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A class of semistrictly 𝐺-preinvex functions and optimality in nonlinear programming are further discussed. Firstly, the relation-
ships between semistrictly 𝐺-preinvex functions and 𝐺-preinvex functions are further discussed. Then, two interesting properties
of semistrictly𝐺-preinvexity are given. Finally, two optimality results for nonlinear programming problems are obtained under the
assumption of semistrict 𝐺-preinvexity. The obtained results are new and different from the corresponding ones in the literature.
Some examples are given to illustrate our results.

1. Introduction

It is well known that convexity and generalized convexity
have been playing a central role in mathematical program-
ming, economics, engineering, and optimization theory. The
research convexity and generalized convexity are one of the
most important aspects in mathematical programming and
optimization theory in [1–4]. Various kinds of generalized
convexity have been introduced by many authors (see, e.g.,
[5–21] and the references therein). In 1981, Hanson [5] intro-
duced the concept of invexity which is extension of differen-
tiable convex functions and proved the sufficiency of Kuhn-
Tucker condition. Later,Weir andMond [6] considered func-
tions (not necessarily differentiable) for which there exists a
vector function 𝜂 : 𝑅𝑛 ×𝑅𝑛 → 𝑅

𝑛 such that, for all 𝑥, 𝑦 ∈ 𝑅𝑛,
𝜆 ∈ [0, 1], one hasthe following:

𝑓 (𝑦 + 𝜆𝜂 (𝑥, 𝑦)) ≤ 𝜆𝑓 (𝑥) + (1 − 𝜆) 𝑓 (𝑦) , (1)

which has been named as preinvex functions with respect to
vector-valued function 𝜂. In 2001, Yang and Li [8] obtained
some properties of preinvex function. At the same time,
Yang and Li [9] introduced the concept of semistrictly prein-
vex functions and investigated the relationships between
semistrictly preinvex functions and preinvex functions. It is
worth mentioning that many properties and applications in

mathematical programming for invex functions and preinvex
functions are discussed by many authors (see, e.g., [6–11, 21]
and the references therein).

On the other hand, Avriel et al. [12] introduced a class
of 𝐺-convex functions which is another generalization of
convex functions and obtained some relations with other
generalization of convex functions. In [13], Antczak intro-
duced the concept of a class of 𝐺-invex fuctions, which is
a generalization of 𝐺-convex functions and invex functions.
Recently, Antczak [14] introduced a class of 𝐺-preinvex
functions, which is a generalization of 𝐺-invex [13], preinvex
functions [8] and derived some optimality results for con-
strained optimization problems under 𝐺-preinvexity. Very
recently, Luo and Wu introduced a new class of func-
tions called semistrictly 𝐺-preinvex functions in [15], which
include semistrictly preinvex functions [9] as a special case.
They investigated the relationships between semistrictly 𝐺-
preinvex functions and 𝐺-preinvex functions and gave a cri-
terion for semistrict 𝐺-preinvexity. Moreover, they also pro-
posed three open questions (just as they said: “an interesting
topic for our future research is to”: (1) investigate 𝐺-preinvex
functions and semicontinuity; (2) explore some properties
of semistrictly 𝐺-preinvex functions; (3) research into some
applications in optimization problems under semistrictly 𝐺-
preinvexity [15]).
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However, as far as we know, there are few papers dealing
with the properties and applications of the semistrictly 𝐺-
preinvex functions [16]. The questions above in [15] have not
been solved, and one condition in [15] is notmild in research-
ing of relationships between 𝐺-preinvexity and semistrict 𝐺-
preinvexity. So, in this paper, we further discuss semistrictly
𝐺-preinvex functions. The rest of the paper is organized
as follows. Firstly, we investigate 𝐺-preinvex functions and
semicontinuity and obtain a criterion of 𝐺-preinvexity under
semicontinuity. Then, we give new relationships between 𝐺-
preinvexity and semistrictly 𝐺-preinvexity, which are differ-
ent from the recent ones in the literature [15]. Finally, we
get two optimality results under semistrict 𝐺-preinvexity for
nonlinear programming. The obtained results in this paper
improve and extend the existing ones in the literature (e.g.,
[8, 9, 11, 15, 16]).

2. Preliminaries and Definitions

Throughout this paper, let𝐾 be a nonempty subset of 𝑅𝑛. Let
𝑓 : 𝐾 → 𝑅 be a real-valued function and 𝜂 : 𝐾 × 𝐾 → 𝑅

𝑛

a vector-valued function. Let 𝐼
𝑓
(𝐾) be the range of 𝑓, that is,

the image of𝐾 under 𝑓.
Now we recall some definitions.

