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We have characterized a new type of core for double sequences, PC-core, and determined the
necessary and sufficient conditions on a four-dimensional matrix A to yield PC-core{Ax} ⊆ α(P -
core{x}) for all �∞2 .

1. Introduction

A double sequence x = [xjk]
∞
j,k=0 is said to be convergent in the Pringsheim sense or P -

convergent if for every ε > 0 there exists an N ∈ N such that |xjk − �| < ε whenever
j, k > N, [1]. In this case, we write P − limx = �. By c2, we mean the space of all P -convergent
sequences.

A double sequence x is bounded if

‖x‖ = sup
j,k≥0

∣
∣xjk

∣
∣ < ∞. (1.1)

By �2∞, we denote the space of all bounded double sequences.
Note that, in contrast to the case for single sequences, a convergent double sequence

need not be bounded. So, we denote by c∞2 the space of double sequences which are bounded
and convergent.

A double sequence x = [xjk] is said to converge regularly if it converges in
Pringsheim’s sense and, in addition, the following finite limits exist:

lim
k→∞

xjk = �j ,
(

j = 1, 2, 3, . . .
)

,

lim
j→∞

xjk = tj , (k = 1, 2, 3, . . .).
(1.2)
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Let A = [amn
jk ]∞j,k=0 be a four-dimensional infinite matrix of real numbers for all m,n = 0, 1, . . ..

The sums

ymn =
∞∑

j=0

∞∑

k=0

amn
jk xjk (1.3)

are called theA-transforms of the double sequence x = [xjk]. We say that a sequence x = [xjk]
is A-summable to the limit � if the A-transform of x = [xjk] exists for allm,n = 0, 1, . . . and is
convergent to � in the Pringsheim sense, that is,

lim
p,q→∞

p
∑

j=0

q
∑

k=0

amn
jk xjk = ymn,

lim
m,n→∞

ymn = �.

(1.4)

We say that a matrix A is bounded-regular if every bounded-convergent sequence x
is A-summable to the same limit and the A-transforms are also bounded. The necessary and
sufficient conditions for A to be bounded-regular or RH-regular (cf., Robison [2]) are

lim
m,n→∞

amn
jk = 0,

(

j, k = 0, 1, . . .
)

,

lim
m,n→∞

∞∑

j=0

∞∑

k=0

amn
jk = 1,

lim
m,n→∞

∞∑

j=0

∣
∣
∣amn

jk

∣
∣
∣ = 0, (k = 0, 1, . . .),

lim
m,n→∞

∞∑

k=0

∣
∣
∣amn

jk

∣
∣
∣ = 0,

(

j = 0, 1, . . .
)

,

∞∑

j=0

∞∑

k=0

∣
∣
∣amn

jk

∣
∣
∣ ≤ C < ∞ (m,n = 0, 1, . . .).

(1.5)

A double sequence x = [xjk] is said to be almost convergent (see [3]) to a number L if

lim
p,q→∞

sup
s,t≥0

1
pq

p
∑

j=0

q
∑

k=0

xs+j,t+k = L. (1.6)

Let σ be a one-to-one mapping from N into itself. The almost convergence of double
sequences has been generalized to the σ-convergence in [4] as follows:

lim
p,q→∞

sup
s,t≥0

1
pq

p
∑

j=0

q
∑

k=0

xσj (s),σk(t) = �, (1.7)
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where σj(s) = σ(σj−1(s)). In this case, we write σ − limx = �. By V 2
σ , we denote the set of

all σ-convergent and bounded double sequences. One can see that in contrast to the case
for single sequences, a convergent double sequence need not be σ-convergent. But every
bounded convergent double sequence is σ-convergent. So, c∞2 ⊂ V 2

σ ⊂ �∞2 . In the case σ(i) =
i + 1, σ-convergence of double sequences reduces to the almost convergence. A matrix A =
[amn

jk
]∞j,k=0 is said to be σ-regular if Ax ∈ V σ

2 for x = [xjk] ∈ c∞2 with σ − limAx = limx,
and we denote this by A ∈ (c∞2 , V σ

2 )reg, (see [5, 6]). Mursaleen and Mohiuddine defined and
characterized σ-conservative and σ-coercive matrices for double sequences [6].

