in ∂D \ {1}.

Note that aj ∈ A
1/(3−j)
αj

, where α2 = 3β − 1, α1 = (5/2)β − 1, and α0 = 2β − 1. Evidently
σT (fj) = βj − 1 for j = 1, 2, 3. We deduce that there is one solution f3 such that σT (f3) = α2 =
3β − 1, two solutions f2 and f3 such that

σT

(
f3
)
> σT

(
f2
)
= min{2α1 − α2, α1} = 2β − 1, (3.12)

and three solutions f1, f2, and f3 such that

σT

(
f3
)
> σT

(
f2
)
> σT

(
f1
)
= min

{
3α0 − 2α1,

3
2
α0 − 1

2
α2, α0

}
= β − 1. (3.13)

That is, in all cases s = 0, 1, 2 there exists a solution for which the lower bound in (2.4) is
attained. Further, this example is in line with Corollary 2.2, since all solutions f1, f2, and f3
are of strictly positive T -order, and in this case s∗ = 0.
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Now γT (0) = βT (0) = β − 1, γT (1) = βT (1) = 2β − 1, and γT (2) = βT (2) = 3β − 1. It follows
that for the solution base {f1, f2, f3} equality holds in the first inequality in (2.9), and for the
solution base {f1 + f3, f2 + f3, f3} equality holds in the last inequality in (2.9). This shows the
sharpness of Corollary 2.3.

On the other hand, aj ∈ H
∞
(pj+1)(3−j), where p2 = 3β, p1 = 5β/2, and p0 = 2β. Evidently

σM(fj) = βj for j = 1, 2, 3. We deduce that there is one solution f3 such that σM(f3) = p2 =
3β > 1, two solutions f2 and f3 such that

σM

(
f3
)
> σM

(
f2
)
= min

{
2p1 − p2, p1

}
= 2β > 1, (3.14)

and three solutions f1, f2, and f3 such that

σM

(
f3
)
> σM

(
f2
)
> σM

(
f1
)
= min

{
3p0 − 2p1,

3
2
p0 − 1

2
p2, p0

}
= β. (3.15)

That is, in all cases s = 0, 1, 2 there exists a solution for which the lower bound in (2.22) is
attained. Further, this example is in line with Corollary 2.6, since all solutions f1, f2, and f3
are ofM-order strictly greater than 1, and in this case s� = 0.

Now γM(0) = βM(0) = β, γM(1) = βM(1) = 2β, and γM(2) = βM(2) = 3β. It follows
that for the solution base {f1, f2, f3} equality holds in (2.27), and for the solution base {f1 +
f3, f2 + f3, f3} upper bound for the sum ofM-orders is attained. This shows the sharpness of
Corollary 2.7.

4. Proof of Theorem 2.1

The following lemma on the order reduction procedure originates from C.

LemmaC (see [4, Lemma 6.4]). Let f0,1, f0,2, . . . , f0,m be m ≥ 2 linearly independent meromorphic
solutions of

y(k) + a0,k−1(z)y(k−1) + · · · + a0,0(z)y = 0, k ≥ m, (4.1)

where a0,0(z), . . . , a0,k−1(z) are meromorphic functions in D. For 1 ≤ p ≤ m − 1, set

fp,j =

(
fp−1,j+1
fp−1,1

)′
, j = 1, . . . , m − p. (4.2)

Then fp,1, fp,2, . . . , fp,m−p are linearly independent meromorphic solutions of

y(k−p) + ap,k−p−1(z)y(k−p−1) + · · · + ap,0(z)y = 0, (4.3)
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where

ap,j(z) =
k−p+1∑

n=j+1

(
n

j + 1

)

ap−1,n(z)
f
(n−j−1)
p−1,1 (z)

fp−1,1(z)
(4.4)

for j = 0, . . . , k − p − 1. Here an,k−n(z) ≡ 1 for all n = 0, . . . , p.