Definition 1 (see [5, 6]). A set 𝐾 is said to be invex if there
exists a vector-valued function 𝜂 : 𝐾 × 𝐾 → 𝑅

𝑛 (𝜂 ̸= 0) such
that

𝑥, 𝑦 ∈ 𝐾, 𝜆 ∈ [0, 1] 󳨐⇒ 𝑦 + 𝜆𝜂 (𝑥, 𝑦) ∈ 𝐾. (2)

Definition 2 (see [6, 8]). Let 𝐾 ⊆ 𝑅
𝑛 be an invex set with

respect to 𝜂 : 𝑅𝑛×𝑅𝑛 → 𝑅
𝑛 and let𝑓 : 𝐾 → 𝑅 be amapping.

One says that 𝑓 is preinvex if

𝑓 (𝑦 + 𝜆𝜂 (𝑥, 𝑦))

≤ 𝜆𝑓 (𝑥) + (1 − 𝜆) 𝑓 (𝑦) , ∀𝑥, 𝑦 ∈ 𝐾, 𝜆 ∈ [0, 1] .

(3)

Remark 3. Any convex function is a preinvex function with
𝜂(𝑥, 𝑦) = 𝑥 − 𝑦.

Definition 4 (see [10]). Let𝐾 ⊆ 𝑅
𝑛 be an invex setwith respect

to 𝜂 : 𝑅
𝑛

× 𝑅
𝑛

→ 𝑅
𝑛. Let 𝑓 : 𝐾 → 𝑅. One says that 𝑓 is

prequasi-invex if

𝑓 (𝑦 + 𝜆𝜂 (𝑥, 𝑦))

≤ max {𝑓 (𝑥) , 𝑓 (𝑦)} , ∀𝑥, 𝑦 ∈ 𝐾, 𝜆 ∈ [0, 1] .

(4)

Definition 5 (see [14]). Let 𝐾 be a nonempty invex (with
respect to 𝜂) subset 𝑅𝑛. A function 𝑓 : 𝐾 → 𝑅 is said to be
𝐺-preinvex at 𝑢 on 𝐾 if there exists a continuous real-valued
increasing function 𝐺 : 𝐼

𝑓
(𝐾) → 𝑅 such that for all 𝑥 ∈ 𝐾

and 𝜆 ∈ [0, 1] (𝜆 ∈ (0, 1)),

𝑓 (𝑢 + 𝜆𝜂 (𝑥, 𝑢)) ≤ 𝐺
−1

(𝜆𝐺 (𝑓 (𝑥)) + (1 − 𝜆)𝐺 (𝑓 (𝑢))) .

(5)

If (5) is satisfied for any 𝑢 ∈ 𝐾 then 𝑓 is 𝐺-preinvex on 𝐾,
with respect to 𝜂.

Definition 6 (see [15]). Let 𝐾 be a nonempty invex (with
respect to 𝜂) subset 𝑅𝑛. A function 𝑓 : 𝐾 → 𝑅 is said to be
semistrictly 𝐺-preinvex at 𝑢 on𝐾 if there exists a continuous
real-valued increasing function 𝐺 : 𝐼

𝑓
(𝐾) → 𝑅 such that for

all 𝑥 ∈ 𝐾 (𝑓(𝑥) ̸= 𝑓(𝑢)) and 𝜆 ∈ (0, 1),

𝑓 (𝑢 + 𝜆𝜂 (𝑥, 𝑢)) < 𝐺
−1

(𝜆𝐺 (𝑓 (𝑥)) + (1 − 𝜆)𝐺 (𝑓 (𝑢))) .

(6)

If (6) is satisfied for any 𝑢 ∈ 𝐾, then 𝑓 is semistrictly 𝐺-pre-
invex on𝐾 with respect to 𝜂.

Remark 7. In order to define an analogous class of semistrictly
𝐺-preincave functions with respect to 𝜂, the direction of the
inequality in Definition 6 should be changed to the opposite
one.

Remark 8. Every semistrictly preinvex function [8, 9] is
semistrictly 𝐺-preinvex with respect to the same function 𝜂,
where 𝐺 : 𝐼

𝑓
(𝐾) → 𝑅 is defined by 𝐺(𝑥) = 𝑥.

In order to prove our main result, we need Condition C
as follows.

Condition C (see [9]). The vector-valued function 𝜂 : 𝑋 ×

𝑋 → 𝑋 is said to satisfy Condition C if for any 𝑥, 𝑦 ∈ 𝑋, and
𝜆 ∈ [0, 1],

𝜂 (𝑦, 𝑦 + 𝜆𝜂 (𝑥, 𝑦)) = −𝜆𝜂 (𝑥, 𝑦) ,

𝜂 (𝑥, 𝑦 + 𝜆𝜂 (𝑥, 𝑦)) = (1 − 𝜆) 𝜂 (𝑥, 𝑦) .

