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Low-rank matrix recovery (LMR) is a rank minimization problem subject to linear equality constraints, and it arises in many fields
such as signal and image processing, statistics, computer vision, and system identification and control. This class of optimization
problems is generallyNP hard. A popular approach replaces the rank functionwith the nuclear norm of thematrix variable. In this
paper, we extend and characterize the concept of 𝑠-goodness for a sensing matrix in sparse signal recovery (proposed by Juditsky
andNemirovski (Math Program, 2011)) to linear transformations in LMR. Using the two characteristic 𝑠-goodness constants, 𝛾

𝑠
and

𝛾
𝑠
, of a linear transformation, we derive necessary and sufficient conditions for a linear transformation to be 𝑠-good. Moreover, we

establish the equivalence of 𝑠-goodness and the null space properties. Therefore, 𝑠-goodness is a necessary and sufficient condition
for exact 𝑠-rank matrix recovery via the nuclear norm minimization.

1. Introduction

Low-rank matrix recovery (LMR for short) is a rank min-
imization problem (RMP) with linear constraints or the
affine matrix rank minimization problem which is defined as
follows:

minimize rank (𝑋) ,

subject to A𝑋 = 𝑏,
(1)

where 𝑋 ∈ R𝑚×𝑛 is the matrix variable, A : R𝑚×𝑛 → R𝑝

is a linear transformation, and 𝑏 ∈ R𝑝. Although specific
instances can often be solved by specialized algorithms, the
LMR is NP hard. A popular approach for solving LMR
in the systems and control community is to minimize the
trace of a positive semidefinite matrix variable instead of its
rank (see, e.g., [1, 2]). A generalization of this approach to
nonsymmetric matrices introduced by Fazel et al. [3] is the
famous convex relaxation of LMR (1), which is called nuclear
norm minimization (NNM):

min ‖𝑋‖
∗

s.t. A𝑋 = 𝑏,
(2)

where ‖𝑋‖
∗
is the nuclear norm of 𝑋, that is, the sum of

its singular values. When 𝑚 = 𝑛 and the matrix 𝑋 :=

Diag(𝑥), 𝑥 ∈ R𝑛, is diagonal, the LMR (1) reduces to
sparse signal recovery (SSR), which is the so-called cardinality
minimization problem (CMP):

min ‖𝑥‖
0

s.t. Φ𝑥 = 𝑏,

(3)

where ‖𝑥‖
0
denotes the number of nonzero entries in the

vector 𝑥 and Φ ∈ R𝑚×𝑛 is a given sensing matrix. A
well-known heuristic for SSR is the ℓ

1
-norm minimization

relaxation (basis pursuit problem):

min ‖𝑥‖
1

s.t. Φ𝑥 = 𝑏,

(4)

where ‖𝑥‖
1
is the ℓ

1
-norm of 𝑥, that is, the sum of absolute

values of its entries.
LMRproblems havemany applications and they appeared

in the literature of a diverse set of fields including signal
and image processing, statistics, computer vision, and system
identification and control. For more details, see the recent
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paper [4]. LMR andNNMhave been the focus of some recent
research in the optimization community, see; for example, [4–
15]. Although there are many papers dealing with algorithms
for NNM such as interior-point methods, fixed point and
Bregman iterative methods, and proximal point methods,
there are fewer papers dealing with the conditions that
guarantee the success of the low-rank matrix recovery via
NNM. For instance, following the program laid out in the
work of Candès and Tao in compressed sensing (CS, see, e.g.,
[16–18]), Recht et al. [4] provided a certain restricted isometry
property (RIP) condition on the linear transformation which
guarantees that the minimum nuclear norm solution is
the minimum rank solution. Recht et al. [14, 19] gave the
null space property (NSP) which characterizes a particular
property of the null space of the linear transformation, which
is also discussed byOymak et al. [20, 21]. Note that NSP states
a necessary and sufficient condition for exactly recovering the
low-rank matrix via nuclear norm minimization. Recently,
Chandrasekaran et al. [22] proposed that a fixed 𝑠-rank
matrix 𝑋

0
can be recovered if and only if the null space of

A does not intersect the tangent cone of the nuclear norm
ball at𝑋

0
.

In the setting of CS, there are other characterizations of
the sensing matrix, under which ℓ

1
-norm minimization can

be guaranteed to yield an optimal solution to SSR, in addition
to RIP and null-space properties, see; for example, [23–
26]. In particular, Juditsky and Nemirovski [24] established
necessary and sufficient conditions for a Sensing matrix to
be “𝑠-good” to allow for exact ℓ

1
-recovery of sparse signals

with 𝑠nonzero entrieswhennomeasurement noise is present.
They also demonstrated that these characteristics, although
difficult to evaluate, lead to verifiable sufficient conditions
for exact SSR and to efficiently computable upper bounds on
those 𝑠 for which a given sensing matrix is 𝑠-good. Further-
more, they established instructive links between 𝑠-goodness
and RIP in the CS context. One may wonder whether we can
generalize the 𝑠-goodness concept to LMR and still maintain
many of the nice properties as done in [24]. Here, we deal
with this issue. Our approach is based on the singular value
decomposition (SVD) of amatrix and the partition technique
generalized from CS. In the next section, following Juditsky
and Nemirovski’s terminology, we propose definitions of 𝑠-
goodness and 𝐺-numbers, 𝛾

𝑠
and 𝛾

𝑠
, of a linear transforma-

tion in LMR and then we provide some basic properties of
𝐺-numbers. In Section 3, we characterize 𝑠-goodness of a
linear transformation in LMR via 𝐺-numbers. We consider
the connections between the 𝑠-goodness, NSP, and RIP in
Section 4. We eventually obtain that 𝛿

2𝑠
< 0.472 ⇒ A

satisfying NSP⇔ 𝛾
𝑠
(A) < 1/2 ⇔ 𝛾

𝑠
(A) < 1 ⇔ A is 𝑠-good.

Let 𝑊 ∈ R𝑚×𝑛, 𝑟 := min{𝑚, 𝑛}, and let 𝑊 =

𝑈Diag(𝜎(𝑊))𝑉𝑇 be an SVD of 𝑊, where 𝑈 ∈ R𝑚×𝑟, 𝑉 ∈

R𝑛×𝑟, and Diag(𝜎(𝑊)) is the diagonal matrix of 𝜎(𝑊) =
(𝜎
1
(𝑊), . . . , 𝜎

𝑟
(𝑊))

𝑇which is the vector of the singular values
of𝑊. Also let Ξ(𝑊) denote the set of pairs of matrices (𝑈, 𝑉)
in the SVD of𝑊; that is,

Ξ (𝑊) := { (𝑈, 𝑉) : 𝑈 ∈ R
𝑚×𝑟

, 𝑉 ∈ R
𝑛×𝑟

,

𝑊 = 𝑈Diag (𝜎 (𝑊))𝑉𝑇} .
(5)

For 𝑠 ∈ {0, 1, 2, . . . , 𝑟}, we say𝑊 ∈ R𝑚×𝑛 is an 𝑠-rank matrix
to mean that the rank of 𝑊 is no more than 𝑠. For an 𝑠-
rank matrix 𝑊, it is convenient to take 𝑊 = 𝑈

𝑚×𝑠
𝑊
𝑠
𝑉
𝑇

𝑛×𝑠

as its SVD where 𝑈
𝑚×𝑠

∈ R𝑚×𝑠, 𝑉
𝑛×𝑠
∈ R𝑛×𝑠 are orthogonal

matrices and𝑊
𝑠
= Diag((𝜎

1
(𝑊), . . . , 𝜎

𝑠
(𝑊))