Lemma D (see [15, Lemma E(b)]). Let k and j be integers satisfying k > j ≥ 0, and let ε > 0. If f
is meromorphic in D such that σT (f) < ∞, and f (j) /≡ 0, then

∫

D

∣
∣
∣
∣
∣
f (k)(z)
f (j)(z)

∣
∣
∣
∣
∣

1/(k−j)
(1 − |z|)σT (f)+εdm(z) < ∞. (4.5)

4.1. Case s = 1

Let k ≥ 3, q ≥ 2, s = 1, and βT (1) > 0, since otherwise there is nothing to prove.
In particular, if α1 ≤ 0, then (2.4) is trivial, since by taking j = k in (2.6), we obtain
βT (1) ≤ α1 ≤ 0. Let {f0,1, f0,2, . . . , f0,k} be a solution base of (1.1), and assume on the contrary
to the assertion that there exist s + 1 = 2 linearly independent solutions f0,1 and f0,2 such that
max{σT (f0,1), σT (f0,2)} =: σ < βT (1). Then the meromorphic function g := (f0,1/f0,2)′ satisfies
σT (g) ≤ σ. Moreover, Lemma C implies that g satisfies

g(k−1) + a1,k−2(z)g(k−2) + · · · + a1,0(z)g = 0, (4.6)

where

a1,j(z) = a0,j+1(z) +
k∑

n=j+2

(
n

j + 1

)

a0,n(z)
f
(n−j−1)
0,1 (z)

f0,1(z)
(4.7)

for j = 0, 1, . . . , k − 2, and a0,k(z) ≡ 1. Therefore

|a0,1(z)| ≤ |a1,0(z)| +
k∑

n=2

(
n

1

)

|a0,n(z)|
∣∣∣∣∣∣

f
(n−1)
0,1 (z)

f0,1(z)

∣∣∣∣∣∣
, (4.8)

where

|a1,0(z)| ≤
∣∣∣∣∣
g(k−1)(z)
g(z)

∣∣∣∣∣
+ |a1,k−2(z)|

∣∣∣∣∣
g(k−2)(z)
g(z)

∣∣∣∣∣
+ · · · + |a1,1(z)|

∣∣∣∣
g ′(z)
g(z)

∣∣∣∣, (4.9)

since g satisfies (4.6). Putting the last two inequalities together, we obtain

|a0,1(z)| �
k−1∑

j=1

∣∣a1,j(z)
∣∣
∣∣∣∣∣
g(j)(z)
g(z)

∣∣∣∣∣
+

k∑

n=2
|a0,n(z)|

∣∣∣∣∣∣

f
(n−1)
0,1 (z)

f0,1(z)

∣∣∣∣∣∣
. (4.10)
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Let ε > 0. Raising both sides to the power 1/(k − 1) and integrating over the disc D(0, r) of
radius r ∈ (0, 1) with respect to (1 − |z|2)α1−εdm(z), we obtain

∫

D(0,r)
|a0,1(z)|1/(k−1)

(
1 − |z|2

)α1−ε
dm(z)

�
k−1∑

j=1

∫

D

∣
∣a1,j(z)

∣
∣1/(k−1)

∣
∣
∣
∣
∣
g(j)(z)
g(z)

∣
∣
∣
∣
∣

1/(k−1)(
1 − |z|2

)α1−ε
dm(z)

+
k∑

n=2

∫

D

|a0,n(z)|1/(k−1)
∣
∣
∣
∣
∣
∣

f
(n−1)
0,1 (z)

f0,1(z)

∣
∣
∣
∣
∣
∣

1/(k−1)
(
1 − |z|2

)α1−ε
dm(z).

(4.11)

To deal with the second sum in (4.11), consider

In :=
∫

D

|a0,n(z)|1/(k−1)
∣∣∣∣∣∣

f
(n−1)
0,1 (z)

f0,1(z)

∣∣∣∣∣∣

1/(k−1)
(
1 − |z|2

)α1−ε
dm(z), n = 2, . . . , k. (4.12)

By Lemma D,

Ik =
∫

D

∣∣∣∣∣∣

f
(k−1)
0,1 (z)

f0,1(z)