(7)

Example 9. Let

𝜂 (𝑥, 𝑦) =

{{{{{{{{{

{{{{{{{{{

{

𝑥 − 𝑦, if 𝑥 ≥ 0, 𝑦 ≥ 0,

𝑥 − 𝑦, if 𝑥 < 0, 𝑦 < 0,

−
5

2
− 𝑦, if 𝑥 > 0, 𝑦 ≤ 0,

5

2
− 𝑦, if 𝑥 ≤ 0, 𝑦 > 0.

(8)

It can be verified that 𝜂 satisfies the Condition C.

3. Relationships with
Semistrictly 𝐺-Preinvexity

In [15], Luo and Wu obtained a sufficient condition of 𝐺-
preinvex functions under the condition of intermediate-point
𝐺-preinvexity. Now we investigate 𝐺-preinvex functions and
semicontinuity without the condition of intermediate-point
𝐺-preinvexity.

Theorem 10. Let 𝐾 be a nonempty invex set with respect to
𝜂, where 𝜂 satisfies Condition C. Let 𝑓 : 𝐾 → 𝑅 be lower
semicontinuous and semistrictly 𝐺-preinvex for the same 𝜂 on
𝐾, and let 𝑓(𝑦 + 𝜂(𝑥, 𝑦)) ≤ 𝑓(𝑥) (for all 𝑥 ∈ 𝐾). Then 𝑓 is
𝐺-preinvex function on 𝐾.
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Proof. Let 𝑥, 𝑦 ∈ 𝐾. From the assumption of 𝑓(𝑦+𝜂(𝑥, 𝑦)) ≤
𝑓(𝑥), when 𝜆 = 0, 1, we can know that

𝑓 (𝑦 + 𝜆𝜂 (𝑥, 𝑦)) ≤ 𝐺
−1

(𝜆𝐺 (𝑓 (𝑥)) + (1 − 𝜆)𝐺 (𝑓 (𝑦))) .

(9)

Then, there are two cases to be considered.

(i) If𝑓(𝑥) ̸= 𝑓(𝑦), then by the semistrict𝐺-preinvexity of
𝑓, we have the following:

𝑓 (𝑦 + 𝜆𝜂 (𝑥, 𝑦))

< 𝐺
−1

(𝜆𝐺 (𝑓 (𝑥)) + (1 − 𝜆)𝐺 (𝑓 (𝑦))) , ∀𝜆 ∈ (0, 1) .

(10)

(ii) If 𝑓(𝑥) = 𝑓(𝑦), to show that 𝑓 is a 𝐺-preinvex func-
tion, we need to show that

𝑓 (𝑦 + 𝜆𝜂 (𝑥, 𝑦))

≤ 𝐺
−1

(𝜆𝐺 (𝑓 (𝑥)) + (1 − 𝜆)𝐺 (𝑓 (𝑦))) = 𝑓 (𝑥) .

(11)

By contradiction, suppose that there exists an 𝛼 ∈ (0, 1) such
that

𝑓 (𝑦 + 𝛼𝜂 (𝑥, 𝑦)) > 𝑓 (𝑥) . (12)

Let 𝑧
𝛼
= 𝑦+𝛼𝜂(𝑥, 𝑦). Since 𝑓 is lower semicontinuous, there

exists 𝛽 : 𝛼 < 𝛽 < 1, such that

𝑓 (𝑧
𝛽
) = 𝑓 (𝑦 + 𝛽𝜂 (𝑥, 𝑦)) > 𝑓 (𝑥) = 𝑓 (𝑦) . (13)

From Condition C,

𝑧
𝛽
= 𝑧
𝛼
+
𝛽 − 𝛼

1 − 𝛼
𝜂 (𝑥, 𝑧

𝛼
) . (14)

By the semistrict𝐺-preinvexity of𝑓 and (12), we have the fol-
lowing:

𝑓 (𝑧
𝛽
)

= 𝑓(𝑧
𝛼
+
𝛽 − 𝛼

1 − 𝛼
𝜂 (𝑥, 𝑧

𝛼
))

< 𝐺
−1

[
𝛽 − 𝛼

1 − 𝛼
𝐺 (𝑓 (𝑥)) + (1 −

𝛽 − 𝛼

1 − 𝛼
)𝐺 (𝑓 (𝑧

𝛼
))]

< 𝐺
−1

[
𝛽 − 𝛼

1 − 𝛼
𝐺 (𝑓 (𝑧

𝛼
)) + (1 −

𝛽 − 𝛼

1 − 𝛼
)𝐺 (𝑓 (𝑧

𝛼
))]

= 𝑓 (𝑧
𝛼
) .

