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We introduce a modifiedMann’s iterative procedure by using the hybrid projection method for solving the common solution of the
system of equilibrium problems for a finite family of bifunctions satisfying certain condition, the common solution of fixed point
problems for two finite families of quasi-𝜙-nonexpansive mappings, and the common solution of variational inequality problems
for a finite family of continuous monotone mappings in a uniformly smooth and strictly convex real Banach space. Then, we prove
a strong convergence theorem of the iterative procedure generated by some mild conditions. Our result presented in this paper
improves and generalizes some well-known results in the literature.

1. Introduction

Throughout this paper, we denote byR andN the set of all real
numbers and the set of all positive numbers, respectively. We
also assume that 𝐸 is a real Banach space and 𝐸∗ is the dual
space of𝐸. Let𝐶 be a nonempty, closed and convex subset of a
real Banach space 𝐸with the dual 𝐸∗. We recall the following
definitions.

A mapping 𝐴 : 𝐶 → 𝐶 is said to be nonexpansive if
󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐶. (1)

Amapping𝐴 : 𝐶 → 𝐸∗ is said to bemonotone if for each
𝑥, 𝑦 ∈ 𝐶, such that

⟨𝑥 − 𝑦, 𝐴𝑥 − 𝐴𝑦⟩ ≥ 0. (2)

Amapping𝐴 : 𝐶 → 𝐸∗ is said to be 𝛿-strongly monotone
if there exists a constant 𝛿 > 0 such that

⟨𝑥 − 𝑦, 𝐴𝑥 − 𝐴𝑦⟩ ≥ 𝛿
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩
2

, ∀𝑥, 𝑦 ∈ 𝐶. (3)

A mapping 𝐴 : 𝐶 → 𝐸∗ is said to be 𝛿-inverse strongly
monotone if there exists a constant 𝛿 > 0 such that

⟨𝑥 − 𝑦, 𝐴𝑥 − 𝐴𝑦⟩ ≥ 𝛿
󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦

󵄩󵄩󵄩󵄩
2

, ∀𝑥, 𝑦 ∈ 𝐶. (4)

If 𝐴 is 𝛿-inverse strongly monotone, then it is Lipschitz
continuous with constant 1/𝛿, that is, for all 𝑥, 𝑦 ∈ 𝐶, ‖𝐴𝑥 −
𝐴𝑦‖ ≤ (1/𝛿)‖𝑥 − 𝑦‖.

Clearly, the class of monotone mappings include the class
of 𝛿-inverse strongly monotone mappings.

Let𝐴 : 𝐶 → 𝐸∗ be amonotonemapping.The variational
inequality problem is to find a point 𝑧 ∈ 𝐶 such that

⟨𝑦 − 𝑧, 𝐴𝑧⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (5)

The set of the solution of the variational inequality
problem is denoted by VI(𝐶, 𝐴).

Let 𝐶 be a nonempty, closed and convex subset of a
smooth, strictly convex and reflexive Banach space 𝐸, let 𝑇 :
𝐶 → 𝐶 be a mapping, and 𝐹(𝑇) be the set of fixed points of
𝑇.
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A point 𝑥 ∈ 𝐶 is said to be a fixed point of 𝑇 if 𝑇𝑥 = 𝑥.
The set of the solution of the fixed point of 𝑇 is denoted by
𝐹(𝑇) := {𝑥 ∈ 𝐶 : 𝑇𝑥 = 𝑥}.

A point 𝑝 ∈ 𝐶 is said to be an asymptotic fixed point of
𝑇 if there exists a sequence {𝑥

𝑛
} ⊂ 𝐶 such that 𝑥

𝑛
⇀ 𝑝 and

‖𝑥
𝑛
− 𝑇𝑥
𝑛
‖ → 0. We denoted the set of all asymptotic fixed

points of 𝑇 by 𝐹(𝑇).
A point 𝑝 ∈ 𝐶 is said to be a strong asymptotic fixed point

of𝑇 if there exists a sequence {𝑥
𝑛
} ⊂ 𝐶 such that 𝑥

𝑛
→ 𝑝 and

‖𝑥
𝑛
−𝑇𝑥
𝑛
‖ → 0. We denoted the set of all strong asymptotic

fixed points of 𝑇 by 𝐹(𝑇).
Let 𝐹 : 𝐶 × 𝐶 → R be a bifunction. The equilibrium

problem is to find a point 𝑧 ∈ 𝐶 such that

𝐹 (𝑧, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶. (6)

The set of the solution of equilibrium problem is denoted
by EP(𝐹). Numerous problems in sciences, mathematics,
optimizations, and economics reduced to find a solution
of equilibrium problems. The equilibrium problems include
variational inequality problems and fixed point problem,
and optimization problems as special cases (see, e.g., [1–
3]). Recently, many authors have considered the problem for
finding the common solution of fixed point problems, the
common solution of equilibrium problems, and the common
solution of variational inequality problems.

In 1953, Mann [4] introduced the iterative sequence
{𝑥
𝑛
}
𝑛∈N which is defined by

𝑥
𝑛+1
= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝑇𝑥
𝑛
, (7)

where the initial element 𝑥
0
∈ 𝐶 is arbitrary, 𝑇 is a

nonexpansivemapping, and {𝛼
𝑛
} is the sequence in [0, 1] such

that lim
𝑛→∞

𝛼
𝑛
= 0 and∑∞

𝑛=1
𝛼
𝑛
= ∞. The sequence of (7) is

generally referred to as theMann iteration.
In 2009, Takahashi and Zembayashi [5] introduced

the following iterative scheme by the shrinking projection
method, and they proved that {𝑥

𝑛
}
𝑛∈N converges strongly to

𝑞 = ΠEP(𝐹)∩𝐹(𝑆), under appropriate conditions.

Theorem TZ. Let 𝐸 be a uniformly smooth and uniformly
convex real Banach space, and let 𝐶 be a nonempty, closed
and convex subset of 𝐸. Let 𝐹 be a bifunction from 𝐶 × 𝐶 to
R satisfying (A1)–(A4) and let 𝑇 be a relatively nonexpansive
mapping from 𝐶 into itself such that 𝐹(𝑆)∩EP(𝐹) ̸= 0. Let {𝑥

𝑛
}

be a sequence generated by

𝑥
0
∈ 𝐶
0
= 𝐶 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦,

𝑦
𝑛
= 𝐽
−1

(𝛼
𝑛
𝐽𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝐽𝑇𝑥
𝑛
) ,

𝑢
𝑛
∈ 𝐶 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐹 (𝑢

𝑛
, 𝑦) +

1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝐽𝑢
𝑛
− 𝐽𝑦
𝑛
⟩ ≥ 0,

∀𝑦 ∈ 𝐶,

𝐶
𝑛+1
= {𝑧 ∈ 𝐶

𝑛
: 𝜙 (𝑧, 𝑢

𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
)} ,

𝑥
𝑛+1
= Π
𝐶
𝑛+1

(𝑥
0
) , ∀𝑛 ≥ 0,

(8)

for every 𝑛 ∈ N ∪ {0}, where 𝐽 is the duality mapping on 𝐸,
the sequence 𝛼

𝑛
⊂ [0, 1] satisfies lim inf

𝑛→∞
𝛼
𝑛
(1 − 𝛼

𝑛
) > 0,

and {𝑟
𝑛
}
𝑛∈N ⊂ (0,∞) satisfies lim inf

𝑛→∞
𝑟
𝑛
> 0. Then,

the sequence {𝑥
𝑛
} converges strongly to Π

𝐹(𝑆)∩EP(𝑓)𝑥0, where
Π
𝐹(𝑆)∩EP(𝐹)𝑥0 is the generalized projection of 𝐸 onto 𝐹(𝑆) ∩

EP(𝐹).
In 2009, Qin et al. [6] extended the iterative process

(8) from a single relatively nonexpansive mapping to two
relatively quasi-nonexpansive mappings. In 2011, Zegeye and
Shahzad [7] introduced an iterative process for finding an
element in the common fixed point set of finite family
of closed relatively quasi-nonexpansive mappings, common
solutions of finite family of equilibrium problems, and com-
mon solutions of the finite family of variational inequality
problems for monotone mappings in Banach spaces.

Theorem ZS. Let 𝐶 be a nonempty, closed and convex subset
of a uniformly smooth and strictly convex real Banach space 𝐸
with the dual 𝐸∗. Let 𝑓

𝑘
: 𝐶 × 𝐶 → R, 𝑘 = 1, 2, 3, . . . , 𝐿, be a

finite family of bifunctions. Let 𝑆
𝑗
: 𝐶 → 𝐶, 𝑗 = 1, 2, 3, . . . , 𝐷

be a finite family relatively quasi-nonexpansive mappings and
𝐴
𝑖
: 𝐶 → 𝐸∗, 𝑖 = 1, 2, 3, . . . , 𝑁 be a finite family of continuous

monotone mappings.
For 𝑥 ∈ 𝐸, they define mappings 𝐹

𝑟
𝑛

, 𝑇
𝑟
𝑛

: 𝐸 → 𝐶 by

𝐹
𝑟
𝑛

𝑥 : = {𝑧 ∈ 𝐶 : ⟨𝑦 − 𝑧, 𝐴
𝑛
𝑧⟩

+
1

𝑟
𝑛

⟨𝑦 − 𝑧, 𝐽𝑧 − 𝐽𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶} ,

𝑇
𝑟
𝑛

𝑥 : = {𝑧 ∈ 𝐶 : 𝑓
𝑛
(𝑧, 𝑦)

+
1

𝑟
𝑛

⟨𝑦 − 𝑧, 𝐽𝑧 − 𝐽𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶} ,

(9)

where 𝑆
𝑛
≡ 𝑆
𝑛
(mod D), 𝐴

𝑛
≡ 𝐴
𝑛
(mod N), 𝑓

𝑛
(⋅, ⋅) ≡ 𝑓

𝑛
(mod

L)(⋅, ⋅), and {𝑟
𝑛
}
𝑛∈N ⊂ [𝑐

1
,∞) for some 𝑐

1
> 0. Assume that

F := (⋂
𝐷

𝑗=1
𝐹(𝑆
𝑗
))⋂(⋂

𝑁

𝑖=1
𝑉𝐼(𝐶, 𝐴

𝑖
))⋂(⋂

𝐿

𝑘=1
EP(𝑓
𝑘
)) ̸= 0.

Let {𝑥
𝑛
} be a sequence generated by

𝑥
0
∈ 𝐶
0
= 𝐶 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦,

𝑧
𝑛
= 𝐹
𝑟
𝑛

𝑥
𝑛
,

𝑢
𝑛
= 𝑇
𝑟
𝑛

𝑥
𝑛
,

𝑦
𝑛
= 𝐽
−1

(𝛼
0
𝐽𝑥
𝑛
+ 𝛼
1
𝐽𝑧
𝑛
+ 𝛼
2
𝐽𝑆
𝑛
𝑢
𝑛
) ,

𝐶
𝑛+1
= {𝑧 ∈ 𝐶

𝑛
: 𝜙 (𝑧, 𝑦

𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
)} ,

𝑥
𝑛+1
= Π
𝐶
𝑛+1

(𝑥
0
) , ∀𝑛 ≥ 0,

(10)

where the real numbers 𝛼
0
, 𝛼
1
, 𝛼
2
∈ (0, 1) such that 𝛼

0
+ 𝛼
1
+

𝛼
2
= 1. Then, {𝑥

𝑛
}
𝑛∈N converges strongly to an element of F.

In this paper, motivated and inspired by the previously
mentioned above results, we introduce a new iterative pro-
cedure for solving the common solution of system of equi-
librium problems for a finite family of bifunctions satisfying
certain conditions and the common solution of fixed point
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problems for two countable families of quasi-𝜙-nonexpansive
mappings and the common solution of variational inequality
problems for a finite family of monotone mappings in a
uniformly smooth and strictly convex real Banach space.
Then, we prove a strong convergence theorem of the iterative
procedure generated by the conditions. The results obtained
in this paper extend and improve several recent results in this
area.

2. Preliminaries

A Banach space 𝐸 is said to be strictly convex if ‖𝑥 + 𝑦‖/2 <
1 for all 𝑥, 𝑦 ∈ 𝐸 with ‖𝑥‖ = ‖𝑦‖ = 1 and 𝑥 ̸= 𝑦. It is said
to be uniformly convex if lim

𝑛→∞
‖𝑥
𝑛
− 𝑦
𝑛
‖ = 0 for any two

sequences {𝑥
𝑛
} and {𝑦

𝑛
} in 𝐸 such that ‖𝑥

𝑛
‖ ≤ 1, ‖𝑦

𝑛
‖ ≤ 1 and

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥
𝑛
+ 𝑦
𝑛

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
= 1. (11)

Let 𝑈
𝐸
= {𝑥 ∈ 𝐸 : ‖𝑥‖ = 1} be the unit sphere of 𝐸. Then

the Banach space 𝐸 is said to be smooth if

lim
𝑡→0

󵄩󵄩󵄩󵄩𝑥 + 𝑡𝑦
󵄩󵄩󵄩󵄩 − ‖𝑥‖

𝑡
(12)

exists for each 𝑥, 𝑦 ∈ 𝑈
𝐸
. It is said to be uniformly smooth if

the limit (12) is attained uniformly for all 𝑥, 𝑦 ∈ 𝑈
𝐸
.