∣∣∣∣∣∣

1/(k−1)
(
1 − |z|2

)α1−ε
dm(z) < ∞ (4.13)

for ε > 0 being small enough since σT (f0,1) ≤ σ < βT (1) ≤ α1. Moreover, by Hölder’s
inequality, with indices (k − 1)/(k − n) and (k − 1)/(n − 1), we have

In ≤
(∫

D

|a0,n(z)|1/(k−n)
(
1 − |z|2

)αn+ε
dm(z)

)(k−n)/(k−1)

·

⎛

⎜
⎝

∫

D

∣∣∣∣∣∣

f
(n−1)
0,1 (z)

f0,1(z)

∣∣∣∣∣∣

1/(n−1)
(
1 − |z|2

)ω1(n)
dm(z)

⎞

⎟
⎠

(n−1)/(k−1) (4.14)

for all n = 2, . . . , k − 1, where

ωs(n) :=
(k − s)(αs − αn)

n − s
+ αn − 2k − n − s

n − s
ε. (4.15)

The first member in the product is finite since a0,n ∈ A
1/(k−n)
αn

for all n = 2, . . . , k − 1 by the
assumption, and so is the second one for ε > 0 small enough since

σT

(
f0,1
) ≤ σ < βT (1) ≤ (k − 1)(α1 − αn)

n − 1
+ αn, n = 2, . . . , k − 1, (4.16)

by the antithesis. Thus
∑k

n=2 In is finite for ε > 0 being small enough.
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To deal with the first sum in (4.11), denote

Jj :=
∫

D

∣
∣a1,j(z)

∣
∣1/(k−1)

∣
∣
∣
∣
∣
g(j)(z)
g(z)

∣
∣
∣
∣
∣

1/(k−1)(
1 − |z|2

)α1−ε
dm(z), j = 1, . . . , k − 1. (4.17)

Lemma D implies that

Jk−1 =
∫

D

∣
∣
∣
∣
∣
g(k−1)(z)
g(z)

∣
∣
∣
∣
∣

1/(k−1)(
1 − |z|2

)α1−ε
dm(z) < ∞ (4.18)

for ε > 0 being small enough since σT (g) ≤ σ < βT (1) ≤ α1. Moreover, by (4.7)we have

Jj �
∫

D

∣∣a0,j+1(z)
∣∣1/(k−1)

∣∣∣∣∣
g(j)(z)
g(z)

∣∣∣∣∣

1/(k−1)(
1 − |z|2

)α1−ε
dm(z)

+
k∑

n=j+2

∫

D

|a0,n(z)|1/(k−1)
∣∣∣∣∣∣

f
(n−j−1)
0,1 (z)

f0,1(z)

∣∣∣∣∣∣

1/(k−1)∣∣∣∣∣
g(j)(z)
g(z)

∣∣∣∣∣

1/(k−1)(
1 − |z|2

)α1−ε
dm(z)

=: Kj + Lj,k +
k−1∑

n=j+2

Lj,n

(4.19)

for all j = 1, . . . , k − 2. Since max{σT (g), σT (f0,1)} ≤ σ < βT (1), we deduce thatKj behaves like
Ij+1 and hence

∑k−2
j=1 Kj < ∞ for ε > 0 being small enough. Moreover, by Hölder’s inequality,

with indices (k − 1)/(k − j − 1) and (k − 1)/j, and Lemma D we have

Lj,k ≤

⎛

⎜
⎝

∫

D

∣∣∣∣∣∣

f
(k−j−1)
0,1 (z)

f0,1(z)

∣∣∣∣∣∣

1/(k−j−1)
(
1 − |z|2

)α1−ε
dm(z)

⎞

⎟
⎠

(k−j−1)/(k−1)

·
⎛

⎝
∫

D

∣∣∣∣∣
g(j)(z)
g(z)

∣∣∣∣∣

1/j(
1 − |z|2

)α1−ε
dm(z)

⎞

⎠

j/(k−1)

< ∞

(4.20)

for all j = 1, . . . , k − 2 when ε > 0 is sufficiently small. It remains to consider the double sum∑k−3
j=1
∑k−1

n=j+2 Lj,n. By Hölder’s inequality, with indices (k − 1)/(k − n) and (k − 1)/(n − 1), we
have