(15)

On the other hand, fromCondition C, one can obtain the fol-
lowing:

𝑧
𝛼
= 𝑧
𝛽
+ (1 −

𝛼

𝛽
) 𝜂 (𝑦, 𝑧

𝛽
) . (16)

According to (13) and the semistrictly 𝐺-preinvexity of 𝑓, we
have the following:

𝑓 (𝑧
𝛼
)

= 𝑓(𝑧
𝛽
+ (1 −

𝛼

𝛽
) 𝜂 (𝑦, 𝑧

𝛽
))

< 𝐺
−1

[(1 −
𝛼

𝛽
)𝐺 (𝑓 (𝑦)) +

𝛼

𝛽
𝐺 (𝑓 (𝑧

𝛽
))]

< 𝐺
−1

[(1 −
𝛼

𝛽
)𝐺 (𝑓 (𝑧

𝛽
)) +

𝛼

𝛽
𝐺 (𝑓 (𝑧

𝛽
))]

= 𝑓 (𝑧
𝛽
)

(17)

which contradicts (15). This completes the proof.

Remark 11. In Theorem 10, we investigate 𝐺-preinvex func-
tions and lower semicontinuity, and establish a new suffi-
cient condition for 𝐺-preinvexity without the condition of
intermediate-point 𝐺-preinvexity. Therefore, we also answer
the open question (1) which proposed in [15] (“(1) investigate
𝐺-preinvex functions and semicontinuity” [15]).

Now, we give a new sufficient condition for semistrictly
𝐺-preinvexity.

Theorem 12. Let 𝐾 be a nonempty invex set with respect to 𝜂,
where 𝜂 satisfies Condition C. Let 𝑓 : 𝐾 → 𝑅 be a 𝐺-preinvex
function for the same 𝜂 on 𝐾. Suppose that for any 𝑥, 𝑦 ∈ 𝐾

with 𝑓(𝑥) ̸= 𝑓(𝑦), there exists an 𝛼 ∈ (0, 1) such that

𝑓 (𝑦 + 𝛼𝜂 (𝑥, 𝑦)) < 𝐺
−1

(𝛼𝐺 (𝑓 (𝑥)) + (1 − 𝛼)𝐺 (𝑓 (𝑦))) .

(18)

Then, 𝑓 is semistrictly 𝐺-preinvex function on 𝐾.

Proof. For any 𝑥, 𝑦 ∈ 𝐾 with 𝑓(𝑥) ̸= 𝑓(𝑦) and 𝜆 ∈ (0, 1), by
assumption, we have the following:

𝑓 (𝑦 + 𝜆𝜂 (𝑥, 𝑦)) ≤ 𝐺
−1

(𝜆𝐺 (𝑓 (𝑥)) + (1 − 𝜆)𝐺 (𝑓 (𝑦))) .

(19)

(i) Let 𝜆 ≤ 𝛼. From Condition C, we can obtain the fol-
lowing:

𝑦 +
𝜆

𝛼
𝜂 (𝑦 + 𝛼𝜂 (𝑥, 𝑦) , 𝑦)

= 𝑦 +
𝜆

𝛼
𝜂 (𝑦 + 𝛼𝜂 (𝑥, 𝑦) , 𝑦 + 𝛼𝜂 (𝑥, 𝑦) − 𝛼𝜂 (𝑥, 𝑦))

= 𝑦 +
𝜆

𝛼
𝜂 (𝑦 + 𝛼𝜂 (𝑥, 𝑦) , 𝑦 + 𝛼𝜂 (𝑥, 𝑦)

+𝜂 (𝑦, 𝑦 + 𝛼𝜂 (𝑥, 𝑦)))

= 𝑦 −
𝜆

𝛼
𝜂 (𝑦, 𝑦 + 𝛼𝜂 (𝑥, 𝑦))

= 𝑦 + 𝜆𝜂 (𝑥, 𝑦) .