Let 𝐸 be a Banach space. Then a function 𝜌
𝐸
: R+ → R+

is said to be themodulus of smoothness of 𝐸 if

𝜌
𝐸
(𝑡) = sup{

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩
2

− 1 : ‖𝑥‖ = 1,
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 = 𝑡} .

(13)

The space 𝐸 is said to be smooth if 𝜌
𝐸
(𝑡) > 0, ∀𝑡 > 0 and is

said to be uniformly smooth if and only if lim
𝑡→0
+𝜌
𝐸
(𝑡)/𝑡 = 0.

Themodulus of convexity of𝐸 is the function𝛿
𝐸
: [0, 2] →

[0, 1] defined by

𝛿
𝐸
(𝜖) = inf {1 −

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 + 𝑦

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
: ‖𝑥‖ ≤ 1,

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 ≤ 1;

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 ≥ 𝜖} .

(14)

A Banach space 𝐸 is said to be uniformly convex if and
only if 𝛿

𝐸
(𝜖) > 0 for all 𝜖 ∈ (0, 2].

We recall the following definitions.

Definition 1. Let 𝐶 be a nonempty set.

(1) A mapping 𝑇 : 𝐶 → 𝐶 is said to be closed if for each
{𝑥
𝑛
} ⊂ 𝐶, 𝑥

𝑛
→ 𝑥 and 𝑇𝑥

𝑛
→ 𝑦 imply 𝑇𝑥 = 𝑦.

(2) A mapping 𝑇 : 𝐶 → 𝐶 is said to be quasi-𝜙-nonex-
pansive (relatively quasi-nonexpansive) if 𝐹(𝑇) ̸= 0,
and

𝜙 (𝑝, 𝑇𝑥) ≤ 𝜙 (𝑝, 𝑥) , ∀𝑥 ∈ 𝐶, 𝑝 ∈ 𝐹(𝑇) . (15)

(3) A mapping 𝑇 : 𝐶 → 𝐶 is said to be relatively nonex-
pansive [8, 9] if 𝐹(𝑇) ̸= 0, 𝐹(𝑇) = 𝐹(𝑇) and

𝜙 (𝑝, 𝑇𝑥) ≤ 𝜙 (𝑝, 𝑥) , ∀𝑥 ∈ 𝐶, 𝑝 ∈ 𝐹(𝑇) . (16)

(4) A mapping 𝑇 : 𝐶 → 𝐶 is said to be weak relatively
nonexpansive [10] if 𝐹(𝑇) ̸= 0, 𝐹(𝑇) = 𝐹(𝑇) and

𝜙 (𝑝, 𝑇𝑥) ≤ 𝜙 (𝑝, 𝑥) , ∀𝑥 ∈ 𝐶, 𝑝 ∈ 𝐹(𝑇) . (17)

Remark 2. We here the following basic properties.

(1) Each relatively nonexpansive mapping is closed.
(2) The class of quasi-𝜙-nonexpansivemappings contains

properly the class of weak relatively nonexpansive
mappings as a subclass, but the converse may be not
true.

(3) The class of weak relatively nonexpansive mappings
contains properly the class of relatively nonexpansive
mappings as a subclass, but the converse may be not
true.

(4) The class of quasi-𝜙-nonexpansivemappings contains
properly the class of relatively nonexpansive map-
pings as a subclass, but the converse may be not true.

(5) If𝐸 is a real uniformly smooth Banach space, then 𝐽 is
uniformly continuous on each bounded subset of 𝐸.

(6) If 𝐸 is a strictly convex reflexive Banach space, then
𝐽−1 is hemicontinuous, that is, 𝐽−1 is norm-to-weak∗
continuous.

(7) If 𝐸 is a smooth and strictly convex reflexive Banach
space, then 𝐽 is single-valued, one-to-one, and onto.

(8) A Banach space 𝐸 is uniformly smooth if and only if
𝐸∗ is uniformly convex.

(9) Eachuniformly convexBanach space𝐸has theKadec-
Klee property, that is, for any sequence {𝑥

𝑛
} ⊂ 𝐸, if

{𝑥
𝑛
} ⇀ 𝑥 ∈ 𝐸 and ‖𝑥

𝑛
‖ → ‖𝑥‖, then 𝑥

𝑛
→ 𝑥.

(10) A Banach space 𝐸 is strictly convex if and only if 𝐽 is
strictly monotone, that is,

⟨𝑥 − 𝑦, 𝑥
∗

− 𝑦
∗

⟩ > 0, whenever 𝑥, 𝑦 ∈ 𝐸,

𝑥 ̸= 𝑦, 𝑥
∗

∈ 𝐽𝑥, 𝑦
∗

∈ 𝐽𝑦.
(18)

(11) Both uniformly smooth Banach spaces and uniformly
convex Banach spaces are reflexive.

(12) 𝐸∗ is uniformly convex, then 𝐽 is uniformly norm-to-
norm continuous on each bounded subset of 𝐸.

Let 𝐸 be a real Banach space and {𝑥
𝑛
} be a sequence in 𝐸.

We denote by 𝑥
𝑛
→ 𝑥 and 𝑥

𝑛
⇀ 𝑥 the strong convergence

and weak convergence of {𝑥
𝑛
}, respectively. The normalized

duality mapping 𝐽 from 𝐸 to 2𝐸
∗

is defined by

𝐽𝑥 = {𝑓
∗

∈ 𝐸
∗

: ⟨𝑥, 𝑓
∗

⟩ = ‖𝑥‖
2

=
󵄩󵄩󵄩󵄩𝑓
∗󵄩󵄩󵄩󵄩
2

} , ∀𝑥 ∈ 𝐸, (19)

where ⟨⋅, ⋅⟩ denotes the duality pairing. It is well known that if
𝐸 is smooth, then 𝐽 is single-valued and demicontinuous, and
if 𝐸 is uniformly smooth, then 𝐽 is uniformly continuous on
bounded subset of 𝐸. Moreover, if 𝐸 is reflexive and strictly
convex Banach space with a strictly convex dual, then 𝐽−1
is single-valued, one-to-one, surjective, and it is the duality
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mapping from 𝐸∗ to 𝐸 and so 𝐽𝐽−1 = 𝐼
𝐸
∗ and 𝐽−1𝐽 = 𝐼

𝐸
(see

[11, 12]). We note that in a Hilbert space𝐻, the mapping 𝐽 is
the identity operator.

Now, let 𝐸 be a smooth and strictly convex reflexive
Banach space. As Alber (see [13]) and Kamimura and Taka-
hashi (see [14]) did, the Lyapunov functional 𝜙 : 𝐸×𝐸 → R+

is defined by

𝜙 (𝑥, 𝑦) = ‖𝑥‖
2

− 2 ⟨𝑥, 𝐽𝑦⟩ +
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩
2

, ∀𝑥, 𝑦 ∈ 𝐸. (20)

It follows from Kohsaka and Takahashi (see [15]) that
𝜙(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦 and that

(‖𝑥‖ −
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩)
2

≤ 𝜙 (𝑥, 𝑦) ≤ (‖𝑥‖ +
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩)
2

. (21)

Further suppose that 𝐶 is nonempty, closed and convex
subset of 𝐸. The generalized, projection (Alber see [13]) Π

𝐶
:

𝐸 → 𝐶 is defined by for each 𝑥 ∈ 𝐸,

Π
𝐶
(𝑥) = argmin

𝑦∈𝐶

𝜙 (𝑥, 𝑦) . (22)

Remark 3. If 𝐸 is a real Hilbert space𝐻, then 𝜙(𝑥, 𝑦) = ‖𝑥 −
𝑦‖2 and Π

𝐶
= 𝑃
𝐶
(the metric projection of𝐻 onto 𝐶).

Lemma 4 (Alber [13]). Let 𝐶 be a nonempty, closed and
convex subset of a smooth and strictly convex reflexive Banach
space 𝐸, and let 𝑥 ∈ 𝐸. Then

𝜙 (𝑥, Π
𝐶
(𝑦)) + 𝜙 (Π

𝐶
(𝑦) , 𝑦)

≤ 𝜙 (𝑥, 𝑦) , ∀𝑥 ∈ 𝐶, ∀𝑦 ∈ 𝐸.
(23)

Lemma 5 (Kamimura and Takahashi [14]). Let 𝐶 be a
nonempty, closed and convex subset of a smooth and strictly
convex reflexive Banach space 𝐸, and let 𝑥 ∈ 𝐸 and 𝑝 ∈ 𝐶.
Then,

𝑝 = Π
𝐶
(𝑥) ⇐⇒ ⟨𝑝 − 𝑦, 𝐽𝑥 − 𝐽𝑝⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (24)

Lemma 6 (Qin et al. [6] and Kohsaka and Takahashi [16]).
Let 𝐸 be a smooth, strictly convex and reflexive Banach space,
and 𝐴 ⊂ 𝐸 × 𝐸∗ is a continuous monotone mapping with
𝐴−1(0) ̸= 𝜙. Then, it is proved in [16] that the resolvent 𝐽

𝑟
:=

(𝐽 + 𝑟𝐴)−1𝐽, for 𝑟 > 0 is quasi-𝜙-nonexpansive. Moreover, if
𝑇 : 𝐸 → 𝐸 is quasi-𝜙-nonexpansive, then using the definition
of 𝜙 one can show that 𝐹(𝑇) is closed and convex (see [6]).

Lemma 7 (Kamimura and Takahashi [14]). Let 𝐸 be a
uniformly convex and smooth real Banach space and let {𝑥

𝑛
}

and {𝑦
𝑛
} be two sequences of 𝐸. If 𝜙(𝑥

𝑛
, 𝑦
𝑛
) → 0 and either

{𝑥
𝑛
} or {𝑦

𝑛
} is bounded, then ‖𝑥

𝑛
− 𝑦
𝑛
‖ → 0.

Lemma 8. Let 𝐸 be a uniformly smooth and strictly convex
Banach space with the Kadec-Klee property, let {𝑥

𝑛
} and {𝑦

𝑛
} be

two sequences of𝐸, and 𝑝 ∈ 𝐸. If 𝑥
𝑛
→ 𝑝 and 𝜙(𝑥

𝑛
, 𝑦
𝑛
) → 0,

then 𝑦
𝑛
→ 𝑝.

For solving the equilibrium problem, let us assume that
the bifunction 𝐹 : 𝐶 × 𝐶 → R satisfies the following
conditions:

(A1) 𝐹(𝑥, 𝑥) = 0, for all 𝑥 ∈ 𝐶;
(A2) 𝐹 is monotone, that is, 𝐹(𝑥, 𝑦) + 𝐹(𝑦, 𝑥) ≤ 0, ∀𝑥, 𝑦 ∈

𝐶;
(A3) lim

𝑡→0
𝐹(𝑡𝑧 + (1 − 𝑡)𝑥, 𝑦) ≤ 𝐹(𝑥, 𝑦), ∀𝑥, 𝑦, 𝑧 ∈ 𝐶;

(A4) for any 𝑥 ∈ 𝐶, 𝑦 󳨃→ 𝐹(𝑥, 𝑦) is convex and lower
semicontinuous.

Lemma 9 (Blum and Oettli [1]). Let 𝐶 be a nonempty, closed
and convex subset of a smooth and strictly convex reflexive
Banach space 𝐸 and let 𝐹 : 𝐶 × 𝐶 → R be a bifunction
satisfying the following conditions (A1)–(A4). Let 𝑟 > 0 be any
given number and 𝑥 ∈ 𝐸 be any point.Then, there exists a point
𝑧 ∈ 𝐶 such that

𝐹 (𝑧, 𝑦) +
1

𝑟
⟨𝑦 − 𝑧, 𝐽𝑧 − 𝐽𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (25)

Lemma 10 (Takahashi and Zembayashi [5]). Let 𝐶 be a
nonempty, closed and convex subset of a uniformly smooth and
strictly convex real Banach space 𝐸, and 𝐹 : 𝐶 × 𝐶 → R be
a bifunction satisfying the following conditions (A1)–(A4). Let
𝑟 > 0 be any given number and 𝑥 ∈ 𝐸 be any point defined
a mapping 𝑇

𝑟
: 𝐸 → 𝐶 as follows. Then, there exists a point

𝑧 ∈ 𝐶 such that

𝑇
𝑟
(𝑥) = {𝑧 ∈ 𝐶 : 𝐹 (𝑧, 𝑦)

+
1

𝑟
⟨𝑦 − 𝑧, 𝐽𝑧 − 𝐽𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶} .

(26)

Then, the following conclusions hold:

(1) 𝑇
𝑟
is single-valued;

(2) 𝑇
𝑟
is a firmly nonexpansive type mapping, that is,

⟨𝑇
𝑟
𝑥 − 𝑇
𝑟
𝑦, 𝐽𝑇
𝑟
𝑥 − 𝐽𝑇

𝑟
𝑦⟩

≤ ⟨𝑇
𝑟
𝑥 − 𝑇
𝑟
𝑦, 𝐽𝑥 − 𝐽𝑦⟩ , ∀𝑥, 𝑦 ∈ 𝐸;

(27)

(3) 𝐹(𝑇
𝑟
) = EP(𝐹);

(4) EP(𝐹) is a closed and convex subset of 𝐶;
(5) 𝜙(𝑝, 𝑇

𝑟
𝑥) + 𝜙(𝑇

𝑟
𝑥, 𝑥) ≤ 𝜙(𝑝, 𝑥), ∀𝑝 ∈ 𝐹(𝑇

𝑟
).

Lemma 11 (Zegeye and Shahzad [7]). Let 𝐶 be a nonempty,
closed and convex subset of a uniformly smooth and strictly
convex real Banach space 𝐸, and 𝐴 : 𝐶 × 𝐸∗ → R be a
continuous monotone mapping. Let 𝑟 > 0 be any given number
and 𝑥 ∈ 𝐸 be any point defined a mapping 𝐾

𝑟
: 𝐸 → 𝐶 as

follows:

𝐾
𝑟
(𝑥) = {𝑧 ∈ 𝐶 : ⟨𝑦 − 𝑧, 𝐴𝑧⟩

+
1

𝑟
⟨𝑦 − 𝑧, 𝐽𝑧 − 𝐽𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶} .

(28)
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Then, the following conclusions hold:

(1) 𝐾
𝑟
is single valued;

(2) 𝐹(𝐾
𝑟
) is a firmly nonexpansive type mapping, that is,

⟨𝐾
𝑟
𝑥 − 𝐾

𝑟
𝑦, 𝐽𝐾
𝑟
𝑥 − 𝐽𝐾

𝑟
𝑦⟩

≤ ⟨𝐾
𝑟
𝑥 − 𝐾

𝑟
𝑦, 𝐽𝑥 − 𝐽𝑦⟩ , ∀𝑥, 𝑦 ∈ 𝐸;

(29)

(3) 𝐹(𝐾
𝑟
) = VI(𝐶, 𝐴);

(4) VI(𝐶, 𝐴) is a closed and convex subset of 𝐶;

(5) 𝜙(𝑝,𝐾
𝑟
𝑥) + 𝜙(𝐾

𝑟
𝑥, 𝑥) ≤ 𝜙(𝑝, 𝑥), ∀𝑝 ∈ 𝐹(𝐾

𝑟
).

Lemma 12 (Xu [17]). Let 𝐸 be a uniformly convex Banach
space, let 𝐵

𝑟
(0) be a closed ball of 𝐸, where 𝑟 > 0. Then, there

exists a continuous, strictly increasing, and convex function
𝑔 : [0,∞) → [0,∞) with 𝑔(0) = 0 such that

󵄩󵄩󵄩󵄩𝛼𝑥 + 𝛽𝑦
󵄩󵄩󵄩󵄩
2

≤ 𝛼‖𝑥‖
2

+ 𝛽
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩
2

− 𝛼𝛽𝑔 (
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩) , (30)

for all 𝑥, 𝑦 ∈ 𝐵
𝑟
(0) and all 𝛼, 𝛽 ∈ [0, 1] with 𝛼 + 𝛽 = 1.

3. Main Results

In this section, we prove a strong convergence theoremwhich
solves the problem for finding a common solution of the
system of equilibrium problems and variational inequality
problems and fixed point problems in Banach spaces.

Theorem 13. Let 𝐶 be a nonempty, closed and convex subset
of a uniformly smooth and strictly convex real Banach space 𝐸
which has the Kadec-Klee property. Suppose that

(1) {𝐹
𝑘
}𝑀
𝑘=1

: 𝐶 × 𝐶 → R is a finite family of bifunctions
satisfying conditions (A1)–(A4), where 𝑘 = 1, 2, 3, . . . ,
𝑀;

(2) {𝑇
𝑖
}𝐷
𝑖=1

and {𝑆
𝑖
}𝐷
𝑖=1

are two finite families of quasi-𝜙-
nonexpansive mappings from 𝐶 into 𝐸, where 𝑖 =
1, 2, 3, . . . , 𝐷;

(3) {𝐴
𝑛
}𝑁
𝑛=1

: 𝐶 → 𝐸∗ is a finite family of continuous
monotone mappings, where 𝑛 = 1, 2, 3, . . . , 𝑁;

(4) For 𝑥 ∈ 𝐸, one defines the mappings 𝐾
𝑟
𝑛

, 𝑇
𝑟
𝑛

: 𝐸 → 𝐶
by

𝐾
𝑟
𝑛

(𝑥) : = {𝑧 ∈ 𝐶 : ⟨𝑦 − 𝑧, 𝐴
𝑛
𝑧⟩

+
1

𝑟
𝑛

⟨𝑦 − 𝑧, 𝐽𝑧 − 𝐽𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶} ,

𝑇
𝑟
𝑛

(𝑥) : = {𝑧 ∈ 𝐶 : 𝐹
𝑛
(𝑧, 𝑦)

+
1

𝑟
𝑛

⟨𝑦 − 𝑧, 𝐽𝑧 − 𝐽𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶} .

(31)

Assume that Ω := (⋂
𝐷

𝑖=1
𝐹(𝑇
𝑖
))⋂(⋂

𝐷

𝑖=1
𝐹(𝑆
𝑖
))⋂ (⋂𝑀

𝑘=1

SEP(𝐹
𝑘
))⋂(⋂

𝑁

𝑛=1
VI(𝐶, 𝐴

𝑛
)) is a nonempty and bounded in𝐶.

Let {𝑥
𝑛
} be a sequence generated by

𝑥
0
∈ 𝐶
0
= 𝐶, 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦,

𝑧
𝑛
= 𝐾
𝑟
𝑛

𝑥
𝑛
,

𝑢
𝑛
= 𝑇
𝑟
𝑛

𝑥
𝑛
,

𝑦
𝑛
= 𝐽
−1

(𝛼𝐽𝑥
𝑛
+ 𝛽𝐽𝑇

𝑛
𝑧
𝑛
+ 𝛾𝐽𝑆
𝑛
𝑢
𝑛
) ,

𝐶
𝑛+1
= {𝑧 ∈ 𝐶

𝑛
: 𝜙 (𝑧, 𝑦

𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
)} ,

𝑥
𝑛+1
= Π
𝐶
𝑛+1

(𝑥
0
) , ∀𝑛 ≥ 0,

(32)

where 𝐴
𝑛
≡ 𝐴
𝑛
(mod 𝑁), 𝐹

𝑛
≡ 𝐹
𝑛
(mod 𝑀), 𝑇

𝑛
≡ 𝑇
𝑛
(mod

𝐷), 𝑆
𝑛
≡ 𝑆
𝑛
(mod 𝐷), {𝑟

𝑛
} ⊂ [𝑎,∞) for some 𝑎 > 0 and 𝑛 ∈

N and 𝛼, 𝛽, 𝛾 are real numbers in (0, 1) such that 𝛼+𝛽+𝛾 = 1.
Then, the sequence {𝑥

𝑛
}∞
𝑛=0

converges strongly to 𝑝 = Π
Ω
(𝑥
0
).

Proof. We will complete this proof by seven steps below.

Step 1.Wewill show that𝐶
𝑛
is closed and convex for each 𝑛 ≥ 0.

From the definition of 𝐶
𝑛
, it is obvious that 𝐶

𝑛
is closed.

Moreover, since
𝜙 (𝑧, 𝑦

𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
) is equivalent to

2 ⟨𝑧, 𝐽𝑥
𝑛
− 𝐽𝑦
𝑛
⟩ −

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑦𝑛
󵄩󵄩󵄩󵄩
2

≤ 0.
(33)

It follows that 𝐶
𝑛
is convex for each 𝑛 ≥ 0. Therefore, 𝐶

𝑛
is

closed and convex for each 𝑛 ≥ 0.

Step 2. We will show that Ω ⊂ 𝐶
𝑛
for each 𝑛 ≥ 0.

From the assumption, we see that 𝐹 ⊂ 𝐶
0
= 𝐶. Suppose

that 𝐹 ⊂ 𝐶
𝑘
for some 𝑘 ≥ 1. Now, for 𝑝 ∈ Ω, Since 𝑆

𝑘
and

𝑇
𝑘
are quasi-𝜙-nonexpansive and by Lemmas 10 and 11, we

compute

𝜙 (𝑝, 𝑦
𝑘
) = 𝜙 (𝑝, 𝐽

−1

(𝛼𝐽𝑥
𝑘
+ 𝛽𝐽𝑇

𝑘
𝑧
𝑘
+ 𝛾𝐽𝑆
𝑘
𝑢
𝑘
))

=
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩
2

− 2 ⟨𝑝, 𝛼𝐽𝑥
𝑘
+ 𝛽𝐽𝑇

𝑘
𝑧
𝑘
+ 𝛾𝐽𝑆
𝑘
𝑢
𝑘
⟩

+
󵄩󵄩󵄩󵄩𝛼𝐽𝑥𝑘 + 𝛽𝐽𝑇𝑘𝑧𝑘 + 𝛾𝐽𝑆𝑘𝑢𝑘

󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩
2

− 2𝛼 ⟨𝑝, 𝐽𝑥
𝑘
⟩ − 2𝛽⟨𝑝, 𝐽𝑇

𝑘
𝑧
𝑘
⟩

− 2𝛾 ⟨𝑝, 𝐽𝑆
𝑘
𝑢
𝑘
⟩ + 𝛼

󵄩󵄩󵄩󵄩𝐽𝑥𝑘
󵄩󵄩󵄩󵄩
2

+ 𝛽
󵄩󵄩󵄩󵄩𝐽𝑇𝑘𝑧𝑘

󵄩󵄩󵄩󵄩
2

+ 𝛾
󵄩󵄩󵄩󵄩𝐽𝑆𝑘𝑢𝑘

󵄩󵄩󵄩󵄩
2

= 𝛼𝜙 (𝑝, 𝑥
𝑘
) + 𝛽𝜙 (𝑝, 𝑇

𝑘
𝑧
𝑘
) + 𝛾𝜙 (𝑝, 𝑆

𝑘
𝑢
𝑘
)

≤ 𝛼𝜙 (𝑝, 𝑥
𝑘
) + 𝛽𝜙 (𝑝, 𝑧

𝑘
) + 𝛾𝜙 (𝑝, 𝑢

𝑘
)

= 𝛼𝜙 (𝑝, 𝑥
𝑘
) + 𝛽𝜙 (𝑝,𝐾

𝑟
𝑘

𝑥
𝑘
) + 𝛾𝜙 (𝑝, 𝑇

𝑟
𝑘

𝑥
𝑘
)

≤ 𝛼𝜙 (𝑝, 𝑥
𝑘
) + 𝛽𝜙 (𝑝, 𝑥

𝑘
) + 𝛾𝜙 (𝑝, 𝑥

𝑘
)

= (𝛼 + 𝛽 + 𝛾) 𝜙 (𝑝, 𝑥
𝑘
)

= 𝜙 (𝑝, 𝑥
𝑘
) .

(34)
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Therefore, 𝑝 ∈ 𝐶
𝑘+1

. By the induction, this implies that Ω ⊂
𝐶
𝑛
for each 𝑛 ≥ 0.
Hence, the sequence {𝑥

𝑛
} is well defined.

Step 3. We will show that the sequence{𝑥
𝑛
} is bounded.

Let 𝐺 := ⋂∞
𝑛=0
𝐶
𝑛
. From Ω ⊂ 𝐶

𝑛
for each 𝑛 ≥ 0 and {𝑥

𝑛
}

is well defined. From the assumption of 𝐺, we see that 𝐺 is
closed and convex subset of 𝐶.