Lj,n ≤
(∫

D

|a0,n(z)|1/(k−n)
(
1 − |z|2

)αn+ ε
dm(z)

)(k−n)/(k−1)

·

⎛

⎜
⎝

∫

D

∣∣∣∣∣∣

f
(n−j−1)
0,1 (z)

f0,1(z)

∣∣∣∣∣∣

1/(n−1)∣∣∣∣∣
g(j)(z)
g(z)

∣∣∣∣∣

1/(n−1)(
1 − |z|2

)ω1(n)
dm(z)

⎞

⎟
⎠

(n−1)/(k−1)

,

(4.21)
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where ω1(n) is defined in (4.15). The first term in the product is bounded for all ε > 0 since
a0,n ∈ A

1/(k−n)
αn

for all n = 3, . . . , k − 1 by the assumption. One more application of Hölder’s
inequality, with indices (n − 1)/(n − j − 1) and (n − 1)/j, together with Lemma D and the
antithesis shows that also the second term in the product is bounded for ε > 0 being small
enough, and thus

∑k−3
j=1
∑k−1

n=j+2 Lj,n < ∞ for ε > 0 being small enough.
We have proved that the right-hand side of (4.11) is uniformly bounded for all r ∈

(0, 1), if ε > 0 is small enough. However, a0,1 ∈ A
1/(k−1)
α1 by the assumption, and hence the

left-hand side of (4.11) diverges as r → 1−. Contradiction follows.

4.2. Case s > 1

Let k ≥ 3, q ≥ 2, s > 1, and βT (s) > 0, since otherwise there is nothing to prove. In particular,
it follows that αs > 0. Let {f0,1, f0,2, . . . , f0,k} be a solution base of (1.1), and assume on the
contrary to the assertion that there exist s + 1 linearly independent solutions f0,1, . . . , f0,s+1
such that

σ := max
{
σT

(
f0,1
)
, . . . , σT

(
f0,s+1

)}
< βT (s). (4.22)

Then the meromorphic functions f1,j = (f0,j+1/f0,1)′ satisfy σT (f1,j) ≤ σ for all j = 1, . . . , s. This
in turn implies that f2,j = (f1,j+1/f1,1)′ satisfy σT (f2,j) ≤ σ for all j = 1, . . . , s − 1. In general,
σT (fn,j) ≤ σ for all j = 1, . . . , s − n + 1 and n = 1, . . . , s. Moreover, as in the case s = 1, Lemma
C implies

|a0,s(z)| ≤ |a1,s−1(z)| +
k∑

n=s+1

(
n

s

)

|a0,n(z)|
∣∣∣∣∣∣

f
(n−s)
0,1 (z)

f0,1(z)

∣∣∣∣∣∣

≤ |a2,s−2(z)| +
k−1∑

n=s

(
n

s − 1

)

|a1,n(z)|
∣∣∣∣∣∣

f
(n−s+1)
1,1 (z)

f1,1(z)

∣∣∣∣∣∣

+
k∑

n=s+1

(
n

s

)

|a0,n(z)|
∣
∣∣∣∣∣

f
(n−s)
0,1 (z)

f0,1(z)

∣
∣∣∣∣∣

≤ · · ·

≤ |as,0(z)| +
s−1∑

m=0

k−m∑

n=s+1−m

(
n

s −m

)

|am,n(z)|
∣∣∣∣∣∣

f
(n−s+m)
m,1 (z)

fm,1(z)

∣∣∣∣∣∣
, (4.23)

where

|as,0(z)| ≤
∣∣∣∣∣∣

f
(k−s)
s,1 (z)

fs,1(z)

∣∣∣∣∣∣
+

k−s−1∑

m=1

|as,m(z)|
∣∣∣∣∣∣

f
(m)
s,1 (z)

fs,1(z)

∣∣∣∣∣∣
. (4.24)
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Putting these inequalities together, we obtain

|a0,s(z)| �
s∑

m=0

k−m−1∑

n=s+1−m
|am,n(z)|

∣
∣
∣
∣
∣
∣

f
(n−s+m)
m,1 (z)

fm,1(z)