(20)
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Using (18) and the 𝐺-preinvexity of 𝑓, we have the following:

𝑓 (𝑦 + 𝜆𝜂 (𝑥, 𝑦))

= 𝑓 [𝑦 +
𝜆

𝛼
𝜂 (𝑦 + 𝛼𝜂 (𝑥, 𝑦) , 𝑦)]

≤ 𝐺
−1

[
𝜆

𝛼
𝐺 ( 𝑓 (𝑦 + 𝛼𝜂 (𝑥, 𝑦))

+ (1 −
𝜆

𝛼
)𝐺 (𝑓 (𝑦))]

< 𝐺
−1

[
𝜆

𝛼
𝐺 (𝐺
−1

(𝛼𝐺 (𝑓 (𝑥)) + (1 − 𝛼)𝐺 (𝑓 (𝑦))))

+(1 −
𝜆

𝛼
)𝐺 (𝑓 (𝑦))]

= 𝐺
−1

[
𝜆

𝛼
(𝛼𝐺 (𝑓 (𝑥)) + (1 − 𝛼)𝐺 (𝑓 (𝑦)))

+ (1 −
𝜆

𝛼
)𝐺 (𝑓 (𝑦))]

= 𝐺
−1

(𝜆𝐺 (𝑓 (𝑥)) + (1 − 𝜆)𝐺 (𝑓 (𝑦))) .

(21)

(ii) Let 𝛼 < 𝜆; that is,

0 <
1 − 𝜆

1 − 𝛼
< 1. (22)

From Condition C, we have the following:

𝑦 + 𝛼𝜂 (𝑥, 𝑦) + (1 −
1 − 𝜆

1 − 𝛼
) 𝜂 (𝑥, 𝑦 + 𝛼𝜂 (𝑥, 𝑦))

= 𝑦 + [𝛼 + (1 −
1 − 𝜆

1 − 𝛼
) (1 − 𝛼)] 𝜂 (𝑥, 𝑦)

= 𝑦 + 𝜆𝜂 (𝑥, 𝑦) .

(23)

According to (18) and the 𝐺-preinvexity of 𝑓, we get the fol-
lowing:

𝑓 (𝑦 + 𝜆𝜂 (𝑥, 𝑦))

= 𝑓 [𝑦 + 𝛼𝜂 (𝑥, 𝑦) + (1 −
1 − 𝜆

1 − 𝛼
) 𝜂 (𝑥, 𝑦 + 𝛼𝜂 (𝑥, 𝑦))]

≤ 𝐺
−1

[(1 −
1 − 𝜆

1 − 𝛼
)𝐺 (𝑓 (𝑥))

+
1 − 𝜆

1 − 𝛼
𝐺 (𝑓 (𝑦 + 𝛼𝜂 (𝑥, 𝑦))) ]

< 𝐺
−1

[(1 −
1 − 𝜆

1 − 𝛼
)𝐺 (𝑓 (𝑥))

+
1 − 𝜆

1 − 𝛼
𝐺 (𝐺
−1

(𝛼𝐺 (𝑓 (𝑥)) + (1 − 𝛼)𝐺 (𝑓 (𝑦)))) ]

= 𝐺
−1

[(1 −
1 − 𝜆

1 − 𝛼
)𝐺 (𝑓 (𝑥))

+
1 − 𝜆

1 − 𝛼
(𝛼𝐺 (𝑓 (𝑥)) + (1 − 𝛼)𝐺 (𝑓 (𝑦)))]

= 𝐺
−1

( 𝜆𝐺 (𝑓 (𝑥)) + (1 − 𝜆)𝐺 (𝑓 (𝑦))) ,

(24)

(21) and (24) imply that 𝑓 is a semistrictly 𝐺-preinvex func-
tion on𝐾.

Remark 13. Theorem 12 extends and improves Theorem 1 in
[15]. In Theorem 1 of [15], a uniform 𝛼 ∈ (0, 1) is needed;
while in assumption (18) of Theorem 12, this condition has
been weakened, where a uniform 𝛼 ∈ (0, 1) is not necessary.
Moreover, our proof is also different from the corresponding
result of [15].

The following example illustrates that assumption (18) in
Theorem 12 is essential.

Example 14. Let

𝑓 (𝑥) = ln(3
2
|𝑥| +

7

4
) ,

𝜂 (𝑥, 𝑦) =

{{{{

{{{{

{

𝑥 − 𝑦, if 𝑥 ≥ 0, 𝑦 ≥ 0;
𝑥 − 𝑦, if 𝑥 ≤ 0, 𝑦 ≤ 0;
−𝑥 − 𝑦, if 𝑥 > 0, 𝑦 < 0;
−𝑥 − 𝑦, if 𝑥 < 0, 𝑦 > 0.

(25)

It is obvious that 𝑓 is a𝐺-preinvex function with respect to 𝜂,
where 𝐺(𝑡) = 𝑒𝑡,𝐾 = 𝑅.