Let 𝑝 = Π
𝐺
(𝑥
0
), where 𝑝 is the unique element that

satisfies inf
𝑥∈𝐺

𝜙(𝑥, 𝑥
0
) = 𝜙(𝑝, 𝑥

0
). Now, we will show that

‖𝑥
𝑛
− 𝑝‖ → 0 as 𝑛 → ∞.
From the assumption of𝐶

𝑛
, we know that𝐶 ⊃ 𝐶

1
⊃ 𝐶
2
⊃

𝐶
3
⊃ ⋅ ⋅ ⋅ and since 𝑥

𝑛
= Π
𝐶
𝑛

(𝑥
0
) and 𝑥

𝑛+1
= Π
𝐶
𝑛+1

(𝑥
0
) ∈

𝐶
𝑛+1
⊂ 𝐶
𝑛
. Using Lemma 4, we get

𝜙 (𝑥
𝑛
, 𝑥
0
) ≤ 𝜙 (𝑥

𝑛+1
, 𝑥
0
) ≤ ⋅ ⋅ ⋅ ≤ 𝜙 (𝑝, 𝑥

0
) , (35)

for all 𝑝 ∈ Ω ⊂ 𝐶
𝑛
, where 𝑛 ≥ 1. Then, the sequence

{𝜙(𝑥
𝑛
, 𝑥
0
)} is bounded. Hence, the sequence {𝑥

𝑛
} is also

bounded.

Step 4.Wewill show that there exists 𝑝 ∈ 𝐶 such that 𝑥
𝑛
→ 𝑝,

as 𝑛 → ∞.
Since 𝑥

𝑛
= Π
𝐶
𝑛

(𝑥
0
) and 𝑥

𝑛+1
= Π
𝐶
𝑛+1

𝑥
0
∈ 𝐶
𝑛+1

⊂ 𝐶
𝑛
, we

have

𝜙 (𝑥
𝑛
, 𝑥
0
) ≤ 𝜙 (𝑥

𝑛+1
, 𝑥
0
) , ∀𝑛 ≥ 0. (36)

Therefore, the sequence {𝜙(𝑥
𝑛
, 𝑥
0
)} is nondecreasing. Hence

lim
𝑛→∞

𝜙(𝑥
𝑛
, 𝑥
0
) exists. By the definition of 𝐶

𝑛
, one has that

𝐶
𝑚
⊂ 𝐶
𝑛
and 𝑥

𝑚
= Π
𝐶
𝑚

𝑥
0
∈ 𝐶
𝑛
for any positive integer

𝑚 ≥ 𝑛.
It follows that

𝜙 (𝑥
𝑚
, 𝑥
𝑛
) = 𝜙 (𝑥

𝑚
, Π
𝐶
𝑛

𝑥
0
)

≤ 𝜙 (𝑥
𝑚
, 𝑥
0
) − 𝜙 (Π

𝐶
𝑛

𝑥
0
, 𝑥
0
)

= 𝜙 (𝑥
𝑚
, 𝑥
0
) − 𝜙 (𝑥

𝑛
, 𝑥
0
) .

(37)

Since lim
𝑛→∞

𝜙(𝑥
𝑛
, 𝑥
0
) exists, by taking 𝑚, 𝑛 → ∞ in (37),

we have 𝜙(𝑥
𝑚
, 𝑥
𝑛
) → 0.

From Lemma 7, it follows that ‖𝑥
𝑚
−𝑥
𝑛
‖ → 0 as𝑚, 𝑛 →

∞. Thus {𝑥
𝑛
} is a Cauchy sequence.

Without a loss of generalization, we can assume that𝑥
𝑛
⇀

𝑝
0
∈ 𝐸. Since {𝑥

𝑛
} is bounded and 𝐸 is reflexive. Since 𝐺 :=

⋂
∞

𝑛=0
𝐶
𝑛
is closed and convex, it follows that 𝑝

0
∈ 𝐺, ∀𝑛 ≥

0. Moreover, by using the weak lower semicontinuous of the
norm on 𝐸 and (35), we obtain

𝜙 (𝑝, 𝑥
0
) ≤ 𝜙 (𝑝

0
, 𝑥
0
)

≤ lim inf
𝑛→∞

𝜙 (𝑥
𝑛
, 𝑥
0
)

≤ lim sup
𝑛→∞

𝜙 (𝑥
𝑛
, 𝑥
0
)

≤ inf
𝑥∈𝐺

𝜙 (𝑥, 𝑥
0
)

= 𝜙 (𝑝, 𝑥
0
) .

(38)

This implies that

lim
𝑛→∞

𝜙 (𝑥
𝑛
, 𝑥
0
) = 𝜙 (𝑝, 𝑥

0
) = 𝜙 (𝑝

0
, 𝑥
0
) = inf
𝑥∈𝐺

𝜙 (𝑥, 𝑥
0
) .

(39)

By using Lemma 5, we have ⟨𝑝−𝑝
0
, 𝐽𝑝− 𝐽𝑝

0
⟩ = 0 and hence,

𝑝 = 𝑝
0
. By the definition of 𝜙, we get

lim inf
𝑛→∞

𝜙 (𝑥
𝑛
, 𝑥
0
) = lim inf
𝑛→∞

(
󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩
2

− 2 ⟨𝑥
𝑛
, 𝐽𝑥
0
⟩ +

󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩
2

)

≥
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩
2

− 2 ⟨𝑝, 𝐽𝑥
0
⟩ +

󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩
2

= 𝜙 (𝑝, 𝑥
0
) .

(40)

Therefore, ‖𝑥
𝑛
‖ → ‖𝑝‖. Since 𝑥

𝑛
⇀ 𝑝, by the Kadec-Klee

property of 𝐸, we obtain

lim
𝑛→∞

𝑥
𝑛
= 𝑝. (41)

From 𝐽 is uniformly continuous, we also have

lim
𝑛→∞

𝐽𝑥
𝑛
= 𝐽𝑝. (42)

Step 5. We will show that 𝑦
𝑛
→ 𝑝, 𝑧

𝑛
→ 𝑝 and 𝑢

𝑛
→ 𝑝 as

𝑛 → ∞.
Since 𝑥

𝑛+1
∈ 𝐶
𝑛+1

, we have 𝜙(𝑥
𝑛+1
, 𝑦
𝑛
) ≤ 𝜙(𝑥

𝑛+1
, 𝑥
𝑛
) →

0, as 𝑛 → ∞. Thus, from (21), we obtain
󵄩󵄩󵄩󵄩𝑦𝑛
󵄩󵄩󵄩󵄩 󳨀→

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩 , as 𝑛 󳨀→ ∞, (43)

and so
󵄩󵄩󵄩󵄩𝐽𝑦𝑛

󵄩󵄩󵄩󵄩 󳨀→
󵄩󵄩󵄩󵄩𝐽𝑝
󵄩󵄩󵄩󵄩 , as 𝑛 󳨀→ ∞. (44)

This implies that {𝐽𝑦
𝑛
} is bounded. Note that reflexivity of 𝐸

implies reflexivity of 𝐸∗. Thus, we assume that 𝐽𝑦
𝑛
⇀ 𝑦 ∈ 𝐸∗.

Furthermore, the reflexivity of 𝐸 implies there exists 𝑥 ∈ 𝐸
such that 𝑦 = 𝐽𝑥. Then, it follows that

𝜙 (𝑥
𝑛+1
, 𝑦
𝑛
) =

󵄩󵄩󵄩󵄩𝑥𝑛+1
󵄩󵄩󵄩󵄩
2

− 2 ⟨𝑥
𝑛+1
, 𝐽𝑦
𝑛
⟩ +

󵄩󵄩󵄩󵄩𝑦𝑛
󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩𝑥𝑛+1

󵄩󵄩󵄩󵄩
2

− 2 ⟨𝑥
𝑛+1
, 𝐽𝑦
𝑛
⟩ +

󵄩󵄩󵄩󵄩𝐽𝑦𝑛
󵄩󵄩󵄩󵄩
2

.

(45)

Taking the lim inf
𝑛→∞

on both sides of (45) and using weak
lower semicontinuous of norm to get that

0 ≥
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩
2

− 2 ⟨𝑝, 𝑦⟩ +
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩
2

− 2 ⟨𝑝, 𝐽𝑥⟩ + ‖𝐽𝑥‖
2

=
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩
2

− 2 ⟨𝑝, 𝐽𝑥⟩ + ‖𝑥‖
2

= 𝜙 (𝑝, 𝑥) .

(46)

Thus 𝑝 = 𝑥, and so 𝑦 = 𝐽𝑥 = 𝐽𝑝. It follows that 𝐽𝑦
𝑛
⇀ 𝐽𝑝.

Now, from (44) and the Kadec-Klee property of𝐸∗, we obtain

𝐽𝑦
𝑛
󳨀→ 𝐽𝑝, as 𝑛 󳨀→ ∞. (47)
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Thus the demicontinuity of 𝐽−1 implies that 𝑦
𝑛
⇀ 𝑝. Now,

from (43) and the fact that 𝐸 has the Kadec-Klee property, we
obtain

lim
𝑛→∞

𝑦
𝑛
= 𝑝. (48)

In the fact that 𝑥
𝑛
→ 𝑝 and 𝑦

𝑛
→ 𝑝 as 𝑛 → ∞, we get

lim
𝑛→∞

𝜙 (𝑝, 𝑧
𝑛
) = 𝜙 (𝑝, 𝑝) . (49)

Since 𝑧
𝑛
= 𝐾
𝑟
𝑛

𝑥
𝑛
, it follows from Lemma 11 that

𝜙 (𝑧
𝑛
, 𝑥
𝑛
) = 𝜙 (𝐾

𝑟
𝑛

𝑥
𝑛
, 𝑥
𝑛
)

≤ 𝜙 (𝑝, 𝑥
𝑛
) − 𝜙 (𝑝,𝐾

𝑟
𝑛

𝑥
𝑛
)

≤ 𝜙 (𝑝, 𝑥
𝑛
) − 𝜙 (𝑝, 𝑧

𝑛
) 󳨀→ 0, as 𝑛 󳨀→ ∞.

(50)

From (21), we obtain
󵄩󵄩󵄩󵄩𝑧𝑛
󵄩󵄩󵄩󵄩 󳨀→

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩 , (51)

and so {𝑧
𝑛
} is bounded. Since 𝐸 is reflexive, we assume that

𝑧
𝑛
⇀ 𝑧 ∈ 𝐸. It follows that

𝜙 (𝑧
𝑛
, 𝑥
𝑛
) =

󵄩󵄩󵄩󵄩𝑧𝑛
󵄩󵄩󵄩󵄩
2

− 2 ⟨𝑧
𝑛
, 𝐽𝑥
𝑛
⟩ +

󵄩󵄩󵄩󵄩𝐽𝑥𝑛
󵄩󵄩󵄩󵄩
2

. (52)

Taking the lim inf
𝑛→∞

on both sides of (52) and using the
continuity of 𝐽, we get that

0 ≥ ‖𝑧‖
2

− 2 ⟨𝑧, 𝐽𝑝⟩ +
󵄩󵄩󵄩󵄩𝐽𝑝
󵄩󵄩󵄩󵄩
2

= 𝜙 (𝑧, 𝑝) .
(53)

This implies that 𝑝 = 𝑧 and hence 𝑧
𝑛
⇀ 𝑝.

Now, from (51) and the Kadec-Klee property of 𝐸, we
obtain

lim
𝑛→∞

𝑧
𝑛
= 𝑝. (54)

In the fact that 𝑥
𝑛
→ 𝑝, 𝑦

𝑛
→ 𝑝 and 𝑧

𝑛
→ 𝑝 as 𝑛 → ∞,

we get

lim
𝑛→∞

𝜙 (𝑝, 𝑢
𝑛
) = 𝜙 (𝑝, 𝑝) . (55)

Since 𝑢
𝑛
= 𝑇
𝑟
𝑛

𝑥
𝑛
, it follows from Lemma 10 that

𝜙 (𝑢
𝑛
, 𝑥
𝑛
) = 𝜙 (𝑇

𝑟
𝑛

𝑥
𝑛
, 𝑥
𝑛
)

≤ 𝜙 (𝑝, 𝑥
𝑛
) − 𝜙 (𝑝, 𝑇

𝑟
𝑛

𝑥
𝑛
)

≤ 𝜙 (𝑝, 𝑥
𝑛
) − 𝜙 (𝑝, 𝑢

𝑛
) 󳨀→ 0, as 𝑛 󳨀→ ∞.

(56)

From (21), we obtain
󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩 󳨀→

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩 , (57)

and so {𝑢
𝑛
} is bounded. Since 𝐸 is reflexive, we assume that

𝑢
𝑛
⇀ 𝑢 ∈ 𝐸. It follows that

𝜙 (𝑢
𝑛
, 𝑥
𝑛
) =

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩
2

− 2 ⟨𝑢
𝑛
, 𝐽𝑥
𝑛
⟩ +

󵄩󵄩󵄩󵄩𝐽𝑥𝑛
󵄩󵄩󵄩󵄩
2

. (58)

Taking the lim inf
𝑛→∞

on both sides of (58) and using the
continuity of 𝐽, we get that

0 ≥ ‖𝑢‖
2

− 2 ⟨𝑢, 𝐽𝑝⟩ +
󵄩󵄩󵄩󵄩𝐽𝑝
󵄩󵄩󵄩󵄩
2

= 𝜙 (𝑢, 𝑝) .
(59)

This implies that 𝑝 = 𝑢 and hence 𝑢
𝑛
⇀ 𝑝.

