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We extend the Montgomery identities for the Riemann-Liouville fractional integrals. We also use

these Montgomery identities to establish some new integral inequalities. Finally, we develop some
integral inequalities for the fractional integral using differentiable convex functions.

1. Introduction

The inequality of Ostrowski [1] gives us an estimate for the deviation of the values of a
smooth function from its mean value. More precisely, if f : [a,b] — R is a differentiable
function with bounded derivative, then

b
‘f(x) e Rk

. [}L L - (a+b)/2)?

e T4 PR

for every x € [a, b]. Moreover, the constant 1/4 is the best possible.

For some generalizations of this classic fact see ([2], (pages 468-484)) by Mitrinovi¢
et al. A simple proof of this fact can be done by using the following identity [2].

If f: [a,b] — R is differentiable on [a, b] with the first derivative f’ integrable on
[a, b], then Montgomery identity holds

b b
f(x) = ﬁj‘ f(t)dt+j Pi(x,t)f'(t)dt, (1.2)
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where P (x, t) is the Peano kernel defined by

t—a
b_a’ a<t<ux,

Pi(x,t):=1 t_p b (1.3)
b-a’

Recently, several generalizations of the Ostrowski integral inequality are considered by
many authors; for instance, covering the following concepts: functions of bounded variation,
Lipschitzian, monotonic, absolutely continuous, and n-times differentiable mappings with
error estimates with some special means together with some numerical quadrature rules. For
recent results and generalizations concerning Ostrowski’s inequality, we refer the reader to
the recent papers [3-10].

In this paper, we extend the Montgomery identities for the Riemann-Liouville frac-
tional integrals. We also use these Montgomery identities to establish some new integral
inequalities of Ostrowski’s type. Finally, we develop some integral inequalities for the
fractional integral using differentiable convex functions. Later, we develop some integral
inequalities for the fractional integral using differentiable convex functions. From our results,
the weighted and the classical Ostrowski’s inequalities can be deduced as some special cases.

2. Fractional Calculus

Firstly, we give some necessary definitions and mathematical preliminaries of fractional cal-
culus theory which are used further in this paper. For more details, one can consult [11, 12].

Definition 2.1. The Riemann-Liouville fractional integral operator of order a > 0 with a > 0 is
defined as

a _L * _ pa-1
12 = s | G- 0 o
JOF () = £ ).

Recently, many authors have studied a number of inequalities by using the Riemann-
Liouville fractional integrals, see [13—-16] and the references cited therein.

3. Main Results

In order to prove some of our results, by using a different method of proof, we give the
following identities, which are proved in [13]. Later, we will generalize the Montgomery
identities in the next theorem.

Lemma 3.1. Let f : I ¢ R — R be a differentiable function on 1° with a,b € I(a < b) and
f"e€Li[a,b], then

£ = 1 o= ) f ) - I (Bae b)) + JE(BCe b)), w21, ()
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where P>(x, t) is the fractional Peano kernel defined by

éii(b -x)"™T(a), a<t<x,
Pry(x,t):=13 t_p (3.2)

(- )T (), x<t<b.

Proof. By definition of P;(x,t), we have

b
L(a)J5 (Pi(x,b)f'(b)) = I (b= D" Py(x, 1) f (Dt

_ J (b -1~ <£:—‘;>f'(t)dt + jb (b 1) <£%Z)f’(t)dt

(3.3)
x b
= ﬁ [L (b-t)*(t—a)f'(t)dt - L (b- t)"’f’(t)dt]
= bia(h +12).
Integrating by parts, we can state
L= -0 (t-a)f)| - f [-@- 1)@ - 2t -a)+ b -] fat
’ (3.4)

=(b-x)""x-a)f(x)+(a-1) f (b—1)(t—a)f(t)dt - J'x (b -t f(t)dt,
and similarly,
b b b
L=-(b-t)f)|, - af (b-)*f(t)dt = (b-x)"f(x) - af (b-)*'f(t)ydt.  (3.5)

Adding (3.4) and (3.5), we get

1

L@z (Pi(x,b)f'(0) = o —

{(b @) b-x) f(0) + (a—1) f (b - "2t - a) f (1)t

b X
—af (b-t)*" f(t)dt - f (b- t)"‘"lf(t)dt}.
(3.6)



4 Abstract and Applied Analysis

If we add and subtract the integral (a —1) fﬁ(b —H)*2(t-b) f(t)dt to the right-hand side of the
equation above, then we have

[(a)J5 (Pi(x,b)f'(b)) = {(b a)(b-x)"" f(x)
b
+(-a)(a-1) f (b—1)*2Py(x, 1) f (H)dt

—fw—wﬂfmm}
a (3.7)

b
=(b-x)""f(x)+(@-1) f (b—1)2Pi(x, ) f(t)dt

b
—;5f<wﬂ*7mw

F(oc)

= (b-x)"" f(x) = 5 Jif(b) + T@) 5™ (Pi(x,b) f (b)).