∣
∣
∣
∣
∣
∣
+

s∑

m=0

∣
∣
∣
∣
∣
∣

f
(k−s)
m,1 (z)

fm,1(z)

∣
∣
∣
∣
∣
∣
. (4.25)

Let ε > 0. Raising both sides to the power 1/(k − s) and integrating over the discD(0, r)with
respect to (1 − |z|2)αs−εdm(z), we obtain

∫

D(0,r)
|a0,s(z)|1/(k−s)

(
1 − |z|2

)αs−ε
dm(z)

�
s∑

m=0

k−m−1∑

n=s+1−m

∫

D

|am,n(z)|1/(k−s)
∣∣∣∣∣∣

f
(n−s+m)
m,1 (z)

fm,1(z)

∣∣∣∣∣∣

1/(k−s)
(
1 − |z|2

)αs−ε
dm(z)

+
s∑

m=0

∫

D

∣∣∣∣∣∣

f
(k−s)
m,1 (z)

fm,1(z)

∣∣∣∣∣∣

1/(k−s)
(
1 − |z|2

)αs−ε
dm(z)

=:
s∑

m=0

k−m−1∑

n=s+1−m
Im,n +

s∑

m=0

Jm.

(4.26)

Lemma D and the antithesis imply that
∑s

m=0 Jm < ∞ for ε > 0 being small enough. Hence,
in order to obtain a contradiction with (4.26) and the assumption a0,s ∈ A

1/(k−s)
αs

, it suffices to
show that Im,n < ∞ for allm = 0, . . . , s and n = s+1−m, . . . , k−m−1 when ε > 0 is sufficiently
small.

By Hölder’s inequality, with indices (k − s)/(k − n) and (k − s)/(n − s), we have

I0,n ≤
(∫

D

|a0,n(z)|1/(k−n)
(
1 − |z|2

)αn+ε
dm(z)

)(k−n)/(k−s)

·

⎛

⎜
⎝

∫

D

∣∣∣∣∣∣

f
(n−s)
0,1 (z)

f0,1(z)

∣∣∣∣∣∣

1/(n−s)
(
1 − |z|2

)ωs(n)
dm(z)

⎞

⎟
⎠

(n−s)/(k−s) (4.27)

for all n = s + 1, . . . , k − 1, where ωs(n) is defined in (4.15). The first member in the product is
finite since a0,n ∈ A

1/(k−n)
αn

for all n = s + 1, . . . , k − 1 by the assumption, and so is the second
one for ε > 0 being small enough, since

σT

(
f0,1
) ≤ σ < βT (s) ≤ (k − s)(αs − αn)

n − s
+ αn, n = s + 1, . . . , k − 1, (4.28)
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by the antithesis. In the general case Lemma C gives

Im,n =
∫

D

|am,n(z)|1/(k−s)
∣
∣
∣
∣∣
∣

f
(n−s+m)
m,1 (z)

fm,1(z)

∣
∣
∣
∣∣
∣

1/(k−s)
(
1 − |z|2

)αs−ε
dm(z)

�
k−m+1∑

n1=n+1

∫

D

|am−1,n1(z)|1/(k−s)
∣
∣
∣
∣
∣
∣

f
(n1−n−1)
m−1,1 (z)

fm−1,1(z)

∣
∣
∣
∣
∣
∣

1/(k−s)

·
∣
∣
∣
∣
∣
∣

f
(n−s+m)
m,1 (z)

fm,1(z)

∣
∣
∣
∣
∣
∣

1/(k−s)
(
1 − |z|2

)αs−ε
dm(z)

�
k−m+1∑

n1=n+1

k−m+2∑

n2=n1+1

∫

D

|am−2,n2(z)|1/(k−s)
∣
∣
∣∣∣∣

f
(n2−n1−1)
m−2,1 (z)

fm−2,1(z)

∣
∣
∣∣∣∣

1/(k−s)

·
∣∣∣∣∣∣

f
(n1−n−1)
m−1,1 (z)

fm−1,1(z)