Now, from (57) and the Kadec-Klee property of 𝐸, we
obtain

lim
𝑛→∞

𝑢
𝑛
= 𝑝. (60)

Step 6. We will show that 𝑝 ∈ Ω.

Substep 1. We will show that 𝑝 ∈ ⋂𝑁
𝑛=1

VI(𝐶, 𝐴
𝑛
).

From the definition of𝐾
𝑟
𝑛

of algorithm (32), we have

⟨𝑦 − 𝑧
𝑛
, 𝐴
𝑛
𝑧
𝑛
⟩ +

1

𝑟
𝑛

⟨𝑦 − 𝑧
𝑛
, 𝐽𝑧
𝑛
− 𝐽𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶.

(61)

Let {𝑛
𝑘
}
𝑘∈N ⊂ N be such that 𝐴

𝑛
𝑘

= 𝐴
1
, for all 𝑘 ∈ N. Then

from (61), we obtain

⟨𝑦 − 𝑧
𝑛
𝑘

, 𝐴
1
𝑧
𝑛
𝑘

⟩ +
1

𝑟
𝑛
𝑘

⟨𝑦 − 𝑧
𝑛
𝑘

, 𝐽𝑧
𝑛
𝑘

− 𝐽𝑥
𝑛
𝑘

⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

(62)

and that is

⟨𝑦 − 𝑧
𝑛
𝑘

, 𝐴
1
𝑧
𝑛
𝑘

⟩ + ⟨𝑦 − 𝑧
𝑛
𝑘

,
𝐽𝑧
𝑛
𝑘

− 𝐽𝑥
𝑛
𝑘

𝑟
𝑛
𝑘

⟩ ≥ 0, ∀𝑦 ∈ 𝐶.

(63)

Now, we set 𝑣
𝑡
= 𝑡𝑣 + (1 − 𝑡)𝑝, for all 𝑡 ∈ (0, 1] and 𝑣 ∈ 𝐶.

Therefore, we get 𝑣
𝑡
∈ 𝐶. From (63), it follows that

⟨𝑣
𝑡
− 𝑧
𝑛
𝑘

, 𝐴
1
𝑣
𝑡
⟩ ≥ ⟨𝑣

𝑡
− 𝑧
𝑛
𝑘

, 𝐴
1
𝑣
𝑡
⟩ − ⟨𝑣

𝑡
− 𝑧
𝑛
𝑘

, 𝐴
1
𝑧
𝑛
𝑘

⟩

− ⟨𝑣
𝑡
− 𝑧
𝑛
𝑘

,
𝐽𝑧
𝑛
𝑘

− 𝐽𝑥
𝑛
𝑘

𝑟
𝑛
𝑘

⟩

= ⟨𝑣
𝑡
− 𝑧
𝑛
𝑘

, 𝐴
1
𝑣
𝑡
− 𝐴
1
𝑧
𝑛
𝑘

⟩

− ⟨𝑣
𝑡
− 𝑧
𝑛
𝑘

,
𝐽𝑧
𝑛
𝑘

− 𝐽𝑥
𝑛
𝑘

𝑟
𝑛
𝑘

⟩.

(64)

From the continuity of 𝐽 and (41) and (54), we have 𝑥
𝑛
𝑘

→ 𝑝,
𝑧
𝑛
𝑘

→ 𝑝, as 𝑘 → ∞, we obtain

𝐽𝑧
𝑛
𝑘

− 𝐽𝑥
𝑛
𝑘

𝑟
𝑛
𝑘

󳨀→ 0, as 𝑘 󳨀→ ∞. (65)

Since𝐴
1
is amonotonemapping, we also have ⟨𝑣

𝑡
−𝑧
𝑛
𝑘

, 𝐴
1
𝑣
𝑡
−

𝐴
1
𝑧
𝑛
𝑘

⟩ ≥ 0.
Thus, it follows that

0 ≤ lim
𝑛→∞

⟨𝑣
𝑡
− 𝑧
𝑛
𝑘

, 𝐴
1
𝑣
𝑡
⟩

= ⟨𝑣
𝑡
− 𝑝,𝐴

1
𝑣
𝑡
⟩ ,

(66)
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and hence

⟨𝑦 − 𝑝, 𝐴
1
𝑣
𝑡
⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (67)

If 𝑡 → 0, we obtain

⟨𝑦 − 𝑝, 𝐴
1
𝑝⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (68)

This implies that 𝑝 ∈ VI(𝐶, 𝐴
1
).

Similarly, let {𝑛
𝑘
}
𝑘∈N ⊂ N be such that 𝐴

𝑛
𝑘

= 𝐴
2
, for all

𝑘 ∈ N.
Then, we have again that 𝑝 ∈ VI(𝐶, 𝐴

2
).

Continuing in the same way, we obtain that 𝑝 ∈
VI(𝐶, 𝐴

𝑛
), where 𝑛 = 3, 4, 5, . . . , 𝑁.

Hence, 𝑝 ∈ ⋂𝑁
𝑛=1

VI(𝐶, 𝐴
𝑛
).

Substep 2. We will show that 𝑝 ∈ ⋂𝑀
𝑘=1

SEP(𝐹
𝑘
).

From the definition of 𝑇
𝑟
𝑛

of algorithm (32) and (A2), we
have

1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝐽𝑢
𝑛
− 𝐽𝑥
𝑛
⟩ ≥ −𝐹

𝑛
(𝑢
𝑛
, 𝑦) ≥ 𝐹 (𝑦, 𝑢

𝑛
) , ∀𝑦 ∈ 𝐶.

(69)

Let {𝑛
𝑘
}
𝑘∈N ⊂ N be such that 𝐹

𝑛
𝑘

= 𝐹
1
, for all 𝑘 ∈ N. Then

from (69), we obtain

1

𝑟
𝑛
𝑘

⟨𝑦 − 𝑢
𝑛
𝑘

, 𝐽𝑢
𝑛
𝑘

− 𝐽𝑥
𝑛
𝑘

⟩ = ⟨𝑦 − 𝑢
𝑛
𝑘

,
𝐽𝑢
𝑛
𝑘

− 𝐽𝑥
𝑛
𝑘

𝑟
𝑛
𝑘

⟩

≥ 𝐹
1
(𝑦, 𝑢
𝑛
𝑘

) , ∀𝑦 ∈ 𝐶.

(70)

From the continuity of 𝐽 and (41) and (60), we have 𝑥
𝑛
𝑘

→ 𝑝,
𝑢
𝑛
𝑘

→ 𝑝, as 𝑘 → ∞ and we obtain

𝐽𝑢
𝑛
𝑘

− 𝐽𝑥
𝑛
𝑘

𝑟
𝑛
𝑘

󳨀→ 0, as 𝑘 󳨀→ ∞. (71)

Therefore, 𝐹
1
(𝑦, 𝑢
𝑛
𝑘

) ≤ 0, ∀𝑦 ∈ 𝐶.
Now, we set𝑤

𝑡
= 𝑡𝑤+(1−𝑡)𝑝, for all 𝑡 ∈ (0, 1] and𝑤 ∈ 𝐶.

Consequently, we get 𝑤
𝑡
∈ 𝐶. And so 𝐹

1
(𝑤
𝑡
, 𝑝) ≤ 0.

Therefore, from (A1), we obtain

0 = 𝐹
1
(𝑤
𝑡
, 𝑤
𝑡
)

≤ 𝑡𝐹
1
(𝑤
𝑡
, 𝑦) + (1 − 𝑡) 𝐹

1
(𝑤
𝑡
, 𝑝)

≤ 𝑡𝐹
1
(𝑤
𝑡
, 𝑦) .

(72)

Thus, 𝐹
1
(𝑤
𝑡
, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶. From (A3), if 𝑡 → 0, then we

get 𝐹
1
(𝑝, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶. This implies that 𝑝 ∈ EP(𝐹

1
).

Similarly, let {𝑛
𝑘
}
𝑘∈N ⊂ N be such that 𝐹

𝑛
𝑘

= 𝐹
2
, for all

𝑘 ∈ N. Then, we have again that 𝑝 ∈ EP(𝐹
2
).

Continuing in the same way, we obtain that 𝑝 ∈ EP(𝐹
𝑘
),

where 𝑘 = 3, 4, 5, . . . ,𝑀. Hence, 𝑝 ∈ ⋂𝑀
𝑘=1

SEP(𝐹
𝑘
).

Substep 3. We will show that 𝑝 ∈ ⋂𝐷
𝑖=1
𝐹(𝑆
𝑖
).

From algorithm (32) and Lemma 12, we compute

𝜙 (𝑝, 𝑦
𝑛
) = 𝜙 (𝑝, 𝐽

−1

(𝛼𝐽𝑥
𝑛
+ 𝛽𝐽𝑇

𝑛
𝑧
𝑛
+ 𝛾𝐽𝑆
𝑛
𝑢
𝑛
))

=
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩
2

− 2 ⟨𝑝, 𝛼𝐽𝑥
𝑛
+ 𝛽𝐽𝑇

𝑛
𝑧
𝑛
+ 𝛾𝐽𝑆
𝑛
𝑢
𝑛
⟩

+
󵄩󵄩󵄩󵄩𝛼𝐽𝑥𝑛 + 𝛽𝐽𝑇𝑛𝑧𝑛 + 𝛾𝐽𝑆𝑛𝑢𝑛

󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩
2

− 2𝛼 ⟨𝑝, 𝐽𝑥
𝑛
⟩ − 2𝛽 ⟨𝑝, 𝐽𝑇

𝑛
𝑧
𝑛
⟩

− 2𝛾 ⟨𝑝, 𝐽𝑆
𝑛
𝑢
𝑛
⟩ + 𝛼

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩
2

+ 𝛽
󵄩󵄩󵄩󵄩𝑇𝑛𝑧𝑛

󵄩󵄩󵄩󵄩
2

+ 𝛾
󵄩󵄩󵄩󵄩𝑆𝑛𝑢𝑛

󵄩󵄩󵄩󵄩
2

− 𝛼𝛽𝑔 (
󵄩󵄩󵄩󵄩𝐽𝑥𝑛 − 𝐽𝑇𝑛𝑧𝑛

󵄩󵄩󵄩󵄩)

− 𝛼𝛾𝑔 (
󵄩󵄩󵄩󵄩𝐽𝑥𝑛 − 𝐽𝑆𝑛𝑢𝑛

󵄩󵄩󵄩󵄩)

= 𝛼𝜙 (𝑝, 𝑥
𝑛
) + 𝛽𝜙 (𝑝, 𝑇

𝑛
𝑧
𝑛
) + 𝛾𝜙 (𝑝, 𝑆

𝑛
𝑢
𝑛
)

− 𝛼𝛽𝑔 (
󵄩󵄩󵄩󵄩𝐽𝑥𝑛 − 𝐽𝑇𝑛𝑧𝑛

󵄩󵄩󵄩󵄩) − 𝛼𝛾𝑔 (
󵄩󵄩󵄩󵄩𝐽𝑥𝑛 − 𝐽𝑆𝑛𝑢𝑛

󵄩󵄩󵄩󵄩)

≤ 𝛼𝜙 (𝑝, 𝑥
𝑛
) + 𝛽𝜙 (𝑝, 𝑧

𝑛
) + 𝛾𝜙 (𝑝, 𝑢

𝑛
)

− 𝛼𝛽𝑔 (
󵄩󵄩󵄩󵄩𝐽𝑥𝑛 − 𝐽𝑇𝑛𝑧𝑛

󵄩󵄩󵄩󵄩) − 𝛼𝛾𝑔 (
󵄩󵄩󵄩󵄩𝐽𝑥𝑛 − 𝐽𝑆𝑛𝑢𝑛

󵄩󵄩󵄩󵄩)

= 𝛼𝜙 (𝑝, 𝑥
𝑛
) + 𝛽𝜙 (𝑝,𝐾

𝑟
𝑛

𝑥
𝑛
) + 𝛾𝜙 (𝑝, 𝑇

𝑟
𝑛

𝑥
𝑛
)

− 𝛼𝛽𝑔 (
󵄩󵄩󵄩󵄩𝐽𝑥𝑛 − 𝐽𝑇𝑛𝑧𝑛

󵄩󵄩󵄩󵄩) − 𝛼𝛾𝑔 (
󵄩󵄩󵄩󵄩𝐽𝑥𝑛 − 𝐽𝑆𝑛𝑢𝑛

󵄩󵄩󵄩󵄩)

≤ 𝛼𝜙 (𝑝, 𝑥
𝑛
) + 𝛽𝜙 (𝑝, 𝑥

𝑛
) + 𝛾𝜙 (𝑝, 𝑥

𝑛
)

− 𝛼𝛽𝑔 (
󵄩󵄩󵄩󵄩𝐽𝑥𝑛 − 𝐽𝑇𝑛𝑧𝑛

󵄩󵄩󵄩󵄩) − 𝛼𝛾𝑔 (
󵄩󵄩󵄩󵄩𝐽𝑥𝑛 − 𝐽𝑆𝑛𝑢𝑛

󵄩󵄩󵄩󵄩)

= (𝛼 + 𝛽 + 𝛾) 𝜙 (𝑝, 𝑥
𝑛
)

− 𝛼𝛽𝑔 (
󵄩󵄩󵄩󵄩𝐽𝑥𝑛 − 𝐽𝑇𝑛𝑧𝑛

󵄩󵄩󵄩󵄩)

− 𝛼𝛾𝑔 (
󵄩󵄩󵄩󵄩𝐽𝑥𝑛 − 𝐽𝑆𝑛𝑢𝑛

󵄩󵄩󵄩󵄩)

= 𝜙 (𝑝, 𝑥
𝑛
) − 𝛼𝛽𝑔 (

󵄩󵄩󵄩󵄩𝐽𝑥𝑛 − 𝐽𝑇𝑛𝑧𝑛
󵄩󵄩󵄩󵄩)

− 𝛼𝛾𝑔 (
󵄩󵄩󵄩󵄩𝐽𝑥𝑛 − 𝐽𝑆𝑛𝑢𝑛

󵄩󵄩󵄩󵄩)

≤ 𝜙 (𝑝, 𝑥
𝑛
) .