𝑇

). For a vector
𝑦 ∈ R𝑝, let ‖ ⋅ ‖

𝑑
be the dual norm of ‖ ⋅ ‖ specified by

‖𝑦‖
𝑑
:= maxV{⟨V, 𝑦⟩ : ‖V‖ ≤ 1}. In particular, ‖ ⋅ ‖

∞
is the

dual norm of ‖ ⋅ ‖
1
for a vector. Let ‖𝑋‖ denote the spectral

or the operator norm of a matrix 𝑋 ∈ R𝑚×𝑛, that is, the
largest singular value of 𝑋. In fact, ‖𝑋‖ is the dual norm of
‖𝑋‖

∗
. Let ‖𝑋‖

𝐹
:= √⟨𝑋,𝑋⟩ = √Tr(𝑋𝑇𝑋) be the Frobenius

norm of 𝑋, which is equal to the ℓ
2
-norm of the vector of

its singular values. We denote by 𝑋𝑇 the transpose of 𝑋. For
a linear transformation A : R𝑚×𝑛 → R𝑝, we denote by
A∗

: R𝑝 → R𝑚×𝑛 the adjoint ofA.

2. Definitions and Basic Properties

2.1. Definitions. We first go over some concepts related to 𝑠-
goodness of the linear transformation in LMR (RMP). These
are extensions of those given for SSR (CMP) in [24].

Definition 1. LetA : R𝑚×𝑛 → R𝑝 be a linear transformation
and 𝑠 ∈ {0, 1, 2, . . . , 𝑟}. One says thatA is 𝑠-good, if for every
𝑠-rank matrix𝑊 ∈ R𝑚×𝑛,𝑊 is the unique optimal solution
to the optimization problem

min
𝑋∈R𝑚×𝑛

{‖𝑋‖
∗
: A𝑋 = A𝑊} . (6)

We denote by 𝑠
∗
(A) the largest integer 𝑠 for which A

is 𝑠-good. Clearly, 𝑠
∗
(A) ∈ {0, 1, . . . , 𝑟}. To characterize 𝑠-

goodnesswe introduce twouseful 𝑠-goodness constants: 𝛾
𝑠
and

𝛾
𝑠
. We call 𝛾

𝑠
and 𝛾

𝑠
𝐺-numbers.

Definition 2. LetA : R𝑚×𝑛 → R𝑝 be a linear transformation,
𝛽 ∈ [0, +∞] and 𝑠 ∈ {0, 1, 2, . . . , 𝑟}. Then we have the
following.

(i) 𝐺-number 𝛾
𝑠
(A, 𝛽) is the infimum of 𝛾 ≥ 0 such that

for every matrix 𝑋 ∈ R𝑚×𝑛 with singular value decomposi-
tion 𝑋 = 𝑈

𝑚×𝑠
𝑉
𝑇

𝑛×𝑠
(i.e., 𝑠 nonzero singular values, all equal

to 1), there exists a vector 𝑦 ∈ R𝑝 such that




𝑦



𝑑
≤ 𝛽, A

∗

𝑦 = 𝑈Diag (𝜎 (A∗

𝑦))𝑉
𝑇

, (7)

where 𝑈 = [𝑈
𝑚×𝑠

𝑈
𝑚×(𝑟−𝑠)

], 𝑉 = [𝑉
𝑛×𝑠

𝑉
𝑛×(𝑟−𝑠)

] are orthog-
onal matrices, and

𝜎
𝑖
(A

∗

𝑦)

{

{

{

= 1, if 𝜎
𝑖
(𝑋) = 1,

∈ [0, 𝛾] , if 𝜎
𝑖
(𝑋) = 0,

𝑖 ∈ {1, 2, . . . , 𝑟} .

(8)

If there does not exist such 𝑦 for some 𝑋 as above, we set
𝛾
𝑠
(A, 𝛽) = +∞.
(ii) 𝐺-number 𝛾

𝑠
(A, 𝛽) is the infimum of 𝛾 ≥ 0 such that

for every matrix𝑋 ∈ R𝑚×𝑛 with 𝑠 nonzero singular values, all
equal to 1, there exists a vector 𝑦 ∈ R𝑝 such thatA∗

𝑦 and 𝑋
share the same orthogonal row and column spaces:





𝑦



𝑑
≤ 𝛽,





A
∗

𝑦 − 𝑋




≤ 𝛾. (9)
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If there does not exist such 𝑦 for some 𝑋 as above, we set
𝛾
𝑠
(A, 𝛽) = +∞ and to be compatible with the special case

given by [24] we write 𝛾
𝑠
(A), 𝛾

𝑠
(A) instead of 𝛾

𝑠
(A, +∞),

𝛾
𝑠
(A, +∞), respectively.

From the above definition, we easily see that the set of
values that 𝛾 takes is closed. Thus, when 𝛾

𝑠
(A, 𝛽) < +∞, for

every matrix 𝑋 ∈ R𝑚×𝑛 with 𝑠 nonzero singular values, all
equal to 1, there exists a vector 𝑦 ∈ R𝑝 such that





𝑦



𝑑
≤ 𝛽,

𝜎
𝑖
(A

∗

𝑦){

= 1, if 𝜎
𝑖
(𝑋) = 1,

∈ [0, 𝛾
𝑠
(A, 𝛽)] , if 𝜎

𝑖
(𝑋) = 0,

𝑖 ∈ {1, 2, . . . , 𝑟} .

(10)

Similarly, for every matrix𝑋 ∈ R𝑚×𝑛 with 𝑠 nonzero singular
values, all equal to 1, there exists a vector 𝑦 ∈ R𝑝 such
thatA∗

𝑦 and 𝑋 share the same orthogonal row and column
spaces:





𝑦



𝑑
≤ 𝛽,





A
∗

𝑦 − 𝑋




≤ 𝛾

𝑠
(A, 𝛽) . (11)

Observing that the set {A∗

𝑦 : ‖𝑦‖
𝑑
≤ 𝛽} is convex, we obtain

that if 𝛾
𝑠
(A, 𝛽) < +∞ then for every matrix 𝑋 with at most

𝑠 nonzero singular values and ‖𝑋‖ ≤ 1 there exist vectors 𝑦
satisfying (10) and there exist vectors 𝑦 satisfying (11).

2.2. Basic Properties of 𝐺-Numbers. In order to characterize
the 𝑠-goodness of a linear transformation A, we study the
basic properties of 𝐺-numbers. We begin with the result that
𝐺-numbers 𝛾

𝑠
(A, 𝛽) and 𝛾

𝑠
(A, 𝛽) are convex nonincreasing

functions of 𝛽.

Proposition 3. For every linear transformation A and every
𝑠 ∈ {0, 1, . . . , 𝑟}, 𝐺-numbers 𝛾

𝑠
(A, 𝛽) and 𝛾

𝑠
(A, 𝛽) are convex

nonincreasing functions of 𝛽 ∈ [0, +∞].