A double sequence x = [xjk] of real numbers is said to be Cesáro convergent (or C1-
convergent) to a number L if and only if x ∈ C1, where

C1 =
{

x ∈ �∞2 : lim
p,q→∞

Tpq(x) = L;L = C1 − limx

}

,

Tpq(x) =
1

(

p + 1
)(

q + 1
)

p
∑

j=1

q
∑

k=1

xmn
jk .

(1.8)

We shall denote by C1 the space of Cesáro convergent (C1-convergent) double sequences.
A matrix A = (amn

jk
) is said to be C1-multiplicative if Ax ∈ C1 for x = [xjk] ∈ c∞2

with C1 − limAx = α limx, and in this case we write A ∈ (c∞2 , C1)α. Note that if α = 1, then
C1-multiplicative matrices are said to be C1-regular matrices.

Recall that the Knopp core (or K-core) of a real number single sequence x = (xk) is
defined by the closed interval [�(x), L(x)], where �(x) = lim inf x and L(x) = lim supx. The
well-known Knopp core theorem states (cf., Maddox [7] and Knopp [8]) that in order that
L(Ax) ≤ L(x) for every bounded real sequence x, it is necessary and sufficient that A = (ank)
should be regular and limn→∞

∑∞
k=0|ank| = 1. Patterson [9] extended this idea for double

sequences by defining the Pringsheim core (or P-core) of a real bounded double sequence
x = [xjk] as the closed interval [P − lim inf x, P − lim supx]. Some inequalities related to the
these concepts have been studied in [5, 9, 10]. Let

L∗(x) = lim sup
p,q→∞

sup
s,t

1
pq

p
∑

j=0

q
∑

k=0

xj+s,k+t,

Cσ(x) = lim sup
p,q→∞

sup
s,t

1
pq

p
∑

j=0

q
∑

k=0

xσj (s),σk(t).

(1.9)

Then, MR- (Moricz-Rhoades) and σ-core of a double sequence have been introduced by the
closed intervals [−L∗(−x), L∗(−x)] and [−Cσ(−x), Cσ(x)], and also the inequalities

L(Ax) ≤ L∗(x), L∗(Ax) ≤ L(x), L∗(Ax) ≤ L∗(x), L(Ax) ≤ Cσ(x), Cσ(Ax) ≤ L(x) (1.10)

have been studies in [3–5, 11].
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In this paper, we introduce the concept of C1-multiplicative matrices and determine
the necessary and sufficient conditions for a matrixA = (amn

jk
) to belong to the class (c∞2 , C1)α.

Further we investigate the necessary and sufficient conditions for the inequality

C∗
1(Ax) ≤ αL(x) (1.11)

for all x ∈ �2∞.

2. Main Results

Let us write

C∗
1(x) = lim sup

p,q→∞

1
(

p + 1
)(

q + 1
)

p
∑

j=0

q
∑

k=0

xjk. (2.1)

Then, we will define the PC-core of a realvalued bounded double sequence x = [xjk] by the
closed interval [−C∗

1(−x), C∗
1(x)]. Since every bounded convergent double sequence is Cesáro

convergent, we have C∗
1(x) ≤ P − lim supx, and hence it follows that PC-core(x) ⊆ P -core(x)

for a bounded double sequence x = [xjk].

Lemma 2.1. A matrix A = (amn
jk

) is C1-multiplicative if and only if

lim
p,q→∞

β
(

j, k, p, q
)

= 0
(

j, k = 0, 1, . . .
)

, (2.2)

lim
p,q→∞

∞∑

j=0

∞∑

k=0

β
(

j, k, p, q
)

= α, (2.3)

lim
p,q→∞

∞∑

j=0

∣
∣β
(

j, k, p, q
)∣
∣ = 0 (k = 0, 1, . . .), (2.4)

lim
p,q→∞

∞∑

k=0

∣
∣β
(

j, k, p, q
)∣
∣ = 0

(

j = 0, 1, . . .
)

, (2.5)

∞∑

j=0

∞∑

k=0

∣
∣
∣amn

jk

∣
∣
∣ ≤ C < ∞, (m,n = 0, 1, . . .), (2.6)

where the lim means P − lim and

β
(

j, k, p, q
)