(73)

From (73), we have

𝜙 (𝑝, 𝑦
𝑛
) ≤ 𝜙 (𝑝, 𝑥

𝑛
) − 𝛼𝛽𝑔 (

󵄩󵄩󵄩󵄩𝐽𝑥𝑛 − 𝐽𝑇𝑛𝑧𝑛
󵄩󵄩󵄩󵄩)

− 𝛼𝛾𝑔 (
󵄩󵄩󵄩󵄩𝐽𝑥𝑛 − 𝐽𝑆𝑛𝑢𝑛

󵄩󵄩󵄩󵄩)

≤ 𝜙 (𝑝, 𝑥
𝑛
) − 𝛼𝛾𝑔 (

󵄩󵄩󵄩󵄩𝐽𝑥𝑛 − 𝐽𝑆𝑛𝑢𝑛
󵄩󵄩󵄩󵄩) .

(74)

From 𝑥
𝑛
→ 𝑝, 𝑦

𝑛
→ 𝑝, and 𝛼, 𝛾 > 0, we obtain

𝛼𝛾𝑔 (
󵄩󵄩󵄩󵄩𝐽𝑥𝑛 − 𝐽𝑆𝑛𝑢𝑛

󵄩󵄩󵄩󵄩)

≤ 𝜙 (𝑝, 𝑥
𝑛
) − 𝜙 (𝑝, 𝑦

𝑛
) 󳨀→ 0, as 𝑛 󳨀→ ∞.

(75)

Therefore,

𝑔 (
󵄩󵄩󵄩󵄩𝐽𝑥𝑛 − 𝐽𝑆𝑛𝑢𝑛

󵄩󵄩󵄩󵄩) 󳨀→ 0, as 𝑛 󳨀→ ∞. (76)
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It follows from the property of 𝑔 that
󵄩󵄩󵄩󵄩𝐽𝑥𝑛 − 𝐽𝑆𝑛𝑢𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0, as 𝑛 󳨀→ ∞. (77)

From (42), we have 𝐽𝑥
𝑛
→ 𝐽𝑝, as 𝑛 → ∞. Then,

𝐽𝑆
𝑛
𝑢
𝑛
󳨀→ 𝐽𝑝, as 𝑛 󳨀→ ∞, (78)

and so
󵄩󵄩󵄩󵄩𝑆𝑛𝑢𝑛

󵄩󵄩󵄩󵄩 󳨀→
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩 , as 𝑛 󳨀→ ∞. (79)

Moreover, the demicontinuity of 𝐽−1 implies that 𝑆
𝑛
𝑢
𝑛
⇀ 𝑝

as 𝑛 → ∞. Thus, the Kadec-Klee property of 𝐸, we obtain

𝑆
𝑛
𝑢
𝑛
󳨀→ 𝑝, as 𝑛 󳨀→ ∞. (80)

Let {𝑛
𝑘
}
𝑘∈N ⊂ N be such that 𝑆

𝑛
𝑘

= 𝑆
1
, for all 𝑘 ∈ N.

Then, from (60), we have 𝑢
𝑛
𝑘

→ 𝑝, as 𝑛 → ∞. It follows
from (80) and the closedness of 𝑆

1
that

𝑝 = lim
𝑘→∞

𝑆
𝑛
𝑘

𝑢
𝑛
𝑘

= lim
𝑘→∞

𝑆
1
𝑢
𝑛
𝑘

= 𝑆
1
𝑝. (81)

This implies that 𝑝 ∈ 𝐹(𝑆
1
).

Similarly, let {𝑛
𝑘
}
𝑘∈N ⊂ N be such that 𝑆

𝑛
𝑘

= 𝑆
2
, for all

𝑘 ∈ N. Then, we have again that 𝑝 ∈ 𝐹(𝑆
2
).

Continuing in the same way, we obtain that 𝑝 ∈ 𝐹(𝑆
𝑖
),

where 𝑖 = 3, 4, 5, . . . , 𝐷.
Hence, 𝑝 ∈ ⋂𝐷

𝑖=1
𝐹(𝑆
𝑖
).

Substep 4. We will show that 𝑝 ∈ ⋂𝐷
𝑖=1
𝐹(𝑇
𝑖
).

From (73), we have

𝜙 (𝑝, 𝑦
𝑛
) ≤ 𝜙 (𝑝, 𝑥

𝑛
) − 𝛼𝛽𝑔 (

󵄩󵄩󵄩󵄩𝐽𝑥𝑛 − 𝐽𝑇𝑛𝑧𝑛
󵄩󵄩󵄩󵄩)

− 𝛼𝛾𝑔 (
󵄩󵄩󵄩󵄩𝐽𝑥𝑛 − 𝐽𝑆𝑛𝑢𝑛

󵄩󵄩󵄩󵄩)

≤ 𝜙 (𝑝, 𝑥
𝑛
) − 𝛼𝛽𝑔 (

󵄩󵄩󵄩󵄩𝐽𝑥𝑛 − 𝐽𝑇𝑛𝑧𝑛
󵄩󵄩󵄩󵄩) .

(82)

From 𝑥
𝑛
→ 𝑝, 𝑦

𝑛
→ 𝑝, and 𝛼, 𝛽 > 0, we obtain

𝛼𝛽𝑔 (
󵄩󵄩󵄩󵄩𝐽𝑥𝑛 − 𝐽𝑇𝑛𝑧𝑛

󵄩󵄩󵄩󵄩)

≤ 𝜙 (𝑝, 𝑥
𝑛
) − 𝜙 (𝑝, 𝑦

𝑛
) 󳨀→ 0, as 𝑛 󳨀→ ∞.

(83)

Therefore,

𝑔 (
󵄩󵄩󵄩󵄩𝐽𝑥𝑛 − 𝐽𝑇𝑛𝑧𝑛

󵄩󵄩󵄩󵄩) 󳨀→ 0, as 𝑛 󳨀→ ∞. (84)

It follows from the property of 𝑔 that
󵄩󵄩󵄩󵄩𝐽𝑥𝑛 − 𝐽𝑇𝑛𝑧𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0, as 𝑛 󳨀→ ∞. (85)

From (42), we have 𝐽𝑥
𝑛
→ 𝐽𝑝, as 𝑛 → ∞. Then,

𝐽𝑇
𝑛
𝑧
𝑛
󳨀→ 𝐽𝑝, as 𝑛 󳨀→ ∞, (86)

and so
󵄩󵄩󵄩󵄩𝑇𝑛𝑧𝑛

󵄩󵄩󵄩󵄩 󳨀→
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩 , as 𝑛 󳨀→ ∞. (87)

Moreover, the demicontinuity of 𝐽−1 implies that 𝑇
𝑛
𝑧
𝑛
⇀ 𝑝

as 𝑛 → ∞. Thus, the Kadec-Klee property of 𝐸, we obtain

𝑇
𝑛
𝑧
𝑛
󳨀→ 𝑝, as 𝑛 󳨀→ ∞. (88)

Let {𝑛
𝑘
}
𝑘∈N ⊂ N be such that 𝑇

𝑛
𝑘

= 𝑇
1
, for all 𝑘 ∈ N.

Then, from (54), we have 𝑧
𝑛
𝑘

→ 𝑝, as 𝑛 → ∞. It follows
from (88) and the closedness of 𝑇

1
that

𝑝 = lim
𝑘→∞

𝑇
𝑛
𝑘

𝑧
𝑛
𝑘

= lim
𝑘→∞

𝑇
1
𝑧
𝑛
𝑘

= 𝑇
1
𝑝. (89)

This implies that 𝑝 ∈ 𝐹(𝑇
1
).

Similarly, let {𝑛
𝑘
}
𝑘∈N ⊂ N be such that 𝑇

𝑛
𝑘

= 𝑇
2
, for all

𝑘 ∈ N. Then, we have again that 𝑝 ∈ 𝐹(𝑇
2
).

Continuing in the same way, we obtain that 𝑝 ∈ 𝐹(𝑇
𝑖
),

where 𝑖 = 3, 4, 5, . . . , 𝐷.
Hence, 𝑝 ∈ ⋂𝐷

𝑖=1
𝐹(𝑇
𝑖
).

From Substeps (6.1)–(6.4), we can conclude that

𝑝 ∈ Ω := (
𝐷

⋂
𝑖=1

𝐹 (𝑇
𝑖
))⋂(

𝐷

⋂
𝑖=1

𝐹 (𝑆
𝑖
))⋂ (

𝑀

⋂
𝑘=1

SEP (𝐹
𝑘
))

⋂(
𝑁

⋂
𝑛=1

VI (𝐶, 𝐴
𝑛
)) .

(90)

Step 7. Finally, we will show that 𝑝 = Π
Ω
(𝑥
0
).

From 𝑥
𝑛
= Π
𝐶
𝑛

(𝑥
0
), we have

⟨𝐽𝑥
0
− 𝐽𝑥
𝑛
, 𝑥
𝑛
− 𝑝⟩ ≥ 0, ∀𝑝 ∈ Ω. (91)

Taking 𝑛 → ∞ in (91), one has

⟨𝐽𝑥
0
− 𝐽𝑝, 𝑝 − 𝑝⟩ ≥ 0, ∀𝑝 ∈ Ω. (92)

Now, we have 𝑝 ∈ Ω and by Lemma 5, we get

𝑝 = Π
Ω
(𝑥
0
) . (93)

This completes the proof of Theorem 13.

If we set𝑀 = 𝑁 = 𝐷 = 1 in Theorem 13, then we obtain
the following result.

Corollary 14. Let 𝐶 be a nonempty, closed and convex subset
of a uniformly smooth and strictly convex real Banach space 𝐸
which has the Kadec-Klee property. Suppose that

(1) 𝐹 : 𝐶 × 𝐶 → R is a bifunction satisfying conditions
(A1)–(A4);

(2) 𝑇 and 𝑆 are two quasi-𝜙-nonexpansive mappings from
𝐶 into 𝐸;

(3) 𝐴 : 𝐶 → 𝐸∗ is a continuous monotone mapping.
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(4) For 𝑥 ∈ 𝐸, one defines the mappings 𝐾
𝑟
𝑛

, 𝑇
𝑟
𝑛

: 𝐸 → 𝐶
as follows:

𝐾
𝑟
𝑛

(𝑥) : = {𝑧 ∈ 𝐶 : ⟨𝑦 − 𝑧, 𝐴𝑧⟩

+
1

𝑟
𝑛

⟨𝑦 − 𝑧, 𝐽𝑧 − 𝐽𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶} ;

𝑇
𝑟
𝑛

(𝑥) : = {𝑧 ∈ 𝐶 : 𝐹 (𝑧, 𝑦)

+
1

𝑟
𝑛

⟨𝑦 − 𝑧, 𝐽𝑧 − 𝐽𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶} .

(94)

Assume that Ω := 𝐹(𝑇) ∩ 𝐹(𝑆) ∩ EP(𝐹) ∩ VI(𝐶, 𝐴) is
a nonempty and bounded in 𝐶 and let {𝑥

𝑛
} be a sequence

generated by

𝑥
0
∈ 𝐶
0
= 𝐶, 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦,

𝑧
𝑛
= 𝐾
𝑟
𝑛

𝑥
𝑛
,

𝑢
𝑛
= 𝑇
𝑟
𝑛

𝑥
𝑛
,

𝑦
𝑛
= 𝐽
−1

(𝛼𝐽𝑥
𝑛
+ 𝛽𝐽𝑇𝑧

𝑛
+ 𝛾𝐽𝑆𝑢

𝑛
) ,

𝐶
𝑛+1
= {𝑧 ∈ 𝐶

𝑛
: 𝜙 (𝑧, 𝑦

𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
)} ,

𝑥
𝑛+1
= Π
𝐶
𝑛+1

(𝑥
0
) , ∀𝑛 ≥ 0,

(95)

where {𝑟
𝑛
} ⊂ [𝑎,∞) for some 𝑎 > 0 and 𝑛 ∈ N, and 𝛼, 𝛽, 𝛾 are

real numbers in (0, 1) such that 𝛼 + 𝛽 + 𝛾 = 1.
Then, the sequence {𝑥

𝑛
}∞
𝑛=0

converges strongly to 𝑝 =
Π
Ω
(𝑥
0
).