Proof. We only need to demonstrate that the quantity
𝛾
𝑠
(A, 𝛽) is a convex nonincreasing function of𝛽 ∈ [0, +∞]. It

is evident from the definition that 𝛾
𝑠
(A, 𝛽) is nonincreasing

for given A, 𝑠. It remains to show that 𝛾
𝑠
(A, 𝛽) is a convex

function of 𝛽. In other words, for every pair 𝛽
1
, 𝛽
2
∈ [0, +∞],

we need to verify that

𝛾
𝑠
(A, 𝛼𝛽

1
+ (1 − 𝛼) 𝛽

2
)

≤ 𝛼𝛾
𝑠
(A, 𝛽

1
) + (1 − 𝛼) 𝛾

𝑠
(A, 𝛽

2
) , ∀𝛼 ∈ [0, 1] .

(12)

The above inequality follows immediately if one of 𝛽
1
, 𝛽

2
is

+∞. Thus, we may assume 𝛽
1
, 𝛽
2
∈ [0, +∞). In fact, from the

argument around (10) and the definition of 𝛾
𝑠
(A, ⋅), we know

that for every matrix 𝑋 = 𝑈Diag(𝜎(𝑋))𝑉𝑇 with 𝑠 nonzero
singular values, all equal to 1, there exist vectors 𝑦

1
, 𝑦
2
∈ R𝑝

such that for 𝑘 ∈ {1, 2}




𝑦
𝑘




𝑑
≤ 𝛽

𝑘
,

𝜎
𝑖
(A

∗

𝑦
𝑘
) {

= 1, if 𝜎
𝑖
(𝑋) = 1,

∈ [0, 𝛾
𝑠
(A, 𝛽

𝑘
)] , if 𝜎

𝑖
(𝑋) = 0,

𝑖 ∈ {1, 2, . . . , 𝑟} .

(13)

It is immediate from (13) that ‖𝛼𝑦
1
+ (1 − 𝛼)𝑦

2
‖
𝑑
≤ 𝛼𝛽

1
+(1−

𝛼)𝛽
2
. Moreover, from the above information on the singular

values ofA∗

𝑦
1
,A∗

𝑦
2
, we may setA∗

𝑦
𝑘
= 𝑋 + 𝑌

𝑘
, 𝑘 ∈ {1, 2}

such that

𝑋
𝑇

𝑌
𝑘
= 0, 𝑋𝑌

𝑇

𝑘
= 0,

rank (𝑌
𝑘
) ≤ 𝑟 − 𝑠,





𝑌
𝑘





≤ 𝛾

𝑠
(A, 𝛽

𝑘
) .

(14)

This implies that for every 𝛼 ∈ [0, 1]

𝑋
𝑇

[𝛼𝑌
1
+ (1 − 𝛼) 𝑌

2
] = 0,

𝑋[𝛼𝑌
1
+ (1 − 𝛼)𝑌

2
]
𝑇

= 0,

(15)

and hence rank[𝛼𝑌
1
+(1−𝛼)𝑌

2
] ≤ 𝑟−𝑠,𝑋, and [𝛼𝑌

1
+(1−𝛼)𝑌

2
]

have orthogonal row and column spaces. Thus, noting that
A∗

[𝛼𝑦
1
+ (1 − 𝛼)𝑦

2
] = 𝑋 + 𝛼𝑌

1
+ (1 − 𝛼)𝑌

2
, we obtain that

‖𝛼𝑦
1
+ (1 − 𝛼)𝑦

2
‖
𝑑
≤ 𝛼𝛽

1
+ (1 − 𝛼)𝛽

2
and

𝜎
𝑖
(A

∗

(𝛼𝑦
1
+ (1 − 𝛼) 𝑦

2
))

=

{

{

{

1, if 𝜎
𝑖
(𝑋) = 1,

𝜎
𝑖
(𝛼𝑌

1
+ (1 − 𝛼) 𝑌

2
) , if 𝜎

𝑖
(𝑋) = 0,

(16)

for every 𝛼 ∈ [0, 1]. Combining this with the fact




𝛼𝑌

1
+ (1 − 𝛼) 𝑌

2





≤ 𝛼





𝑌
1





+ (1 − 𝛼)





𝑌
2






≤ 𝛼𝛾
𝑠
(A, 𝛽

1
) + (1 − 𝛼) 𝛾

𝑠
(A, 𝛽

2
) ,

(17)

we obtain the desired conclusion.

The following observation that 𝐺-numbers 𝛾
𝑠
(A, 𝛽),

𝛾
𝑠
(A, 𝛽) are nondecreasing in 𝑠 is immediate.

Proposition 4. For every 𝑠 ≤ 𝑠, one has 𝛾
𝑠
(A, 𝛽) ≤ 𝛾

𝑠
(A, 𝛽),

𝛾
𝑠
(A, 𝛽) ≤ 𝛾

𝑠
(A, 𝛽).

We further investigate the relationship between the 𝐺-
numbers 𝛾

𝑠
(A, 𝛽) and 𝛾

𝑠
(A, 𝛽).

Proposition 5. LetA : R𝑚×𝑛 → R𝑝 be a linear transforma-
tion, 𝛽 ∈ [0, +∞], and 𝑠 ∈ {0, 1, 2, . . . , 𝑟}. Then one has

𝛾 := 𝛾
𝑠
(A, 𝛽) < 1 ⇒ 𝛾

𝑠
(A,

1

1 + 𝛾

𝛽)

=

𝛾

1 + 𝛾

<

1

2

,

𝛾 := 𝛾
𝑠
(A, 𝛽) <

1

2

⇒ 𝛾
𝑠
(A,

1

1 − 𝛾

𝛽)

=

𝛾

1 − 𝛾

< 1.

(18)

Proof. Let 𝛾 := 𝛾
𝑠
(A, 𝛽) < 1.Then, for everymatrix𝑍 ∈ R𝑚×𝑛

with 𝑠 nonzero singular values, all equal to 1, there exists
𝑦 ∈ R𝑝, ‖𝑦‖

𝑑
≤ 𝛽, such that A∗

𝑦 = 𝑍 + 𝑊, where ‖𝑊‖ ≤
𝛾 and 𝑊 and 𝑍 have orthogonal row and column spaces.
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For a given pair 𝑍, 𝑦 as above, take 𝑦 := (1/(1 + 𝛾))𝑦. Then
we have ‖𝑦‖

𝑑
≤ (1/(1 + 𝛾))𝛽 and





A
∗

𝑦 − 𝑍




≤ max{1 − 1

1 + 𝛾

,

𝛾

1 + 𝛾

} =

𝛾

1 + 𝛾

, (19)

where the first term under themaximum comes from the fact
that A∗

𝑦 and 𝑍 agree on the subspace corresponding to the
nonzero singular values of 𝑍. Therefore, we obtain

𝛾
𝑠
(A,

1

1 + 𝛾

𝛽) ≤

𝛾

1 + 𝛾

<

1

2

. (20)

Now, we assume that 𝛾 := 𝛾
𝑠
(A, 𝛽) < 1/2. Fix orthogonal

matrices 𝑈 ∈ R𝑚×𝑟, 𝑉 ∈ R𝑛×𝑟. For an 𝑠-element subset 𝐽 of
the index set {1, 2, . . . , 𝑟}, we define a set 𝑆

𝐽
with respect to

orthogonal matrices 𝑈,𝑉 as

𝑆
𝐽
:= {𝑥 ∈ R

𝑟

: ∃𝑦 ∈ R
𝑝

,




𝑦



𝑑
≤ 𝛽,

A
∗

𝑦 = 𝑈Diag (𝑥) 𝑉𝑇 with 

𝑥
𝑖





≤ 𝛾 for 𝑖 ∈ 𝐽} .