However, from Definition 6, we can verify that 𝑓 is
a semistrictly 𝐺-preinvex function. The reason is that the
assumption (18) is violated. Indeed, there exist 𝑥 = 1/2, 𝑦 = 4
(with 𝑓(𝑥) ̸= 𝑓(𝑦)), for any 𝜆 ∈ (0, 1), we have the following:

𝑓 (𝑦 + 𝜆𝜂 (𝑥, 𝑦))

= 𝑓(4 −
7

2
𝜆) = ln(3

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
4 −

7

2
𝜆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
7

4
)

= ln(31
4
−
21

4
𝜆)

= 𝐺
−1

(
3

2
(𝜆 |𝑥| + (1 − 𝜆)

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨) +

7

4
)

= 𝐺
−1

(𝜆𝐺 (𝑓 (𝑥)) + (1 − 𝜆)𝐺 (𝑓 (𝑦))) .

(26)

Therefore, (18) is essential.

Lemma 15 (see [16]). Let 𝐾 be a nonempty invex set with
respect to 𝜂. Suppose that 𝑓 is a semistrictly 𝐺

1
-preinvex func-

tion with respect to 𝜂 and 𝐺
2
is a continuous and strictly

increasing function on 𝐼
𝑓
(𝑋). If 𝑔(𝑡) = 𝐺

2
𝐺
−1

1
is convex on

the image under𝐺
1
of the range of 𝑓, then 𝑓 is also semistrictly

𝐺
2
-preinvex function with respect to the same 𝜂 on 𝐾.

Theorem 16. Let K be an invex set with respect to 𝜂 and 𝑓 :

𝐾 → 𝑅 be a semistrictly 𝐺-preinvex function on 𝐾. If 𝐺 is
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concave on 𝐼
𝑓
(𝑋), then 𝑓 is a preinvex function with respect to

the same 𝜂 on 𝐾.

Proof. Let 𝑦 and 𝑧 be two points in 𝐼
𝑓
(𝑋). Because 𝐺 is con-

cave on 𝐼
𝑓
(𝑋), the following inequality

𝐺 (𝜆𝑦 + (1 − 𝜆) 𝑧) ≥ 𝜆𝐺 (𝑦) + (1 − 𝜆)𝐺 (𝑧) (27)

holds for any 𝜆 ∈ [0, 1]. Let 𝐺(𝑦) = 𝑥 and 𝐺(𝑧) = 𝑢. Then,
for each pair of points 𝑥 and 𝑢 in image 𝐺 of 𝐼

𝑓
(𝑋), that is,

𝐺
−1

(𝑥) = 𝑦 and 𝐺−1(𝑢) = 𝑧, we have the following:

𝐺(𝜆𝐺
−1

(𝑥) + (1 − 𝜆)𝐺
−1

(𝑢))

≥ 𝜆𝐺 (𝐺
−1

(𝑥)) + (1 − 𝜆)𝐺 (𝐺
−1

(𝑢))

= 𝜆𝑥 + (1 − 𝜆) 𝑢.

(28)

It follows from (28) and the increasing property of 𝐺−1 that

𝐺
−1

𝐺(𝜆𝐺
−1

(𝑥) + (1 − 𝜆)𝐺
−1

(𝑢))

≥ 𝐺
−1

(𝜆𝐺 (𝐺
−1

(𝑥)) + (1 − 𝜆)𝐺 (𝐺
−1

(𝑢)))

= 𝐺
−1

(𝜆𝑥 + (1 − 𝜆) 𝑢) .

(29)

Thus,

𝜆𝐺
−1

(𝑥) + (1 − 𝜆)𝐺
−1

(𝑢) ≥ 𝐺
−1

(𝜆𝑥 + (1 − 𝜆) 𝑢) .

(30)

Thismeans that𝐺−1 is convex. Letting𝐺
1
= 𝐺,𝐺

2
(𝑡) = 𝑡, then

𝑔(𝑡) = 𝐺
2
𝐺
−1

1
(𝑡) is convex. Hence, by virtue of Lemma 15,𝑓 is

a semistrictly𝐺
2
-preinvex functionwith respect to 𝜂. Because

𝐺
2
(𝑡) = 𝑡 is identity function, 𝑓 is a preinvex function with

respect to the same 𝜂 on𝐾.

FromTheorem 16 and Definitions 2-4, we can obtain the
following Corollary easily.

Corollary 17. Let K be an invex set with respect to 𝜂 and
𝑓 : 𝐾 → 𝑅 is a semistrictly 𝐺-preinvex function on 𝐾. If 𝐺
is concave on 𝐼

𝑓
(𝑋) then 𝑓 be a prequasi-invex function with

respect to the same 𝜂 on 𝐾.