=
1

(

p + 1
)(

q + 1
)

p
∑

j=0

q
∑

k=0

amn
jk . (2.7)

Proof. Sufficiency. Suppose that the conditions (2.2)-(2.6) hold and x = [xjk] ∈ c∞2 with P −
limj,kxjk = L, say. So that for every ε > 0 there exists N > 0 such that |xjk| < |�| + ε whenever
j, k > N.
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Then, we can write

∞∑

j=0

∞∑

k=0

β
(

j, k, p, q
)

xjk =
N∑

j=0

N∑

k=0

β
(

j, k, p, q
)

xjk +
∞∑

j=N

N−1∑

k=0

β
(

j, k, p, q
)

xjk

+
N−1∑

j=0

∞∑

k=N

β
(

j, k, p, q
)

xjk +
∞∑

j=N+1

∞∑

k=N+1

β
(

j, k, p, q
)

xjk.

(2.8)

Therefore,

∣
∣
∣
∣
∣
∣

∞∑

j=0

∞∑

k=0

β
(

j, k, p, q
)

xjk

∣
∣
∣
∣
∣
∣

≤ ‖x‖
N∑

j=0

N∑

k=0

∣
∣β
(

j, k, p, q
)∣
∣ + ‖x‖

∞∑

j=N

N−1∑

k=0

∣
∣β
(

j, k, p, q
)

xjk

∣
∣

+ ‖x‖
N−1∑

j=0

∞∑

k=N

∣
∣β
(

j, k, p, q
)∣
∣

+ (|L| + ε)

∣
∣
∣
∣
∣
∣

∞∑

j=N+1

∞∑

k=N+1

β
(

j, k, p, q
)

∣
∣
∣
∣
∣
∣

.

(2.9)

Letting p, q → ∞ and using the conditions (2.2)–(2.6), we get

∣
∣
∣
∣
∣
∣

lim
p,q→∞

∞∑

j=0

∞∑

k=0

β
(

j, k, p, q
)

xjk

∣
∣
∣
∣
∣
∣

≤ (|L| + ε)α. (2.10)

Since ε is arbitrary, C1 − limAx = αL. HenceA ∈ (c∞2 , C1)α, that is,A is C1-multiplicative.

Necessity 1. Suppose that A is C1-multiplicative. Then, by the definition, the A-transform of
x exists and Ax ∈ C1 for each x ∈ c∞2 . Therefore, Ax is also bounded. Then, we can write

sup
m,n

∞∑

j=0

∞∑

k=0

∣
∣
∣amn

jk xjk

∣
∣
∣ < M < ∞, (2.11)

for each x ∈ c∞2 . Now, let us define a sequence y = [yjk] by

yjk =

⎧

⎨

⎩

sgnamn
jk , 0 ≤ j ≤ r, 0 ≤ k ≤ r,

0, otherwise,
(2.12)

m,n = 0, 1, 2, . . .. Then, the necessity of (10) follows by considering the sequence y = [yjk] in
(2.11).
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Also, by the assumption, we have

lim
p,q→∞

∞∑

j=0

∞∑

k=0

β
(

j, k, p, q
)

xjk = α lim
j,k→∞

xjk. (2.13)

Now let us define the sequence eil as follows:

eil =

{

1,
(

j, k
)

= (i, l),
0, otherwise,

(2.14)

and write sl =
∑

i e
il(l ∈ N), ri =

∑

l e
il(i ∈ N). Then, the necessity of (2.2), (2.4), and (2.5)

follows from C1 − limAeil, C1 − limArj and C1 − limAsk, respectively.

Note that when α = 1, the above theorem gives the characterization of A ∈ (c∞2 , C1)reg.
Now, we are ready to construct our main theorem.