(21)

In the above, 𝐽 denotes the complement of 𝐽. It is immediately
seen that 𝑆

𝐽
is a closed convex set in R𝑟. Moreover, we have

the following

Claim 1. 𝑆
𝐽
contains the ‖ ⋅ ‖

∞
-ball of radius (1 − 𝛾) centered

at the origin in R𝑟.

Proof. Note that 𝑆
𝐽
is closed and convex. Moreover, 𝑆

𝐽
is the

direct sum of its projections onto the pair of subspaces

𝐿
𝐽
:= {𝑥 ∈ R

𝑟

: 𝑥
𝑖
= 0, 𝑖 ∈ 𝐽}

and its orthogonal complement

𝐿
⊥

𝐽
= {𝑥 ∈ R

𝑟

: 𝑥
𝑖
= 0, 𝑖 ∈ 𝐽} .

(22)

Let 𝑄 denote the projection of 𝑆
𝐽
onto 𝐿

𝐽
. Then, 𝑄 is closed

and convex (because of the direct sum property above and
the fact that 𝑆

𝐽
is closed and convex). Note that 𝐿

𝐽
can be

naturally identified with R𝑠, and our claim is the image 𝑄 ⊂
R𝑠 of 𝑄 under this identification that contains the ‖ ⋅ ‖

∞
-

ball 𝐵
𝑠
of radius (1 − 𝛾) centered at the origin in R𝑠. For a

contradiction, suppose 𝐵
𝑠
is not contained in 𝑄. Then there

exists V ∈ 𝐵
𝑠
\𝑄. Since𝑄 is closed and convex, by a separating

hyperplane theorem, there exists a vector 𝑢 ∈ R𝑠, ‖𝑢‖
1
= 1

such that

𝑢
𝑇

V > 𝑢
𝑇

V
 for every V



∈ 𝑄. (23)

Let 𝑧 ∈ R𝑟 be defined by

𝑧
𝑖
:=

{

{

{

1, 𝑖 ∈ 𝐽,

0, otherwise.
(24)

By definition of 𝛾 = 𝛾
𝑠
(A, 𝛽), for 𝑠-rankmatrix𝑈Diag(𝑧)𝑉𝑇,

there exists 𝑦 ∈ R𝑝 such that ‖𝑦‖
𝑑
≤ 𝛽 and

A
∗

𝑦 = 𝑈Diag (𝑧) 𝑉𝑇 +𝑊, (25)

where 𝑊 and 𝑈Diag(𝑧)𝑉𝑇 have the same orthogonal
row and column spaces, ‖A∗

𝑦 − 𝑈Diag(𝑧)𝑉𝑇‖ ≤ 𝛾 and
‖𝜎(A∗

𝑦) − 𝑧‖
∞
≤ 𝛾. Together with the definitions of 𝑆

𝐽
and

𝑄, this means that𝑄 contains a vector V with |V
𝑖
− sign(𝑢

𝑖
)| ≤

𝛾, ∀𝑖 ∈ {1, 2, . . . , 𝑠}. Therefore,

𝑢
𝑇

V ≥
𝑠

∑

𝑖=1





𝑢
𝑖





(1 − 𝛾) = (1 − 𝛾) ‖𝑢‖

1
= 1 − 𝛾. (26)

By V ∈ 𝐵
𝑠
and the definition of 𝑢, we obtain

1 − 𝛾 ≥ ‖V‖
∞
= ‖𝑢‖

1
‖V‖

∞
≥ 𝑢

𝑇

V > 𝑢
𝑇

V ≥ 1 − 𝛾, (27)

where the strict inequality follows from the facts that V ∈ 𝑄
and 𝑢 separates V from𝑄. The above string of inequalities is a
contradiction, and hence the desired claim holds.

Using the above claim, we conclude that for every 𝐽 ⊆
{1, 2, . . . , 𝑟} with cardinality 𝑠, there exists an 𝑥 ∈ 𝑆

𝐽
such that

𝑥
𝑖
= (1 − 𝛾), for all 𝑖 ∈ 𝐽. From the definition of 𝑆

𝐽
, we obtain

that there exists 𝑦 ∈ R𝑝 with ‖𝑦‖
𝑑
≤ (1 − 𝛾)

−1

𝛽 such that

A
∗

𝑦 = 𝑈Diag (𝜎 (A∗

𝑦))𝑉
𝑇

, (28)

where 𝜎
𝑖
(A∗

𝑦) = (1 − 𝛾)
−1

𝑥
𝑖
= 1 if 𝑖 ∈ 𝐽, and 𝜎

𝑖
(A∗

𝑦)
𝑖
≤

(1 − 𝛾)
−1

𝛾 if 𝑖 ∈ 𝐽. Thus, we obtain that

𝛾
𝑠
:= 𝛾

𝑠
(A, 𝛽) <

1

2

⇒ 𝛾
𝑠
(A,

1

1 − 𝛾

𝛽) ≤

𝛾

1 − 𝛾

< 1.

(29)

To conclude the proof, we need to prove that the inequal-
ities we established

𝛾
𝑠
(A,

1

1 + 𝛾

𝛽) ≤

𝛾

1 + 𝛾

, 𝛾
𝑠
(A,

1

1 − 𝛾

𝛽) ≤

𝛾

1 + 𝛾

(30)

are both equations. This is straightforward by an argument
similar to the one in the proof of [24, Theorem 1]. We omit it
for the sake of brevity.

We end this section with a simple argument which
illustrates that for a given pair (A, 𝑠), 𝛾

𝑠
(A, 𝛽) = 𝛾

𝑠
(A) and

𝛾
𝑠
(A, 𝛽) = 𝛾

𝑠
(A), for all 𝛽 large enough.

Proposition 6. LetA : R𝑚×𝑛 → R𝑝 be a linear transforma-
tion and 𝛽 ∈ [0, +∞]. Assume that for some 𝜌 > 0, the image
of the unit ‖ ⋅ ‖

∗
-ball in R𝑚×𝑛 under the mapping 𝑋 → A𝑋

contains the ball 𝐵 = {𝑥 ∈ R𝑝 : ‖𝑥‖
1
≤ 𝜌}. Then for every

𝑠 ∈ {1, 2, . . . , 𝑟}

𝛽 ≥

1

𝜌

, 𝛾
𝑠
(A) < 1 ⇒ 𝛾

𝑠
(A, 𝛽) = 𝛾

𝑠
(A) ,

𝛽 ≥

1

𝜌

, 𝛾
𝑠
(A) <

1

2

⇒ 𝛾
𝑠
(A, 𝛽) = 𝛾

𝑠
(A) .

(31)
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Proof. Fix 𝑠 ∈ {1, 2, . . . , 𝑟}. We only need to show the first
implication. Let 𝛾 := 𝛾

𝑠
(A) < 1. Then for every matrix𝑊 ∈

R𝑚×𝑛 with its SVD𝑊 = 𝑈
𝑚×𝑠
𝑉
𝑇

𝑛×𝑠
, there exists a vector 𝑦 ∈

R𝑝 such that





𝑦



𝑑
≤ 𝛽, A

∗

𝑦 = 𝑈Diag (𝜎 (A∗

𝑦))𝑉
𝑇

, (32)

where 𝑈 = [𝑈
𝑚×𝑠

𝑈
𝑚×(𝑟−𝑠)

], 𝑉 = [𝑉
𝑛×𝑠

𝑉
𝑛×(𝑟−𝑠)

] are orthog-
onal matrices, and

𝜎
𝑖
(A

∗

𝑦)

{

{

{

= 1, if 𝜎
𝑖
(𝑊) = 1,

∈ [0, 𝛾] , if 𝜎
𝑖
(𝑊) = 0,

𝑖 ∈ {1, 2, . . . , 𝑟} .