∣∣∣∣∣∣

1/(k−s)∣∣∣∣∣∣

f
(n−s+m)
m,1 (z)

fm,1(z)

∣∣∣∣∣∣

1/(k−s)
(
1 − |z|2

)αs−ε
dm(z),

(4.29)

and finally

Im,n �
k−m+1∑

n1=n+1

k−m+2∑

n2=n1+1

· · ·
k∑

nm=nm−1+1

K(n, n1, . . . , nm), (4.30)

where

K(n, n1, . . . , nm) :=
∫

D

|a0,nm(z)|1/(k−s)
∣∣∣∣∣∣

f
(nm−nm−1−1)
0,1 (z)

f0,1(z)

∣∣∣∣∣∣

1/(k−s)

· · ·
∣∣∣∣∣∣

f
(n2−n1−1)
m−2,1 (z)

fm−2,1(z)

∣∣∣∣∣∣

1/(k−s)

·
∣
∣∣∣∣∣

f
(n1−n−1)
m−1,1 (z)

fm−1,1(z)

∣∣∣∣∣∣

1/(k−s)∣∣∣∣∣∣

f
(n−s+m)
m,1 (z)

fm,1(z)

∣∣∣∣∣∣

1/(k−s)
(
1 − |z|2

)αs−ε
dm(z).

(4.31)

If nm = k, then a0,nm(z) ≡ 1, and general form of Hölder’s inequality with indices

nm − s

nm − nm−1 − 1
,

nm − s

nm−1 − nm−2 − 1
, . . . ,

nm − s

n1 − n − 1
,

nm − s

n − s +m
(4.32)

together with Lemma D shows that K(n, n1, . . . , nm) < ∞ for ε > 0 being small enough. If
nm < k, then an appropriate application of Hölder’s inequality with indices (k − s)/(k − nm)
and (k − s)/(nm − s) separates the coefficient from the solutions. The first term is finite by
the assumption, and the second term can seen to be finite by another application of general
form of Hölder’s inequality with indices (4.32). This gives the desired contradiction, since
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the left-hand side of (4.26) diverges as r → 1− and the right-hand side of (4.26) is uniformly
bounded for all r ∈ (0, 1).

5. Proof of Corollary 2.3

The upper bound in (2.9) follows directly from Theorem 2.1. To conclude the lower bound in
(2.9), assume that solutions f1, . . . , fk are given in increasing order with respect to T -order of
growth; that is, σT (f1) ≤ · · · ≤ σT (fk). By applying Theorem 2.1 with s = 0, . . . , q, we get the
following sequence of successive statements. For all solutions f in the solution base, we have
βT (0) ≤ σT (f); for k − 1 solutions f in the solution base, we have βT (1) ≤ σT (f), ending up
with the fact that k − q solutions f in the solution base satisfy αq = βT (q) = σT (f). Hence we
have γT (0) = βT (0) ≤ σT (f1), γT (1) = max{βT (0), βT (1)} ≤ σT (f2) continuing to

γT
(
q − 1

)
= max

{
βT (0), . . . , βT

(
q − 1

)} ≤ σT

(
fq
)
. (5.1)

Note that αq = γT (q). To see this, note that βT (s) ≤ αs for every s = 0, . . . , q, which
follows by taking j = k in (2.6), and hence

αq = βT
(
q
) ≤ γT

(
q
)
= max

{
βT (0), . . . , βT

(
q
)} ≤ max

{
α0, . . . , αq

}
= αq. (5.2)

The assertion follows by noting that if j ∈ {0, . . . , s� − 1}, then γT (j) ≤ 0, and we only have the
trivial estimate σT (fj) ≥ 0.

6. Proof of Lemma 2.4

Let m ∈ {1, . . . , p}. By (2.11), we obtain

δj − δsm−1

sm−1 − j
≤ δsm − δsm−1

sm−1 − sm
(6.1)

for all 0 ≤ j < sm−1, and the inequality (6.1) is strict for all 0 ≤ j < sm. This estimate will be
repeatedly needed later on.