If we set 𝑇
𝑖
= 𝐼, for any 𝑖 = 1, 2, 3, . . . , 𝐷 in Theorem 13,

then we obtain the following result which extends and
improves the result’s Zegeye and Shahzad [7].

Corollary 15 (Zegeye and Shahzad [7]). Let𝐶 be a nonempty,
closed and convex subset of a uniformly smooth and strictly
convex real Banach space 𝐸 which has Kadec-Klee property.
Suppose that

(1) {𝐹
𝑘
}𝑀
𝑘=1

: 𝐶 × 𝐶 → R is a finite family of bifunc-
tions satisfying conditions (A1)–(A4), where 𝑘 = 1, 2,
3, . . . ,𝑀;

(2) {𝑆
𝑖
}𝐷
𝑖=1
: 𝐶 → 𝐸 is a finite family of quasi-𝜙-nonex-

pansive mappings, where 𝑖 = 1, 2, 3, . . . , 𝐷;

(3) {𝐴
𝑛
}𝑁
𝑛=1

: 𝐶 → 𝐸∗ is a finite family of continuous
monotone mappings, where 𝑛 = 1, 2, 3, . . . , 𝑁;

(4) For 𝑥 ∈ 𝐸, one defines the mappings 𝐾
𝑟
𝑛

, 𝑇
𝑟
𝑛

: 𝐸 → 𝐶
by

𝐾
𝑟
𝑛

(𝑥) := {𝑧 ∈ 𝐶 : ⟨𝑦 − 𝑧, 𝐴
𝑛
𝑧⟩

+
1

𝑟
𝑛

⟨𝑦 − 𝑧, 𝐽𝑧 − 𝐽𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶} ;

𝑇
𝑟
𝑛

(𝑥) := {𝑧 ∈ 𝐶 : 𝐹
𝑛
(𝑧, 𝑦)

+
1

𝑟
𝑛

⟨𝑦 − 𝑧, 𝐽𝑧 − 𝐽𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶} .

(96)

Assume that Ω := (⋂
𝐷

𝑖=1
𝐹(𝑆
𝑖
))⋂ (⋂

𝑀

𝑘=1
SEP(𝐹

𝑘
))⋂(⋂

𝑁

𝑛=1

VI(𝐶, 𝐴
𝑛
)) is a nonempty and bounded in 𝐶 and let {𝑥

𝑛
} be a

sequence generated by

𝑥
0
∈ 𝐶
0
= 𝐶, 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦,

𝑧
𝑛
= 𝐾
𝑟
𝑛

𝑥
𝑛
,

𝑢
𝑛
= 𝑇
𝑟
𝑛

𝑥
𝑛
,

𝑦
𝑛
= 𝐽
−1

(𝛼𝐽𝑥
𝑛
+ 𝛽𝐽𝑧

𝑛
+ 𝛾𝐽𝑆
𝑛
𝑢
𝑛
) ,

𝐶
𝑛+1
= {𝑧 ∈ 𝐶

𝑛
: 𝜙 (𝑧, 𝑦

𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
)} ,

𝑥
𝑛+1
= Π
𝐶
𝑛+1

(𝑥
0
) , ∀𝑛 ≥ 0,

(97)

where 𝐴
𝑛
≡ 𝐴
𝑛
(mod 𝑁), 𝐹

𝑛
≡ 𝐹
𝑛
(mod 𝑀), 𝑆

𝑛
≡ 𝑆
𝑛
(mod

𝐷), {𝑟
𝑛
} ⊂ [𝑎,∞) for some 𝑎 > 0 and 𝑛 ∈ N, and 𝛼, 𝛽, 𝛾 are

real numbers in (0,1) such that 𝛼 + 𝛽 + 𝛾 = 1.
Then, the sequence {𝑥

𝑛
}∞
𝑛=0

converges strongly to 𝑝 =
Π
Ω
(𝑥
0
).

4. Deduced Theorems

If we set𝐹
𝑘
≡ 0, for any 𝑘 = 1, 2, 3, . . . ,𝑀 inTheorem 13, then

we obtain the following result.

Corollary 16. Let 𝐶 be a nonempty, closed and convex subset
of a uniformly smooth and strictly convex real Banach space 𝐸
which has the Kadec-Klee property. Suppose that

(1) {𝑇
𝑖
}𝐷
𝑖=1

and {𝑆
𝑖
}𝐷
𝑖=1

are finite families of quasi-𝜙-non-
expansive mappings from 𝐶 into 𝐸, where 𝑖 =
1, 2, 3, . . . , 𝐷;

(2) {𝐴
𝑛
}𝑁
𝑛=1

: 𝐶 → 𝐸∗ is a finite family of continuous
monotone mappings, where 𝑛 = 1, 2, 3, . . . , 𝑁;

(3) For 𝑥 ∈ 𝐸, we define the mappings 𝐾
𝑟
𝑛

: 𝐸 → 𝐶 by

𝐾
𝑟
𝑛

(𝑥) := {𝑧 ∈ 𝐶 : ⟨𝑦 − 𝑧, 𝐴
𝑛
𝑧⟩

+
1

𝑟
𝑛

⟨𝑦 − 𝑧, 𝐽𝑧 − 𝐽𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶} .

(98)
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Assume that Ω := (⋂
𝐷

𝑖=1
𝐹(𝑇
𝑖
))⋂(⋂

𝐷

𝑖=1
𝐹(𝑆
𝑖
))⋂ (⋂𝑁

𝑛=1

VI(𝐶, 𝐴
𝑛
)) is a nonempty and bounded in 𝐶 and let {𝑥

𝑛
} be

a sequence generated by

𝑥
0
∈ 𝐶
0
= 𝐶, 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦,

𝑧
𝑛
= 𝐾
𝑟
𝑛

𝑥
𝑛
,

𝑦
𝑛
= 𝐽
−1

(𝛼𝐽𝑥
𝑛
+ 𝛽𝐽𝑇

𝑛
𝑧
𝑛
+ 𝛾𝐽𝑆
𝑛
𝑥
𝑛
) ,

𝐶
𝑛+1
= {𝑧 ∈ 𝐶

𝑛
: 𝜙 (𝑧, 𝑦

𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
)} ,

𝑥
𝑛+1
= Π
𝐶
𝑛+1

(𝑥
0
) , ∀𝑛 ≥ 0,

(99)

where 𝐴
𝑛
≡ 𝐴
𝑛
(mod 𝑁), 𝑇

𝑛
≡ 𝑇
𝑛
(mod 𝐷), 𝑆

𝑛
≡ 𝑆
𝑛
(mod

𝐷), {𝑟
𝑛
} ⊂ [𝑎,∞) for some 𝑎 > 0 and 𝑛 ∈ N, and 𝛼, 𝛽, 𝛾 are

real numbers in (0,1) such that 𝛼 + 𝛽 + 𝛾 = 1.
Then, the sequence {𝑥

𝑛
}∞
𝑛=0

converges strongly to 𝑝 =
Π
Ω
(𝑥
0
).

If we set 𝐴
𝑛
≡ 0, for any 𝑛 = 1, 2, 3, . . . , 𝑁 in Theorem 13,

then we obtain the following result.

Corollary 17. Let 𝐶 be a nonempty, closed and convex subset
of a uniformly smooth and strictly convex real Banach space 𝐸
which has the Kadec-Klee property. Suppose that

(1) {𝐹
𝑘
}𝑀
𝑘=1

: 𝐶 × 𝐶 → R is a finite family of bifunc-
tions satisfying conditions (A1)–(A4), where 𝑘 = 1, 2,
3, . . . ,𝑀;

(2) {𝑇
𝑖
}𝐷
𝑖=1

and {𝑆
𝑖
}𝐷
𝑖=1

are finite families of quasi-𝜙-non-
expansive mappings from 𝐶 into 𝐸, where 𝑖 = 1, 2,
3, . . . , 𝐷;

(3) For 𝑥 ∈ 𝐸, one defines the mappings 𝑇
𝑟
𝑛

: 𝐸 → 𝐶 by

𝑇
𝑟
𝑛

(𝑥) := {𝑧 ∈ 𝐶 : 𝐹
𝑛
(𝑧, 𝑦)

+
1

𝑟
𝑛

⟨𝑦 − 𝑧, 𝐽𝑧 − 𝐽𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶} .

(100)

Assume that Ω := (⋂
𝐷

𝑖=1
𝐹(𝑇
𝑖
))⋂(⋂

𝐷

𝑖=1
𝐹(𝑆
𝑖
))⋂ (⋂𝑀

𝑘=1

SEP(𝐹
𝑘
)) is a nonempty and bounded in 𝐶 and let {𝑥

𝑛
} be a

sequence generated by

𝑥
0
∈ 𝐶
0
= 𝐶, 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦,

𝑢
𝑛
= 𝑇
𝑟
𝑛

𝑥
𝑛
,

𝑦
𝑛
= 𝐽
−1

(𝛼𝐽𝑥
𝑛
+ 𝛽𝐽𝑇

𝑛
𝑥
𝑛
+ 𝛾𝐽𝑆
𝑛
𝑢
𝑛
) ,

𝐶
𝑛+1
= {𝑧 ∈ 𝐶

𝑛
: 𝜙 (𝑧, 𝑦

𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
)} ,

𝑥
𝑛+1
= Π
𝐶
𝑛+1

(𝑥
0
) , ∀𝑛 ≥ 0,

(101)

where 𝐹
𝑛
≡ 𝐹
𝑛
(mod 𝑀), 𝑇

𝑛
≡ 𝑇
𝑛
(mod 𝐷), 𝑆

𝑛
≡ 𝑆
𝑛
(mod

𝐷), {𝑟
𝑛
} ⊂ [𝑎,∞) for some 𝑎 > 0 and 𝑛 ∈ N, and 𝛼, 𝛽, 𝛾 are

real numbers in (0, 1) such that 𝛼 + 𝛽 + 𝛾 = 1.
Then, the sequence {𝑥

𝑛
}∞
𝑛=0

converges strongly to 𝑝 =
Π
Ω
(𝑥
0
).

If we set 𝐹
𝑘
≡ 0, for any 𝑘 = 1, 2, 3, . . . ,𝑀 and 𝐴

𝑛
≡ 0,

for any 𝑛 = 1, 2, 3, . . . , 𝑁 in Theorem 13, then we obtain the
following result.

Corollary 18. Let 𝐶 be a nonempty, closed and convex subset
of a uniformly smooth and strictly convex real Banach space 𝐸
which has the Kadec-Klee property. Suppose that {𝑇

𝑖
}𝐷
𝑖=1

and
{𝑆
𝑖
}𝐷
𝑖=1

are finite families of quasi-𝜙-nonexpansive mappings
from 𝐶 into 𝐸, where 𝑖 = 1, 2, 3, . . . , 𝐷.

Assume that Ω := (⋂
𝐷

𝑖=1
𝐹(𝑇
𝑖
))⋂(⋂

𝐷

𝑖=1
𝐹(𝑆
𝑖
)) is a non-

empty and bounded in 𝐶 and let {𝑥
𝑛
} be a sequence generated

by

𝑥
0
∈ 𝐶
0
= 𝐶, 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦,

𝑦
𝑛
= 𝐽
−1

(𝛼𝐽𝑥
𝑛
+ 𝛽𝐽𝑇

𝑛
𝑥
𝑛
+ 𝛾𝐽𝑆
𝑛
𝑥
𝑛
) ,

𝐶
𝑛+1
= {𝑧 ∈ 𝐶

𝑛
: 𝜙 (𝑧, 𝑦

𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
)} ,

𝑥
𝑛+1
= Π
𝐶
𝑛+1

(𝑥
0
) , ∀𝑛 ≥ 0,

(102)

where 𝑇
𝑛
≡ 𝑇
𝑛
(mod 𝐷), 𝑆

𝑛
≡ 𝑆
𝑛
(mod 𝐷), {𝑟

𝑛
} ⊂ [𝑎,∞) for

some 𝑎 > 0 and 𝑛 ∈ N, and 𝛼, 𝛽, 𝛾 are real numbers in (0,1)
such that 𝛼 + 𝛽 + 𝛾 = 1.

Then, the sequence {𝑥
𝑛
}∞
𝑛=0

converges strongly to 𝑝 =
Π
Ω
(𝑥
0
).