(33)

Clearly, ‖A∗

𝑦‖ ≤ 1. That is,

1 ≥




A
∗

𝑦




= max
𝑋∈R𝑚×𝑛

{⟨𝑋,A
∗

𝑦⟩ : ‖𝑋‖
∗
≤ 1}

= max
𝑋∈R𝑚×𝑛

{⟨𝑢, 𝑦⟩ : 𝑢 = A𝑋, ‖𝑋‖
∗
≤ 1} .

(34)

From the inclusion assumption, we obtain that

max
𝑋∈R𝑚×𝑛

{⟨𝑢, 𝑦⟩ : 𝑢 = A𝑋, ‖𝑋‖
∗
≤ 1}

≥ max
𝑢∈R𝑝

{⟨𝑢, 𝑦⟩ : ‖𝑢‖
1
≤ 𝜌} = 𝜌





𝑦



∞
= 𝜌




𝑦



𝑑
.

(35)

Combining the above two strings of relations, we derive the
desired conclusion.

3. 𝑠-Goodness and 𝐺-Numbers

We first give the following characterization result of 𝑠-good-
ness of a linear transformation A via the 𝐺-number 𝛾

𝑠
(A),

which explains the importance of 𝛾
𝑠
(A) in LMR.

Theorem 7. LetA : R𝑚×𝑛 → R𝑝 be a linear transformation,
and 𝑠 be an integer 𝑠 ∈ {0, 1, 2, . . . , 𝑟}. ThenA is 𝑠-good if and
only if 𝛾

𝑠
(A) < 1.

Proof. Suppose A is 𝑠-good. Let 𝑊 ∈ R𝑚×𝑛 be a matrix of
rank 𝑠 ∈ {1, 2, . . . , 𝑟}. Without loss of generality, let 𝑊 =

𝑈
𝑚×𝑠
𝑊
𝑠
𝑉
𝑇

𝑛×𝑠
be its SVD where 𝑈

𝑚×𝑠
∈ R𝑚×𝑠, 𝑉

𝑛×𝑠
∈ R𝑛×𝑠 are

orthogonal matrices and 𝑊
𝑠
= Diag((𝜎

1
(𝑊), . . . , 𝜎

𝑠
(𝑊))

𝑇

).
By the definition of 𝑠-goodness of A, 𝑊 is the unique
solution to the optimization problem (6). Using the first-
order optimality conditions, we obtain that there exists 𝑦 ∈
R𝑝 such that the function 𝑓

𝑦
(𝑥) = ‖𝑋‖

∗
− 𝑦

𝑇

[A𝑋 − A𝑊]

attains its minimum value over 𝑋 ∈ R𝑚×𝑛 at 𝑋 = 𝑊. So
0 ∈ 𝜕𝑓

𝑦
(𝑊) orA∗

𝑦 ∈ 𝜕‖𝑊‖
∗
. Using the fact (see, e.g., [27])

𝜕‖𝑊‖
∗
= {𝑈

𝑚×𝑠
𝑉
𝑇

𝑛×𝑠
+𝑀 : 𝑊 and 𝑀 have orthogonal

row and column spaces, and ‖𝑀‖ ≤ 1} ,
(36)

it follows that there exist matrices 𝑈
𝑚×(𝑟−𝑠)

, 𝑉
𝑛×(𝑟−𝑠)

such that
A∗

𝑦 = 𝑈Diag(𝜎
𝑖
(A∗

𝑦))𝑉
𝑇 where 𝑈 = [𝑈

𝑚×𝑠
𝑈
𝑚×(𝑟−𝑠)

],
𝑉 = [𝑉

𝑛×𝑠
𝑉
𝑛×(𝑟−𝑠)

] are orthogonal matrices and

𝜎
𝑖
(A

∗

𝑦)

{

{

{

= 1, if 𝑖 ∈ 𝐽,

∈ [0, 1] , if 𝑖 ∈ 𝐽,
(37)

where 𝐽 := {𝑖 : 𝜎
𝑖
(𝑊) ̸= 0} and 𝐽 := {1, 2, . . . , 𝑟} \ 𝐽. Therefore,

the optimal objective value of the optimization problem

min
𝑦,𝛾

{

{

{

𝛾 : A
∗

𝑦 ∈ 𝜕‖𝑊‖
∗
, 𝜎
𝑖
(A

∗

𝑦)

{

{

{

= 1, if 𝑖 ∈ 𝐽,

∈ [0, 𝛾] , if 𝑖 ∈ 𝐽,

}

}

}

(38)

is at most one. For the given 𝑊 with its SVD 𝑊 =

𝑈
𝑚×𝑠
𝑊
𝑠
𝑉
𝑇

𝑛×𝑠
, let

Π := {conv {𝑀 ∈ R
𝑚×𝑛

: the SVD of 𝑀 is

𝑀 = [𝑈
𝑚×𝑠

𝑈
𝑚×(𝑟−𝑠)

] (
0
𝑠

0

0 𝜎 (𝑀)
) [𝑉

𝑛×𝑠
𝑉
𝑛×(𝑟−𝑠)

]

𝑇

} .

(39)

It is easy to see that Π is a subspace and its normal
cone (in the sense of variational analysis, see, e.g., [28] for
details) is specified by Π⊥. Thus, the above problem (38)
is equivalent to the following convex optimization problem
with set constraint:

min
𝑦,𝑀

{‖𝑀‖ : A
∗

𝑦 − 𝑈
𝑚×𝑠
𝑉
𝑇

𝑛×𝑠
−𝑀 = 0, 𝑀 ∈ Π} . (40)

We will show that the optimal value is less than 1. For a
contradiction, suppose that the optimal value is one.Then, by
[28,Theorem 10.1 and Exercise 10.52], there exists a Lagrange
multiplier𝐷 ∈ R𝑚×𝑛 such that the function

𝐿 (𝑦,𝑀) = ‖𝑀‖ + ⟨𝐷,A
∗

𝑦 − 𝑈
𝑚×𝑠
𝑉
𝑇

𝑛×𝑠
−𝑀⟩ + 𝛿

Π
(𝑀)

(41)

has unconstrainedminimum in (𝑦,𝑀) equal to 1, where𝛿
Π
(⋅)

is the indicator function of Π. Let (𝑦∗,𝑀∗

) be an optimal
solution.Then, by the optimality condition 0 ∈ 𝜕𝐿, we obtain
that

0 ∈ 𝜕
𝑦
𝐿 (𝑦

∗

,𝑀
∗

) , 0 ∈ 𝜕
𝑀
𝐿 (𝑦

∗

,𝑀
∗

) . (42)

Direct calculation yields that

A𝐷 = 0, 0 ∈ −𝐷 + 𝜕




𝑀
∗



+ Π

⊥

. (43)