6.1. Proof of Lemma 2.4(i)

Let 1 ≤ t ≤ p − 1. Note that BT (t) > 0 by definition. Since st+1 < st,

BT (t) − BT (t + 1) =
δst − δst−1
st−1 − st

− δst+1 − δst
st − st+1

=
st−1 − st+1
st − st+1

(
δst − δst−1
st−1 − st

− δst+1 − δst−1
st−1 − st+1

)
> 0

(6.2)

by (6.1), which proves the assertion of Lemma 2.4(i).
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6.2. Proof of Lemma 2.4(ii)

Since maxj=0,...,k−1{αj} = αs1 > 0, we get

βT (s1) = min
j=s1+1,...,k

{
k − j

j − s1

(
αs1 − αj

)
+ αs1

}
= αs1 =

δs1
k − s1

− 1 = BT (1), (6.3)

where the minimum is obtained with j = k. This proves the claim for t = 1.
Assume that t ∈ {2, . . . , p}. To prove the claim, we need the following observations. If

m ∈ {1, . . . , t − 1}, then by (6.1) we get

δst − δsm−1

sm−1 − st
− δst − δsm

sm − st
=

sm−1 − sm
sm − st

(
δsm − δsm−1

sm−1 − sm
− δst − δsm−1

sm−1 − st

)
> 0. (6.4)

On the other hand, if m ∈ {1, . . . , t}, then

δsm − δj

j − sm
≥ δsm − δsm−1

sm−1 − sm
(6.5)

for all sm < j ≤ sm−1. To verify (6.5), we consider the following two cases. If j = sm−1, then the
equality in (6.5) holds. If j < sm−1, then by using (6.1), we obtain

δsm − δj

j − sm
=

δsm − δsm−1

j − sm
− δj − δsm−1

sm−1 − j

sm−1 − j

j − sm

≥ δsm − δsm−1

j − sm
− δsm − δsm−1

sm−1 − sm

sm−1 − j

j − sm
=

δsm − δsm−1

sm−1 − sm
,

(6.6)

which proves (6.5).
To complete the proof of

βT (st) = min
j=st+1,...,k

{
δst − δj

j − st
− 1

}

=
δst − δst−1
st−1 − st

− 1 = BT (t), (6.7)

we argue as follows. First, we show that βT (st) ≥ BT (t). If st < j ≤ st−1, then (6.5) holds for
m = t. If j > st−1, then let m ∈ {1, . . . , t − 1} be the smallest index such that sm < j. From (6.1),
(6.4), and (6.5), we obtain

δst − δj

j − st
− δst − δsm

sm − st
=

j − sm
j − st

(
δsm − δj

j − sm
− δst − δsm

sm − st

)

>
j − sm
j − st

(
δsm − δsm−1

sm−1 − sm
− δst − δsm−1

sm−1 − st

)
> 0,

(6.8)
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which together with (6.4) shows that

δst − δj

j − st
>

δst − δsm
sm − st

> · · · > δst − δst−1
st−1 − st

. (6.9)

Second, we note that equality in (6.7) follows by taking j = st−1.

6.3. Proof of Lemma 2.4(iii)

Since αs1 = maxj=0,...,k−1{αj} > 0 and s1 = q, we get by means of (5.2) that

BT (1) =
δq

k − q
− 1 = αq = γT

(
q
)
. (6.10)

Let t ∈ {2, . . . , p}. We proceed to prove that γT (j) = BT (t) for all st ≤ j < st−1. Evidently,
γT (j) = max{βT (0), . . . , βT (j)} ≥ βT (st). By Lemma 2.4(ii), we conclude that γT (j) ≥ BT (t). To
prove that γT (j) ≤ BT (t), it is enough to show that βT (m) ≤ BT (t) for all m ∈ {0, . . . , j}. Since
m + 1 ≤ st−1, we obtain by appealing to (6.1) that

βT (m) = min
j=m+1,...,k

{
δm − δj

j −m
− 1

}

≤ δm − δst−1
st−1 −m

− 1 ≤ δst − δst−1
st−1 − st

− 1 = BT (t). (6.11)

If sp > 0, then for all m ∈ {0, . . . , sp − 1} we have

βT (m) = min
j=m+1,...,k

{
δm − δj

j −m
− 1

}

≤
δm − δsp
sp −m

− 1 ≤ 0 (6.12)

by (2.11). Hence γT (j) = max{βT (0), . . . , βT (j)} ≤ 0 for all j < sp. As a consequence we see that
sp = s�.