4. Semistrictly 𝐺-Preinvexity and Optimality

In order to solve the open question (3) proposed in [15] (see,
the part of Introduction), in this section, we consider nonlin-
ear programming problems with constraint and obtain two
optimality results under semistrict 𝐺-preinvexity.

We consider the following nonlinear programming Prob-
lem (P) with inequality constraint:

min𝑓 (𝑥) (P)

𝑔
𝑖
(𝑥) ≤ 0, 𝑖 ∈ 𝐽 = 1, . . . , 𝑚, (31)

where 𝑓 : 𝐾 → 𝑅, 𝑔
𝑖
: 𝐾 → 𝑅, 𝑖 ∈ 𝐽, and 𝐾 is a nonempty

subset of 𝑅𝑛. We denote the set of all feasible solutions in (P)
by the following:

𝐷 = {𝑥 ∈ 𝐾 : 𝑔
𝑖
(𝑥) ≤ 0, 𝑖 ∈ 𝐽} . (32)

Theorem 18. Suppose the set of all feasible solutions 𝐷 of
problem (P) is an invex set with respect to 𝜂, and 𝐷 at
least contains two points with nonempty interior. Let 𝑓 be a
nonconstant semistrictly 𝐺-preincave function with respect to
𝜂 on 𝐷. Then no interior of 𝐷 is an optimal solution of (P), or
equivalently, any optimal solution 𝑥 in problem (P), if exists,
must be a boundary point of𝐷.

Proof. If problem (P) has no solution the theorem is trivially
true. Let 𝑥 be an optimal solution in problem (P). By assump-
tion, 𝑓 is a nonconstant on 𝐷. Then, there exists a feasible
point 𝑥∗ ∈ 𝐷 such that

𝑓 (𝑥
∗

) > 𝑓 (𝑥) . (33)

Let 𝑧 (𝑧 ̸= 𝑥
∗) be an interior point of 𝐷. By assumption, 𝐷 is

an invex set with respect to 𝜂. It follows from the definition
of invex set 𝐷 that there exists 𝑦 ∈ 𝐷 such that for some 𝜆 ∈
(0, 1),

𝑧 = 𝑥
∗

+ 𝜆𝜂 (𝑦, 𝑥
∗

) . (34)

By assumption,𝑓 is semistrictly𝐺-preincave with respect
to 𝜂 on𝐷. Then, we have the following:

𝑓 (𝑧) = 𝑓 (𝑥
∗

+ 𝜆𝜂 (𝑦, 𝑥
∗

))

> 𝐺
−1

(𝜆𝐺 (𝑓 (𝑦)) + (1 − 𝜆)𝐺 (𝑓 (𝑥
∗

)))

> 𝐺
−1

(𝜆𝐺 (𝑓 (𝑥)) + (1 − 𝜆)𝐺 (𝑓 (𝑥))) = 𝑓 (𝑥) ,

(35)

where 𝑧 is an interior point of𝐷.
From the inequality above, we conclude that no interior of

𝐷 is an optimal solution of (P), that is, any optimal solution 𝑥
in problem (P), if exists, must be a boundary point of𝐷. This
completes the proof.

Theorem 19. Let 𝑥 ∈ 𝐷 be local optimal in problem (P). More-
over, we assume that 𝑓 is semistrictly 𝐺-preinvex with respect
to 𝜂 at 𝑥 on 𝐷 and the constraint functions 𝑔

𝑖
, 𝑖 ∈ 𝐽, are 𝐺-

preinvex with respect to 𝜂 at 𝑥 on𝐷.Then, 𝑥 is a global optimal
solution in problem (P).

Proof. Assume that 𝑥 ∈ 𝐾 is a local optimal solution in (P).
Hence, there is an neighborhood𝑁

𝜖
(𝑥) around 𝑥 such that

𝑓 (𝑥) ≤ 𝑓 (𝑥) , ∀𝑥 ∈ 𝐾 ∩ 𝑁
𝜖
(𝑥) . (36)

Suppose to the contrary, 𝑥 is not a global minimum in (P),
there exists an 𝑥∗ ∈ 𝐷 such that

𝑓 (𝑥
∗

) < 𝑓 (𝑥) . (37)

By assumption, the constraint functions𝑔
𝑖
, 𝑖 ∈ 𝐽, are𝐺-prein-

vexwith respect to the same 𝜂 at𝑥 on𝐷. By usingDefinition 5
together with 𝑥∗, 𝑥 ∈ 𝐷, then for all 𝑖 ∈ 𝐽 and any 𝜆 ∈ [0, 1],
we have the following:

𝑔
𝑖
(𝑥 + 𝜆𝜂 (𝑥

∗

, 𝑥)) ≤ 𝐺
−1

𝑖
(𝜆𝐺
𝑖
(𝑔
𝑖
(𝑥
∗

)) + (1 − 𝜆)𝐺
𝑖
(𝑔
𝑖
(𝑥)))

≤ 𝐺
−1

𝑖
(𝜆𝐺
𝑖
(0) + (1 − 𝜆)𝐺

𝑖
(0)) = 0.