Then there exist 𝐷
𝐽
∈ Π

⊥ and 𝐷
𝐽
∈ 𝜕‖𝑀

∗

‖ such that
𝐷 = 𝐷

𝐽
+ 𝐷

𝐽
. Notice that [29, Corollary 6.4] implies that

for 𝐷
𝐽
∈ 𝜕‖𝑀

∗

‖, 𝐷
𝐽
∈ Π and ‖𝐷

𝐽
‖
∗

≤ 1. Therefore,
⟨𝐷,𝑈

𝑚×𝑠
𝑉
𝑇

𝑛×𝑠
⟩ = ⟨𝐷

𝐽
, 𝑈

𝑚×𝑠
𝑉
𝑇

𝑛×𝑠
⟩ and ⟨𝐷,𝑀∗

⟩ = ⟨𝐷
𝐽
,𝑀

∗

⟩.
Moreover, ⟨𝐷

𝐽
,𝑀

∗

⟩ ≤ ‖𝑀
∗

‖ by the definition of the dual
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norm of ‖ ⋅ ‖. This together with the factsA𝐷 = 0, 𝐷
𝐽
∈ Π

⊥

and𝐷
𝐽
∈ 𝜕‖𝑀

∗

‖ ⊆ Π yields

𝐿 (𝑦
∗

,𝑀
∗

) =




𝑀
∗



− ⟨𝐷

𝐽
,𝑀

∗

⟩ + ⟨𝐷,A
∗

𝑦
∗

⟩

− ⟨𝐷
𝐽
, 𝑈

𝑚×𝑠
𝑉
𝑇

𝑛×𝑠
⟩ + 𝛿

Π
(𝑀

∗

)

≥−⟨𝐷
𝐽
, 𝑈

𝑚×𝑠
𝑉
𝑇

𝑛×𝑠
⟩ + 𝛿

Π
(𝑀

∗

) .

(44)

Thus, theminimumvalue of 𝐿(𝑦,𝑀) is attained,𝐿(𝑦∗,𝑀∗

) =

−⟨𝐷
𝐽
, 𝑈

𝑚×𝑠
𝑉
𝑇

𝑛×𝑠
⟩, when 𝑀∗

∈ Π, ⟨𝐷
𝐽
,𝑀

∗

⟩ = ‖𝑀
∗

‖. We
obtain that ‖𝐷

𝐽
‖
∗

= 1. By assumption, 1 = 𝐿(𝑦
∗

,𝑀
∗

) =

−⟨𝐷
𝐽
, 𝑈

𝑚×𝑠
𝑉
𝑇

𝑛×𝑠
⟩. That is, ∑𝑠

𝑖=1
(𝑈

𝑇

𝑚×𝑠
𝐷𝑉

𝑛×𝑠
)
𝑖𝑖
= −1. Without

loss of generality, let SVD of the optimal 𝑀∗ be 𝑀∗

=

�̃� (
0
𝑠

0

0 𝜎(𝑀
∗

)
) �̃�

𝑇, where �̃� := [𝑈
𝑚×𝑠

�̃�
𝑚×(𝑟−𝑠)

] and �̃� :=

[𝑉
𝑛×𝑠

�̃�
𝑛×(𝑟−𝑠)

]. From the above arguments, we obtain that

(i) A𝐷 = 0,
(ii) ∑𝑠

𝑖=1
(𝑈

𝑇

𝑚×𝑠
𝐷𝑉

𝑛×𝑠
)
𝑖𝑖
= ∑

𝑖∈𝐽
(�̃�

𝑇

𝐷�̃�)
𝑖𝑖
= −1,

(iii) ∑
𝑖∈𝐽
(�̃�

𝑇

𝐷�̃�)
𝑖𝑖
= 1.

Clearly, for every 𝑡 ∈ R, thematrices𝑋
𝑡
:= 𝑊+𝑡𝐷 are feasible

in (6). Note that

𝑊 = 𝑈
𝑚×𝑠
𝑊
𝑠
𝑉
𝑇

𝑛×𝑠

= [𝑈
𝑚×𝑠

�̃�
𝑚×(𝑟−𝑠)

] (

𝑊
𝑠
0

0 0
) [𝑉

𝑛×𝑠
�̃�
𝑛×(𝑟−𝑠)

]

𝑇

.

(45)

Then, ‖𝑊‖
∗
= ‖�̃�

𝑇

𝑊�̃�‖
∗
= Tr(�̃�𝑇𝑊�̃�). From the above

equations, we obtain that ‖𝑋
𝑡
‖
∗
= ‖𝑊‖

∗
for all small enough

𝑡 > 0 (since 𝜎
𝑖
(𝑊) > 0, 𝑖 ∈ {1, 2, . . . , 𝑠}). Noting that 𝑊 is

the unique optimal solution to (6), we have 𝑋
𝑡
= 𝑊, which

means that (�̃�𝑇𝐷�̃�)
𝑖𝑖
= 0 for 𝑖 ∈ 𝐽. This is a contradiction,

and hence the desired conclusion holds.
We next prove that A is 𝑠-good if 𝛾

𝑠
(A) < 1. That is,

we let 𝑊 be an 𝑠-rank matrix and we show that 𝑊 is the
unique optimal solution to (6). Without loss of generality,
let 𝑊 be a matrix of rank 𝑠 ̸= 0 and 𝑈

𝑚×𝑠
𝑊

𝑠
𝑉

𝑇

𝑛×𝑠
 its SVD,

where 𝑈
𝑚×𝑠
 ∈ R𝑚×𝑠



, 𝑉
𝑛×𝑠
 ∈ R𝑛×𝑠



are orthogonal matrices
and 𝑊

𝑠
 = Diag((𝜎

1
(𝑊), . . . , 𝜎

𝑠
(𝑊))

𝑇

). It follows from
Proposition 4 that 𝛾

𝑠
(A) ≤ 𝛾

𝑠
(A) < 1. By the defini-

tion of 𝛾
𝑠
(A), there exists 𝑦 ∈ R𝑝 such that A∗

𝑦 =

𝑈Diag(𝜎(A∗

𝑦))𝑉
𝑇, where 𝑈 = [𝑈

𝑚×𝑠
 𝑈

𝑚×(𝑟−𝑠

)
], 𝑉 =

[𝑉
𝑛×𝑠
 𝑉

𝑛×(𝑟−𝑠

)
], and

𝜎
𝑖
(A

∗

𝑦)

{

{

{

= 1, if 𝜎
𝑖
(𝑊) ̸= 0,

∈ [0, 1) , if 𝜎
𝑖
(𝑊) = 0.

(46)

Now, we have the optimization problem of minimizing the
function

𝑓 (𝑋) = ‖𝑋‖
∗
− 𝑦

𝑇

[A𝑋 −A𝑊]

= ‖𝑋‖
∗
− ⟨A

∗

𝑦,𝑋⟩ + ‖𝑊‖
∗

(47)

over all 𝑋 ∈ R𝑚×𝑛 such that A𝑋 = A𝑊. Note that
⟨A∗

𝑦,𝑋⟩ ≤ ‖𝑋‖
∗
by ‖A∗

𝑦‖ ≤ 1 and the definition of dual

norm. So 𝑓(𝑋) ≥ ‖𝑋‖
∗
− ‖𝑋‖

∗
+ ‖𝑊‖

∗
= ‖𝑊‖

∗
and this

function attains its unconstrained minimum in 𝑋 at 𝑋 = 𝑊.
Hence𝑋 = 𝑊 is an optimal solution to (6). It remains to show
that this optimal solution is unique. Let𝑍 be another optimal
solution to the problem.Then𝑓(𝑍)−𝑓(𝑊) = ‖𝑍‖