Theorem 2.2. For every bounded double sequence x,

C∗
1(Ax) ≤ αL(x), (2.15)

or (PC − core{Ax} ⊆ α(P − core{x})) if and only if A is C1-multiplicative and

lim sup
p,q→∞

∞∑

j=0

∞∑

k=0

∣
∣β
(

j, k, p, q
)∣
∣ = α. (2.16)

Proof. Necessity. Let (2.15) hold and for all x ∈ �2∞. So, since c
∞
2 ⊂ �2∞, then, we get

α(−L(−x)) ≤ −C∗
1(−Ax) ≤ C∗

1(Ax) ≤ αL(x). (2.17)

That is,

α lim infx ≤ −C∗
1(−Ax) ≤ C∗

1(Ax) ≤ α lim supx, (2.18)

where

−C∗
1(−Ax) = lim inf

p,q→∞

∞∑

j=0

∞∑

k=0

β
(

j, k, p, q
)

xjk. (2.19)

By choosing x = [xjk] ∈ c2∞, we get from (2.17) that

−C∗
1(−Ax) = C∗

1(Ax) = C1 − lim Ax = α lim x. (2.20)

This means that A is C1-multiplicative.
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By Lemma 3.1 of Patterson [9], there exists a y ∈ �2∞ with ||y|| ≤ 1 such that

C∗
1

(

Ay
)

= lim sup
p,q→∞

∞∑

j=0

∞∑

k=0

β
(

j, k, p, q
)

. (2.21)

If we choose y = v = [vjk], it follows

vjk =

{

1 if j = k,

0, elsewhere.
(2.22)

Since ‖vjk‖ ≤ 1, we have from (2.15) that

α = C∗
1(Av) = lim sup

p,q→∞

∞∑

j=0

∞∑

k=0

∣
∣β
(

j, k, p, q
)∣
∣ ≤ αL

(

vjk

) ≤ α‖v‖ ≤ α. (2.23)

This gives the necessity of (2.16).

Sufficiency 1. Suppose that A is C1-regular and (2.16) holds. Let x = [xjk] be an arbitrary
bounded sequence. Then, there exist M,N > 0 such that xjk ≤ K for all j, k ≥ 0. Now, we can
write the following inequality:

∣
∣
∣
∣
∣
∣

∞∑

j=0

∞∑

k=0

β
(

j, k, p, q
)

xjk

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∞∑

j=0

∞∑

k=0

(∣
∣β
(

j, k, p, q
)∣
∣ + β

(

j, k, p, q
)

2

−
∣
∣β
(

j, k, p, q
)∣
∣ − β

(

j, k, p, q
)

2

)

xjk

∣
∣
∣
∣
∣

≤
∞∑

j=0

∞∑

k=0

∣
∣β
(

j, k, p, q
)∣
∣
∣
∣xjk

∣
∣

+
∞∑

j=0

∞∑

k=0

∣
∣
(∣
∣β
(

j, k, p, q
)∣
∣ − β

(

j, k, p, q
))

xjk

∣
∣

≤ ‖x‖
M∑

j=0

N∑

k=0

∣
∣β
(

j, k, p, q
)∣
∣

+ ‖x‖
∞∑

j=M+1

N∑

k=0

∣
∣β
(

j, k, p, q
)∣
∣

+ ‖x‖
M∑

j=0

∞∑

k=N+1

∣
∣β
(

j, k, p, q
)∣
∣
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+ sup
j,k≥M,N

∣
∣xjk

∣
∣

∞∑

j=M+1

∞∑

k=N+1

∣
∣β
(

j, k, p, q
)∣
∣

+ ‖x‖
∞∑

j=0

∞∑

k=0

(∣
∣β
(

j, k, p, q
)∣
∣ − β

(

j, k, p, q
))

.

(2.24)

Using the condition of C1-multiplicative and condition (2.16), we get

C∗
1(Ax) ≤ αL(x). (2.25)

This completes the proof of the theorem.

Theorem 2.3. For x, y ∈ �∞2 , if C1 − lim |x − y| = 0, then C1 − core{x} = C1 − core{y}.

Proof. Since C2 − lim |x −y| = 0, we have C1 − lim(x −y) = 0 and C1 − lim(−(x −y)) = 0. Using
definition of C1 − core, we take C∗

1(x − y) = −C∗
1(−(x − y)) = 0. Since C∗

1 is sublinear,

0 = −C∗
1

(−(x − y
)) ≤ −C∗

1(−x) − C∗
1

(

y
)

. (2.26)

Therefore, C∗
1(y) ≤ −C∗

1(−x). Since −C∗
1(−x) ≤ C∗

1(x), this implies that C∗
1(y) ≤ C∗

1(x). By an
argument similar as above, we can show that C∗

1(x) ≤ C∗
1(y). This completes the proof.
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