Multiplying both sides by (b — x)'™*, we obtain

F(a)

Ji(P2(x, ) f'(b)) = f(x) = g —_ (b~ X) e f(b) + I (Pa(x, ) (D)), (3.8)

and so

f =7

S(b- )T Jaf(0) = Ji T (Pa(x,b) f (D)) + & (Pa(x,b) £ (1)) (3.9)

This completes the proof. O
Now, we extend Lemma 3.1 as follows.

Theorem 3.2. Let f : I C R — R be a differentiable function on I° with f' € Li[a,b], then the
following identity holds:

_ Q A\ 1laga _ b__a“‘l
(1-20)f (@) = ;2 (b )]JW)A<hm) fla) (3.10)

~ I (Py(x, D) f (1)) + Ja(Ps(x, b)f' (b)), a>1,
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where P3(x, t) is the fractional Peano kernel defined by

t—(1-\)a-Ab
b-a
Ps(x,t) == t— (1-\)b-Aa

b-a

(b-x)""T(a),

(b-x)"""T(a),

for0<A<L

Proof. By similar way in proof of Lemma 3.1, we have

I(a)J5 (Ps(x, b) f'(b))

b
J‘ (b— 1) Ps(x,t) f'(t)dt

:MU (b=t - (1 - Na— Ab) f (Hdt

+j (b -1t - (1-\)b-Aa) f’(t)dt]

L(a)(b-x)""

= =i+ o).

Integrating by parts, we can state

Ji=(b-x)""(x = (1-N)a-Ab)f(x) + (b-a)"f(a)

X

+(a-1) r b-H*2(t-(1-Na- )Lb)f(t)dt—f (b

a

and similarly,

-b-x)"(x-(1-1)b-1La)f(x)

b b
+(a—1)f (b—t)""z(t—(1—A)a—Ab)f(t)dt—f (-1 " f(t)dt.

Thus, by using J; and J, in (3.12), we get (3.10) which completes the proof.

- f(B)dt,

(3.11)

(3.12)

(3.13)

(3.14)

O

Remark 3.3. We note that in the special cases, if we take A = 0 in Theorem 3.2, then we get

(3.1) with the kernel P (x, t).
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Theorem 3.4. Let f : [a,b] — R be a differentiable on (a, b) such that f' € Lq[a, b], where a < b.
If|f'(x)] £ M for every x € [a,b] and a > 1, then the following inequality holds:

'(1 20£0) - 1220020 +4(2) f(a)+]2‘_1(P3(x,b)f(b))‘
M a —a at a+
_a(a+1){(b_a) (b-x)' [2)» L+2(1-1) 1+/\(b—a)_1] (3.15)

+(b-x) [Zal;:x _

@]}

Proof. From Theorem 3.2, we get

F(a) b-a

a-1
o (b0 0) + A2 ) f<a>+fg-1(P3<x,b>f<b>)'

’(1 20 f (x) =

< o || -0 sl @

(b x)l a

U (-1t — (1 - N)ya—Ab||f'(1)|dt

+J (-1t - (1-1)b- )La||f’(t)|dt:|

_ 1-a x b
< M(Zf’;) {f (b= )%t = (1= \)a - \b|dt + L (b-1) Yt - (1-A)b- Aaldt}

1-a
L )

(3.16)

By simple computation, we obtain

Js = J (b—1)*t = (1-N)a - Abldt

Ab+(1-1) x
= J (b-1H"1 b+ (1—A)a—t)dt+f (b=t —Ab—(1-N)a)dt
a Ab+(1-A)a

(b a)a+l
a(a+1)

(b-x)"

[2(1 N 4B - a) -1] )

———[a(b-x)-(1-1)(b-a)(a+1)],
(3.17)
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and similarly

b
Ja= f (-1t = (1-A)b- Aaldt

Aa+(1-\)b b
= f b-H""Na+(1 —)L)b—t)dt+f (b-t)(t-Aa-(1-AN)b)dt (3.18)
x Aa+(1-1)b
_ 20 (b - )™ L (b= x)*
B a(a+1) a(a+1)

[a(b-x)-A(b-a)(a+1)].