∗
−𝑦

𝑇A𝑍 =

‖𝑍‖
∗
− ⟨A∗

𝑦, 𝑍⟩ = 0. This together with the fact ‖A∗

𝑦‖ ≤ 1

implies that there exist SVDs forA∗

𝑦 and 𝑍 such that

A
∗

𝑦 = �̃�Diag (𝜎 (A∗

𝑦)) �̃�
𝑇

,

𝑍 = �̃�Diag (𝜎 (𝑍)) �̃�𝑇,
(48)

where �̃� ∈ R𝑚×𝑟 and �̃� ∈ R𝑛×𝑟 are orthogonal matrices,
and 𝜎

𝑖
(𝑍) = 0 if 𝜎

𝑖
(A∗

𝑦) ̸= 1. Thus, for 𝜎
𝑖
(A∗

𝑦) = 0, for all
𝑖 ∈ {𝑠



+ 1, . . . , 𝑟}, we must have 𝜎
𝑖
(𝑍) = 𝜎

𝑖
(𝑊) = 0. By the

two forms of SVDs ofA∗

𝑦 as above, 𝑈
𝑚×𝑠
𝑉

𝑇

𝑛×𝑠
 = �̃�

𝑚×𝑠
�̃�

𝑇

𝑛×𝑠


where �̃�
𝑚×𝑠
 , �̃�𝑇

𝑛×𝑠
 are the corresponding submatrices of �̃�, �̃�,

respectively. Without loss of generality, let

𝑈 = [𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑟
] , 𝑉 = [V

1
, V
2
, . . . , V

𝑟
] ,

�̃� = [�̃�
1
, �̃�
2
, . . . , �̃�

𝑟
] , �̃� = [Ṽ

1
, Ṽ
2
, . . . , Ṽ

𝑟
] ,

(49)

where 𝑢
𝑗
= �̃�

𝑗
and V

𝑗
= Ṽ

𝑗
for the corresponding index 𝑗 ∈

{𝑖 : 𝜎
𝑖
(A∗

𝑦) = 0, 𝑖 ∈ {𝑠


+ 1, . . . , 𝑟}}. Then we have

𝑍 =

𝑠


∑

𝑖=1

𝜎
𝑖
(𝑍) �̃�

𝑖
Ṽ
𝑇

𝑖
, 𝑊 =

𝑠


∑

𝑖=1

𝜎
𝑖
(𝑊) 𝑢

𝑖
V
𝑇

𝑖
. (50)

From 𝑈
𝑚×𝑠
𝑉
𝑇

𝑛×𝑠
 = �̃�

𝑚×𝑠
�̃�

𝑇

𝑛×𝑠
 , we obtain that

𝑟

∑

𝑖=𝑠

+1

𝜎
𝑖
(A

∗

𝑦) �̃�
𝑖
Ṽ
𝑇

𝑖
=

𝑟

∑

𝑖=𝑠

+1

𝜎
𝑖
(A

∗

𝑦) 𝑢
𝑖
V
𝑇

𝑖
. (51)

Therefore, we deduce
𝑟

∑

𝑖=𝑠

+1,𝜎
𝑖
(A∗𝑦) ̸= 0

𝜎
𝑖
(A

∗

𝑦) �̃�
𝑖
Ṽ
𝑇

𝑖
+

𝑟

∑

𝑖=𝑠

+1,𝜎
𝑖
(A∗𝑦)=0

�̃�
𝑖
Ṽ
𝑇

𝑖

=

𝑟

∑

𝑖=𝑠

+1,𝜎
𝑖
(A∗𝑦) ̸= 0

𝜎
𝑖
(A

∗

𝑦) 𝑢
𝑖
V
𝑇

𝑖
+

𝑟

∑

𝑖=𝑠

+1,𝜎
𝑖
(A∗𝑦)=0

𝑢
𝑖
V
𝑇

𝑖

=: Ω.

(52)

Clearly, the rank of Ω is no less than 𝑟 − 𝑠 ≥ 𝑟 − 𝑠. From the
orthogonality property of𝑈,𝑉 and �̃�, �̃�, we easily derive that

Ω
𝑇

�̃�
𝑖
Ṽ
𝑇

𝑖
= 0, Ω

𝑇

𝑢
𝑖
V
𝑇

𝑖
= 0, ∀𝑖 ∈ {1, 2, . . . , 𝑠



} . (53)

Thus, we obtainΩ𝑇(𝑍 −𝑊) = 0, which implies that the rank
of the matrix𝑍−𝑊 is no more than 𝑠. Since 𝛾

𝑠
(A) < 1, there

exists 𝑦 such that

𝜎
𝑖
(A

∗

𝑦)

{

{

{

= 1, if 𝜎
𝑖
(𝑍 −𝑊) ̸= 0,

∈ [0, 1) if 𝜎
𝑖
(𝑍 −𝑊) = 0.

(54)

Therefore, 0 = 𝑦𝑇A(𝑍 − 𝑊) = ⟨A∗

𝑦, 𝑍 − 𝑊⟩ = ‖𝑍 −𝑊‖
∗
.

Then 𝑍 = 𝑊.
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For the𝐺-number 𝛾
𝑠
(A), we directly obtain the following

equivalent theorem of 𝑠-goodness from Proposition 5 and
Theorem 7.

Theorem 8. LetA : R𝑚×𝑛 → R𝑝 be a linear transformation,
and 𝑠 ∈ {1, 2, . . . , 𝑟}. Then A is 𝑠-good if and only if 𝛾

𝑠
(A) <

1/2.

4. 𝑠-Goodness, NSP, and RIP

This section deals with the connections between 𝑠-goodness,
the null space property (NSP), and the restricted isometry
property (RIP). We start with establishing the equivalence of
NSP and 𝐺-number 𝛾

𝑠
(A) < 1/2. Here, we say A satisfies

NSP if for every nonzero matrix 𝑋 ∈ Null(A) with the SVD
𝑋 = 𝑈Diag(𝜎(𝑋))𝑉𝑇, then we have

𝑠

∑

𝑖=1

𝜎
𝑖
(𝑋) <

𝑟

∑

𝑖=𝑠+1

𝜎
𝑖
(𝑋) . (55)

For further details, see, for example, [14, 19–21] and references
therein.

Proposition 9. For the linear transformationA, 𝛾
𝑠
(A) < 1/2

if and only ifA satisfies NSP.

Proof. We first give an equivalent representation of the 𝐺-
number 𝛾

𝑠
(A, 𝛽). We define a compact convex set first:

𝑃
𝑠
:= {𝑍 ∈ R

𝑚×𝑛

: ‖𝑍‖
∗
≤ 𝑠, ‖𝑍‖ ≤ 1} . (56)

Let 𝐵
𝛽
:= {𝑦 ∈ R𝑝 : ‖𝑦‖

𝑑
≤ 𝛽} and 𝐵 := {𝑋 ∈ R𝑚×𝑛 :

‖𝑋‖ ≤ 1}. By definition, 𝛾
𝑠
(A, 𝛽) is the smallest 𝛾 such that

the closed convex set𝐶
𝛾,𝛽
:= A∗

𝐵
𝛽
+𝛾𝐵 contains all matrices

with 𝑠 nonzero singular values, all equal to 1. Equivalently,
𝐶
𝛾,𝛽

contains the convex hull of these matrices, namely, 𝑃
𝑠
.

Note that 𝛾 satisfies the inclusion 𝑃
𝑠
⊆ 𝐶

𝛾,𝛽
if and only if for

every𝑋 ∈ R𝑚×𝑛

max
𝑍∈𝑃
𝑠

⟨𝑍,𝑋⟩ ≤ max
𝑌∈𝐶
𝛾,𝛽

⟨𝑌,𝑋⟩

= max
𝑦∈R𝑝,𝑊∈R𝑚×𝑛

{⟨𝑋,A
∗

𝑦⟩ + 𝛾⟨𝑋,𝑊⟩

:




𝑦



𝑑
≤ 𝛽, ‖𝑊‖ ≤ 1}

= 𝛽 ‖A𝑋‖ + 𝛾‖𝑋‖
∗
.