5. Some Applications

5.1. Application toWeak Relatively NonexpansiveMappings. If
we change the condition (2) in Theorem 13 as follows: {𝑇

𝑖
}𝐷
𝑖=1

and {𝑆
𝑖
}𝐷
𝑖=1

are finite families of weak relatively nonexpansive
mappings. From Remark 2(2), every weak relatively nonex-
pansive mappings is quasi-𝜙-nonexpansive mappings. Then,
we obtain the following result.

Corollary 19. Let 𝐶 be a nonempty, closed and convex subset
of a uniformly smooth and strictly convex real Banach space 𝐸
which has the Kadec-Klee property. Suppose that

(1) {𝐹
𝑘
}𝑀
𝑘=1

: 𝐶 × 𝐶 → R is a finite family of bifunc-
tions satisfying conditions (A1)–(A4), where 𝑘 =
1, 2, 3, . . . ,𝑀;

(2) {𝑇
𝑖
}𝐷
𝑖=1

and {𝑆
𝑖
}𝐷
𝑖=1

are finite families of weak relatively
nonexpansive mappings from 𝐶 into 𝐸, where 𝑖 =
1, 2, 3, . . . , 𝐷;

(3) {𝐴
𝑛
}𝑁
𝑛=1

: 𝐶 → 𝐸∗ is a finite family of continuous
monotone mappings, where 𝑛 = 1, 2, 3, . . . , 𝑁;
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(4) For 𝑥 ∈ 𝐸, one defines the mappings 𝐾
𝑟
𝑛

, 𝑇
𝑟
𝑛

: 𝐸 → 𝐶
by

𝐾
𝑟
𝑛

(𝑥) := {𝑧 ∈ 𝐶 : ⟨𝑦 − 𝑧, 𝐴
𝑛
𝑧⟩

+
1

𝑟
𝑛

⟨𝑦 − 𝑧, 𝐽𝑧 − 𝐽𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶} ;

𝑇
𝑟
𝑛

(𝑥) := {𝑧 ∈ 𝐶 : 𝐹
𝑛
(𝑧, 𝑦)

+
1

𝑟
𝑛

⟨𝑦 − 𝑧, 𝐽𝑧 − 𝐽𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶} .

(103)

Assume that Ω := (⋂
𝐷

𝑖=1
𝐹(𝑇
𝑖
))⋂(⋂

𝐷

𝑖=1
𝐹(𝑆
𝑖
))⋂ (⋂𝑀

𝑘=1

SEP(𝐹
𝑘
))⋂(⋂

𝑁

𝑛=1
VI(𝐶, 𝐴

𝑛
)) is a nonempty and bounded in𝐶

and let {𝑥
𝑛
} be a sequence generated by

𝑥
0
∈ 𝐶
0
= 𝐶, 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦,

𝑧
𝑛
= 𝐾
𝑟
𝑛

𝑥
𝑛
,

𝑢
𝑛
= 𝑇
𝑟
𝑛

𝑥
𝑛
,

𝑦
𝑛
= 𝐽
−1

(𝛼𝐽𝑥
𝑛
+ 𝛽𝐽𝑇

𝑛
𝑧
𝑛
+ 𝛾𝐽𝑆
𝑛
𝑢
𝑛
) ,

𝐶
𝑛+1
= {𝑧 ∈ 𝐶

𝑛
: 𝜙 (𝑧, 𝑦

𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
)} ,

𝑥
𝑛+1
= Π
𝐶
𝑛+1

(𝑥
0
) , ∀𝑛 ≥ 0,

(104)

where 𝐴
𝑛
≡ 𝐴
𝑛
(mod 𝑁), 𝐹

𝑛
≡ 𝐹
𝑛
(mod𝑀), 𝑇

𝑛
≡ 𝑇
𝑛
(mod

𝐷), 𝑆
𝑛
≡ 𝑆
𝑛
(mod 𝐷), {𝑟

𝑛
} ⊂ [𝑎,∞) for some 𝑎 > 0 and 𝑛 ∈

N, and 𝛼, 𝛽, 𝛾 are real numbers in (0,1) such that 𝛼+𝛽+𝛾 = 1.
Then, the sequence {𝑥

𝑛
}∞
𝑛=0

converges strongly to 𝑝 =
Π
Ω
(𝑥
0
).

5.2. Application to Relatively Nonexpansive Mappings. If we
change the condition (2) inTheorem 13 as follows: {𝑇

𝑖
}𝐷
𝑖=1

and
{𝑆
𝑖
}𝐷
𝑖=1

are finite families of relatively nonexpansivemappings.
From Remark 2(3) and (2) every relatively nonexpansive
mappings is weak relatively nonexpansive mappings and
every weak relatively nonexpansive mappings is quasi-𝜙-
nonexpansivemappings.Then,we obtain the following result.

Corollary 20. Let 𝐶 be a nonempty, closed and convex subset
of a uniformly smooth and strictly convex real Banach space 𝐸
which has the Kadec-Klee property. Suppose that

(1) {𝐹
𝑘
}𝑀
𝑘=1

: 𝐶 × 𝐶 → R is a finite family of bifunc-
tions satisfying conditions (A1)–(A4), where 𝑘 =
1, 2, 3, . . . ,𝑀;

(2) {𝑇
𝑖
}𝐷
𝑖=1

and {𝑆
𝑖
}𝐷
𝑖=1

are finite families of relatively non-
expansive mappings from 𝐶 into 𝐸, where 𝑖 = 1, 2,
3, . . . , 𝐷;

(3) {𝐴
𝑛
}𝑁
𝑛=1

: 𝐶 → 𝐸∗ is a finite family of continuous
monotone mappings, where 𝑛 = 1, 2, 3, . . . , 𝑁;

(4) For 𝑥 ∈ 𝐸, one defines the mappings 𝐾
𝑟
𝑛

, 𝑇
𝑟
𝑛

: 𝐸 → 𝐶
by

𝐾
𝑟
𝑛

(𝑥) := {𝑧 ∈ 𝐶 : ⟨𝑦 − 𝑧, 𝐴
𝑛
𝑧⟩

+
1

𝑟
𝑛

⟨𝑦 − 𝑧, 𝐽𝑧 − 𝐽𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶} ;

𝑇
𝑟
𝑛

(𝑥) := {𝑧 ∈ 𝐶 : 𝐹
𝑛
(𝑧, 𝑦)

+
1

𝑟
𝑛

⟨𝑦 − 𝑧, 𝐽𝑧 − 𝐽𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶} .

(105)

Assume that Ω := (⋂
𝐷

𝑖=1
𝐹(𝑇
𝑖
))⋂(⋂

𝐷

𝑖=1
𝐹(𝑆
𝑖
))⋂ (⋂𝑀

𝑘=1

SEP(𝐹
𝑘
))⋂(⋂

𝑁

𝑛=1
VI(𝐶, 𝐴

𝑛
)) is a nonempty and bounded in𝐶

and let {𝑥
𝑛
} be a sequence generated by

𝑥
0
∈ 𝐶
0
= 𝐶, 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦,

𝑧
𝑛
= 𝐾
𝑟
𝑛

𝑥
𝑛
,

𝑢
𝑛
= 𝑇
𝑟
𝑛

𝑥
𝑛
,

𝑦
𝑛
= 𝐽
−1

(𝛼𝐽𝑥
𝑛
+ 𝛽𝐽𝑇

𝑛
𝑧
𝑛
+ 𝛾𝐽𝑆
𝑛
𝑢
𝑛
) ,

𝐶
𝑛+1
= {𝑧 ∈ 𝐶

𝑛
: 𝜙 (𝑧, 𝑦

𝑛
) ≤ 𝜙 (𝑧, 𝑥

𝑛
)} ,

𝑥
𝑛+1
= Π
𝐶
𝑛+1

(𝑥
0
) , ∀𝑛 ≥ 0,

(106)

where 𝐴
𝑛
≡ 𝐴
𝑛
(mod 𝑁), 𝐹

𝑛
≡ 𝐹
𝑛
(mod 𝑀), 𝑇

𝑛
≡ 𝑇
𝑛
(mod

𝐷), 𝑆
𝑛
≡ 𝑆
𝑛
(mod 𝐷), {𝑟

𝑛
} ⊂ [𝑎,∞) for some 𝑎 > 0 and 𝑛 ∈

N, and 𝛼, 𝛽, 𝛾 are real numbers in (0,1) such that 𝛼+𝛽+𝛾 = 1.
Then, the sequence {𝑥

𝑛
}∞
𝑛=0

converges strongly to 𝑝 =
Π
Ω
(𝑥
0
).

5.3. Application to Hilbert Spaces. If 𝐸 = 𝐻, a real Hilbert
space, then 𝐸 is uniformly smooth and strictly convex real
Banach space. In this case, 𝐽 = 𝐼 and Π

𝐶
= 𝑃
𝐶
. Then, we

obtain the following result.

Corollary 21. Let 𝐶 be a nonempty, closed and convex subset
of a real Hilbert space𝐻. Suppose that

(1) {𝐹
𝑘
}𝑀
𝑘=1

: 𝐶 × 𝐶 → R is a finite family of bifunc-
tions satisfying conditions (A1)–(A4), where 𝑘 =
1, 2, 3, . . . ,𝑀;

(2) {𝑇
𝑖
}𝐷
𝑖=1

and {𝑆
𝑖
}𝐷
𝑖=1

are finite families of non-
expansive mappings from 𝐶 into 𝐶, where 𝑖 = 1, 2,
3, . . . , 𝐷;

(3) {𝐴
𝑛
}𝑁
𝑛=1

: 𝐶 → 𝐻 is a finite family of continuous
monotone mappings, where 𝑛 = 1, 2, 3, . . . , 𝑁;
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(4) For 𝑥 ∈ 𝐸, one defines the mappings𝐾
𝑟
𝑛

, 𝑇
𝑟
𝑛

: 𝐻 → 𝐶
by

𝐾
󸀠

𝑟
𝑛

(𝑥) := {𝑧 ∈ 𝐶 : ⟨𝑦 − 𝑧, 𝐴
𝑛
𝑧⟩

+
1

𝑟
𝑛

⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶} ;

𝑇
󸀠

𝑟
𝑛

(𝑥) := {𝑧 ∈ 𝐶 : 𝐹
𝑛
(𝑧, 𝑦)

+
1

𝑟
𝑛

⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶} .

(107)

Assume that Ω := (⋂
𝐷

𝑖=1
𝐹(𝑇
𝑖
))⋂(⋂

𝐷

𝑖=1
𝐹(𝑆
𝑖
))⋂ (⋂𝑀

𝑘=1

SEP(𝐹
𝑘
))⋂(⋂

𝑁

𝑛=1
VI(𝐶, 𝐴

𝑛
)) is a nonempty and bounded in𝐶

and let {𝑥
𝑛
} be a sequence generated by

𝑥
0
∈ 𝐶
0
= 𝐶, 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦,

𝑧
𝑛
= 𝐾
󸀠

𝑟
𝑛

𝑥
𝑛
,

𝑢
𝑛
= 𝑇
󸀠

𝑟
𝑛

𝑥
𝑛
,

𝑦
𝑛
= 𝛼𝑥
𝑛
+ 𝛽𝑇
𝑛
𝑧
𝑛
+ 𝛾𝑆
𝑛
𝑢
𝑛
,

𝐶
𝑛+1
= {𝑧 ∈ 𝐶

𝑛
:
󵄩󵄩󵄩󵄩𝑧 − 𝑦𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑧 − 𝑥𝑛

󵄩󵄩󵄩󵄩} ,

𝑥
𝑛+1
= 𝑃
𝐶
𝑛+1

(𝑥
0
) , ∀𝑛 ≥ 0,

(108)

where 𝐴
𝑛
≡ 𝐴
𝑛
(mod 𝑁), 𝐹

𝑛
≡ 𝐹
𝑛
(mod 𝑀), 𝑇

𝑛
≡ 𝑇
𝑛
(mod

𝐷), 𝑆
𝑛
≡ 𝑆
𝑛
(mod 𝐷), {𝑟

𝑛
} ⊂ [𝑎,∞) for some 𝑎 > 0 and 𝑛 ∈

N, and 𝛼, 𝛽, 𝛾 are real numbers in (0,1) such that 𝛼+𝛽+𝛾 = 1.
Then, the sequence {𝑥

𝑛
}∞
𝑛=0

converges strongly to an element
of Ω.

Remark 22. Our theorem extends and improves the corre-
sponding results in [5–7] in the following aspect.

(a) For the mapping, we extend the mappings from non-
expansive mappings, relatively nonexpansive map-
pings, and weak relatively nonexpansive mappings to
more general than quasi-𝜙-nonexpansive mappings.

(b) For the common solution, we extend the com-
mon solution of a single finite family of quasi-
𝜙-nonexpansive mappings to two finite families of
quasi-𝜙-nonexpansive mappings.
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