By using J3 and J4 in (3.16), we obtain (3.15). O

Remark 3.5. If we take A = 0 in Theorem 3.4, then it reduces Theorem 4.1 proved by Anas-
tassiou et al. [13]. So, our results are generalizations of the corresponding results of Anas-
tassiou et al. [13].

Theorem 3.6. Let f : [a,b] — R be a differentiable convex function on (a,b) and f' € Li[a,b].
Then for any x € (a,b), the following inequality holds:

1 b-x)? . (b=x)? :
FEESY [a(b _’;) fi(x) - <(b ) (b-x)" 4 al . _’;) —(a+1)(b- x)>f(x)]
(3.19)
< 2D b)) - I (B b)) - (), @z
Proof. Similarly to the proof of Lemma 3.1, we have
£ - 5 o= )0 + I3 (P ) f0)
I e , (3.20)
= U (b-t)(t—a)f'(t)dt - f (b- t)“f’(t)dt].

Since f is convex, then for any x € (a,b) we have the following inequalities:
f'(t) < fl(x) forae. te€[ax], (3.21)
f'(t) > fi(x) forae.te[x,Db]. (3.22)

If we multiply (3.21) by (b - t)“_l(t —a) 20,t€[a x], a >1and integrate on [a, x], we get

[(@-vie-aras [ o-nm-ar @a

- 0™ =0 (-2 - @ V- a7 )

a(a+1
(3.23)
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and if we multiply (3.22) by (b—£)" >0, t € [x,b], a > 1 and integrate on [x, b], we also get

(b x)ac+1

b b
J (b—t)“f’(t)dtzf (b-t)* fL(x)dt = —2 f! (x). (3.24)

Finally, if we subtract (3.24) from (3.23) and use the representation (3.20) we deduce the
desired inequality (3.19). O

Corollary 3.7. Under the assumptions Theorem 3.6 with a = 1, one has

b
% [(b - x)*fl(x) - (a-x) fi(x)] < f f(t)dt - (b-a)f(x). (3.25)

The proof of Corollary 3.7 is proved by Dragomir in [6]. Hence, our results in
Theorem 3.6 are generalizations of the corresponding results of Dragomir [6].

Remark 3.8. 1f we take x = (a + b)/2 in Corollary 3.7, we get

R R E = N oM

Theorem 3.9. Let f : [a,b] — R be a differentiable convex function on (a,b) and f' € Li[a,b].
Then for any x € [a, b], the following inequality holds:

%(b - )T f(b) - JEH (Pa(x, b) f (b)) - f(x)
1 (b- x)
~a(a+1) [ o .

—<(b—a)“(b—x) (12 x)° —(@+1)(b- x)>] a>1.

Proof. Assume that f; (a) and f’(b) are finite. Since f is convex on [a,b], then we have the
following inequalities:

f'(t) > fi(a) forae.t€[a,x], (3.28)
f'(t) < fL(b) forae.te [x,b]. (3.29)
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If we multiply (3.28) by (b - H*Yt-a)>0,te[ax], a>1and integrate on [a, x], we have
X X
f (b-t"'t—a)f (t)dt > f (b-1)*(t - a)f,(a)dt

- a(al+ . (6= + (b - x)[a(b - x) - (@ + 1) (b - D)]] f. (),
(3.30)

and if we multiply (3.29) by (b—1)" >0, t € [x,b], a > 1 and integrate on [x, b], we also have

b b a+1
f (b—t)*f (t)dt < f (b -t f (b)dt = (b_—x)ﬂ(b). (3.31)

a+1

Finally, if we subtract (3.30) from (3.31) and use the representtation (3.20) we deduce the
desired inequality (3.27). O

Corollary 3.10. Under the assumptions Theorem 3.9 with a = 1, one
’ 1 2 2
f fdt—(b-a)f(x) < 5 [(b -x)°fL(b) - (a—x) fi(a)]. (3.32)
The proof of Corollary 3.10 is proved by Dragomir in [6]. So, our results in Theorem 3.9

are generalizations of the corresponding results of Dragomir [6].

Remark 3.11. If we take x = (a + b)/2 in Corollary 3.10, we get

b —
0< 5o [ o= g(50) < TS0 - £l (339
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