(57)

For the above, we adopt the convention that whenever 𝛽 =
+∞, 𝛽‖A𝑋‖ is defined to be +∞ or 0 depending on whether
‖A𝑋‖ > 0 or ‖A𝑋‖ = 0. Thus, 𝑃

𝑠
⊆ 𝐶

𝛾,𝛽
if and only if

max
𝑍∈𝑃
𝑠

{⟨𝑍,𝑋⟩ − 𝛽‖A𝑋‖} ≤ 𝛾‖𝑋‖
∗
. Using the homogeneity

of this last relation with respect to 𝑋, the above is equivalent
to

max
𝑍,𝑋

{⟨𝑍,𝑋⟩ − 𝛽 ‖A𝑋‖ : 𝑍 ∈ 𝑃
𝑠
, ‖𝑋‖

∗
≤ 1} ≤ 𝛾. (58)

Therefore, we obtain 𝛾
𝑠
(A, 𝛽) = max

𝑍,𝑋
{⟨𝑍,𝑋⟩ − 𝛽‖A𝑋‖ :

𝑍 ∈ 𝑃
𝑠
, ‖𝑋‖

∗
≤ 1}. Furthermore,

𝛾
𝑠
(A) = max

𝑍,𝑋

{⟨𝑍,𝑋⟩ : 𝑍 ∈ 𝑃
𝑠
, ‖𝑋‖

∗
≤ 1,A𝑋 = 0} .

(59)

For 𝑋 ∈ R𝑚×𝑛 with A𝑋 = 0, let 𝑋 = 𝑈Diag(𝜎(𝑋))𝑉𝑇
be its SVD. Then, we obtain the sum of the 𝑠 largest singular
values of𝑋 as

‖𝑋‖
𝑠,∗
= max
𝑍∈𝑃
𝑠

⟨𝑍,𝑋⟩. (60)

From (59), we immediately obtain that 𝛾
𝑠
(A) is the best upper

bound on ‖𝑋‖
𝑠,∗

of matrices 𝑋 ∈ Null(A) such that ‖𝑋‖
∗
≤

1. Therefore, 𝛾
𝑠
(A) < 1/2 implies that the maximum value

of ‖ ⋅ ‖
𝑠,∗
-norms of matrices 𝑋 ∈ Null(A) with ‖𝑋‖

∗
= 1

is less than 1/2. That is, ∑𝑠
𝑖=1
𝜎
𝑖
(𝑋) < 1/2∑

𝑟

𝑖=1
𝜎
𝑖
(𝑋). Thus,

∑
𝑠

𝑖=1
𝜎
𝑖
(𝑋) < ∑

𝑟

𝑖=𝑠+1
𝜎
𝑖
(𝑋) and hence A satisfies NSP. Now,

it is easy to see that A satisfies NSP if and only if 𝛾
𝑠
(A) <

1/2.

Next, we consider the connection between restricted
isometry constants and 𝐺-number of the linear transforma-
tion in LMR. It is well known that, for a nonsingular matrix
(transformation) 𝑇 ∈ R𝑝×𝑝, the RIP constants of A and
𝑇A can be very different, as shown by Zhang [30] for the
vector case. However, the 𝑠-goodness properties of A and
𝑇A are always the same for a nonsingular transformation
𝑇 ∈ R𝑝×𝑝 (i.e., 𝑠-goodness properties enjoy scale invariance
in this sense). Recall that the 𝑠-restricted isometry constant
𝛿
𝑠
of a linear transformation A is defined as the smallest

constant such that the following holds for all 𝑠-rank matrices
𝑋 ∈ R𝑚×𝑛:

(1 − 𝛿
𝑠
) ‖𝑋‖

2

𝐹
≤ ‖A𝑋‖

2

2
≤ (1 + 𝛿

𝑠
) ‖𝑋‖

2

𝐹
. (61)

In this case, we sayA possesses the RI (𝛿
𝑠
)-property (RIP) as

in theCS context. For details, see [4, 31–34] and the references
therein.

Proposition 10. Let A : R𝑚×𝑛 → R𝑝 be a linear
transformation and 𝑠 ∈ {0, 1, 2, . . . , 𝑟}. For any nonsingular
transformation 𝑇 ∈ R𝑝×𝑝, 𝛾

𝑠
(A) = 𝛾

𝑠
(𝑇A).

Proof. It follows from the nonsingularity of 𝑇 that {𝑋 : A𝑋 =
0} = {𝑋 : 𝑇A𝑋 = 0}. Then, by the equivalent representation
of the 𝐺-number 𝛾

𝑠
(A, 𝛽) in (59),

𝛾
𝑠
(A) = max

𝑍,𝑋

{⟨𝑍,𝑋⟩ : 𝑍 ∈ 𝑃
𝑠
, ‖𝑋‖

∗
≤ 1,A𝑋 = 0}

= max
𝑍,𝑋

{⟨𝑍,𝑋⟩ : 𝑍 ∈ 𝑃
𝑠
, ‖𝑋‖

∗
≤ 1, 𝑇A𝑋 = 0}

= 𝛾
𝑠
(𝑇A) .

(62)

For the RIP constant 𝛿
2𝑠
, Oymak et al. [21] gave the

current best bound on the restricted isometry constant
𝛿
2𝑠
< 0.472, where they proposed a general technique for

translating results from SSR to LMR. Together with the above
arguments, we immediately obtain the following theorem.

Theorem 11. 𝛿
2𝑠
< 0.472 ⇒ A satisfying 𝑁𝑆𝑃 ⇔ 𝛾

𝑠
(A) <

1/2 ⇔ 𝛾
𝑠
(A) < 1 ⇔ A is 𝑠-good.

Proof. It follows from [21, Theorem 1], Proposition 9, and
Theorems 7 and 8.
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The above theorem says that 𝑠-goodness is a necessary
and sufficient condition for recovering the low-rank solution
exactly via nuclear norm minimization.

5. Conclusion

In this paper, we have shown that 𝑠-goodness of the linear
transformation in LMR is a necessary and sufficient condi-
tions for exact 𝑠-rank matrix recovery via the nuclear norm
minimization, which is equivalent to the null space property.
Our analysis is based on the two characteristic 𝑠-goodness
constants, 𝛾

𝑠
and 𝛾

𝑠
, and the variational property of matrix

norm in convex optimization. This shows that 𝑠-goodness is
an elegant concept for low-rank matrix recovery, although
𝛾
𝑠
and 𝛾

𝑠
may not be easy to compute. Development of

efficiently computable bounds on these quantities is left to
future work. Even though we develop and use techniques
based on optimization, convex analysis, and geometry, we do
not provide explicit analogues to the results of Donoho [35]
where necessary and sufficient conditions for vector recovery
special case were derived based on the geometric notions
of face preservation and neighborliness. The corresponding
generalization to low-rank recovery is not known, currently
the closest one being [22]. Moreover, it is also important
to consider the semidefinite relaxation (SDR) for the rank
minimization with the positive semidefinite constraint since
the SDR convexifies nonconvex or discrete optimization
problems by removing the rank-one constraint. Another
future research topic is to extend the main results and the
techniques in this paper to the SDR.
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