(38)
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Thus, for all 𝑖 ∈ 𝐽 and any 𝜆 ∈ [0, 1],

𝑥 + 𝜆𝜂 (𝑥
∗

, 𝑥) ∈ 𝐷. (39)

By assumption, 𝑓 is semistrictly 𝐺-preinvex with respect
to the same 𝜂 at 𝑥 on 𝐷. Therefore, by Definition 6, we have
the following:

𝑓 (𝑥 + 𝜆𝜂 (𝑥
∗

, 𝑥))

< 𝐺
−1

(𝜆𝐺 (𝑓 (𝑥
∗

)) + (1 − 𝜆)𝐺 (𝑓 (𝑥))) , ∀𝜆 ∈ (0, 1) .

(40)

From (37) and (40), we have the following:

𝑓 (𝑥 + 𝜆𝜂 (𝑥
∗

, 𝑥))

< 𝐺
−1

(𝜆𝐺 (𝑓 (𝑥)) + (1 − 𝜆)𝐺 (𝑓 (𝑥)))

= 𝑓 (𝑥) , ∀𝜆 ∈ (0, 1) .

(41)

For a sufficiently small 𝜆 > 0, it follows that

𝑥 + 𝜆𝜂 (𝑥
∗

, 𝑥) ∈ 𝐾 ∩ 𝑁
𝜖
(𝑥) , (42)

which contradicts that 𝑥 is local optimal in problem (P). This
completes the proof.

Now, we give an example to illustrate Theorem 19.

Example 20. Let 𝑓 : 𝐾 → 𝑅 be defined as follows:

𝑓 (𝑥) = {
ln (5 − 4 |𝑥|) , if |𝑥| ≤ 1,
0, if |𝑥| ≥ 1,

(43)

and let
𝑔
𝑖
(𝑥) = 3𝑥 − 1, 𝑖 ∈ 𝐽 = 1, . . . , 𝑚,

𝜂 (𝑥, 𝑦)=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

3

4
− 𝑦,

if 𝑥 > 1, 0 ≤ 𝑦 < 1,

or 𝑥 < −1, −1 < 𝑦 ≤ 0;

1, if 𝑦 > 1, 0 ≤ 𝑥 < 1;
𝑥 − 𝑦, if 𝑦 < −1, −1 < 𝑥 ≤ 0;
−6𝑥 − 𝑦, if 0 ≤ 𝑥 < 1, 0 < 𝑦 < 1;
1 − 𝑦, if 0 ≤ 𝑥 < 1, 𝑦 = 1;
𝑥 − 𝑦, if |𝑥| ≥ 1, 󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨 ≥ 1;

𝑦 − 𝑥 − 2, if 𝑥 > 1, −1 < 𝑦 < 0;

𝑦 − 𝑥,
if 𝑥 > 1, −1 < 𝑦 < 0,
or 𝑦 > 1, −1 < 𝑥 < 0;

𝑦 − 𝑥, if 𝑦 < −1, 0 < 𝑥 < 1;

−5 −
1

2
𝑦, if |𝑥| < 1, −1 ≤ 𝑦 ≤ 0;

−4𝑥 +
3

2
𝑦, if 𝑥 = 1, 0 < 𝑦 < 1;

3𝑥 +
3

2
𝑦, if 𝑥 = −1, −1 < 𝑦 < 0;

−𝑦 − 𝑥
2

− 𝑥 −
15

2
, if − 1 < 𝑥 < 0, 0 < 𝑦 ≤ 1;

𝑦 − 2𝑥, if 𝑥 = 1, −1 < 𝑦 ≤ 0;
𝑦 − 2𝑥 − 6, if 𝑥 = −1, 0 ≤ 𝑦 < 1.

(44)

From Definitions 5-6, we can get that 𝑓 is semistrictly 𝐺-
preinvex with respect to 𝜂 and the constraint functions 𝑔

𝑖
, 𝑖 ∈

𝐽, are𝐺-preinvex with respect to 𝜂, respectively, where𝐺(𝑡) =
𝑒
𝑡,𝐾 = 𝑅. Obviously, 𝑥 = −1 is a local optimal solution of (P).
Then, all the conditions inTheorem 19 are satisfied. By virtue
ofTheorem 19, 𝑥 = −1 is a global optimal solution in problem
(P).
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