7. Proof of Theorem 2.5

Our proof of Theorem 2.5 is parallel to the proof of [3, Theorem 1.4], and hence we only
outline the argumentation. We may assume that k ≥ 3, q ≥ 2, s ∈ {1, . . . , q − 1}, and βM(s) > 1
for otherwise there is nothing to prove by Theorem B; see the discussion after Theorem 2.5.
In particular, if ps ≤ 1, then (2.22) is trivial, since by taking j = k in (2.24), we obtain βM(s) ≤
ps ≤ 1. On the contrary to the claim, assume that (1.1) admits s + 1 linearly independent
solutions f0,1, . . . , f0,s+1 such that

σM

(
f0,t
)
< α := βM(s), t = 1, . . . , s + 1. (7.1)

Remark that if α ≤ 1, then there is nothing to prove in (2.22); so we may assume that α > 1.
Now max{β, 1} < α, where β := maxt=1,...,s+1{σM(f0,t)} < ∞.
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Let ε, δ ∈ (0, 1). Now [3, Lemma 4.3] for m = s + 1 implies that there exists a solution
fs,1 /≡ 0 of

f (k−s) + as,k−s−1(z)f (k−s−1) + · · · + as,1(z)f ′ + as,0(z)f = 0 (7.2)

of the from fs,1 = gs,1/hs,1, where gs,1, hs,1 ∈ H(D) and

max
{
σM

(
gs,1
)
, σM(hs,1)

} ≤ max
{
β, 1
}
< α. (7.3)

It is easy to see that α = βM(s) yields (k − l)pl ≤ (k − s)ps − (l − s)α for all l ∈ {s + 1, . . . , k}.
Hence, by [3, Lemma 4.3] and the assumption a0,j ∈ H

∞
(pj+1)(k−j), we get

M
(
r, as,j

) ≤
(

1
1 − r

)(ps+1)(k−s)−j(α+1)+ε
, j = 1, . . . , k − s − 1, (7.4)

for all r ∈ [0, 1) \ E, where the set E satisfies the upper density condition:

D(E) := lim sup
r→ 1−

m(E ∩ [r, 1))
1 − r

≤ δ < 1. (7.5)

Here m(Ω) is the Lebesque measure of the set Ω. We note that set E may not be the same at
each occurrence; however, it always satisfies (7.5).

Let η ∈ (δ, 1). If we apply [3, Lemma 4.4] and use [3, Lemma 4.1] for the coefficient
a0,s ∈ H

∞
(ps+1)(k−s), we conclude that for ε > 0 being small enough, we have

M(r, as,0) �
(

1
1 − r

)(ps+1)(k−s)−ε
(7.6)

for all r ∈ F \ E, where the set F ⊂ [0, 1) satisfies D(F) ≥ η. In particular, we have D(F \ E) ≥
η − δ > 0.

On the other hand, by substituting f = fs,1 in (7.2) and by applying [3, Corollary 4.2]
to fs,1, it follows that

|as,0(z)| ≤
∣∣∣∣∣∣

f
(k−s)
s,1 (z)

fs,1(z)

∣∣∣∣∣∣
+

k−s−1∑

j=1

∣∣as,j(z)
∣∣

∣∣∣∣∣∣

f
(j)
s,1 (z)

fs,1(z)

∣∣∣∣∣∣
�
(

1
1 − |z|

)(ps+1)(k−s)−2ε
(7.7)

for all z ∈ D, |z| /∈ E. By comparing (7.6) to (7.7), we get a contradictory inequality:

(
ps + 1

)
(k − s) − ε ≤ (ps + 1

)
(k − s) − 2ε. (7.8)

This shows that each solution base of (1.1) contains at least k−s solutions f satisfying σM(f) ≥
βM(s).
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