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The purpose of this paper is twofold. Firstly we consider nonlinear nonsmooth elliptic boundary value problems, and also related
parabolic initial boundary value problems that model in a simplified way steady-state unilateral contact with Tresca friction in solid
mechanics, respectively, stem from nonlinear transient heat conduction with unilateral boundary conditions. Here a recent duality
approach, that augments the classical Babuska-Brezzi saddle point formulation for mixed variational problems to twofold saddle
point formulations, is extended to the nonsmooth problems under consideration. This approach leads to variational inequalities of
mixed form for three coupled fields as unknowns and to related differential mixed variational inequalities in the time-dependent
case. Secondly we are concerned with the stability of the solution set of a general class of differential mixed variational inequalities.
Here we present a novel upper set convergence result with respect to perturbations in the data, including perturbations of the
associated nonlinear maps, the nonsmooth convex functionals, and the convex constraint set. We employ epiconvergence for the
convergence of the functionals and Mosco convergence for set convergence. We impose weak convergence assumptions on the

perturbed maps using the monotonicity method of Browder and Minty.

1. Introduction

The classical Babuska-Brezzi theory for mixed variational
problems has been extended by Gatica [1, 2] to some classes
of variational problems and nonlinear operator equations.
This extension leads to three-field variational models that
can be understood as dual-dual mixed variational models or
as twofold saddle point formulations. Such augmented vari-
ational models are well adapted for multiphysics problems
with different coupled unknown quantities and in particular
for engineering problems, where speaking in terms of solid
mechanics, strains and stresses are often of more interest then
the displacements.

In a series of papers Gatica with coauthors applied his
duality approach to the numerical treatment of various lin-
ear/nonlinear interior/exterior elliptic boundary value prob-
lems by the finite element method (FEM), the boundary ele-
ment method (BEM), or by the coupling of these discretiza-
tion methods. Here we refer to the paper of Gatica et al. [3]

that presents a numerical analysis of nonlinear two-fold sad-
dle point problems involving a nonlinear operator equation
with a uniformly monotone operator.

This novel duality approach to nonlinear nonsmooth
boundary value problems has to be distinguished from the
standard duality approach which hinges on the Lagrange
duality theory of convex analysis in calculus of variations
(see [4] for a systematic study) and which is employed in
the numerical FEM analysis of various unilateral boundary
and obstacle problems as pioneered by Haslinger and Lovisek
[5, 6]; see also the monograph [7].

In this paper, we address a simplified scalar model of
steady-state unilateral contact problems with Tresca fric-
tion and nonlinear transient heat conduction problems
with unilateral boundary conditions. We extend the duality
approach of Gatica to such problems. This approach leads to
variational inequalities of mixed form for three coupled fields
as unknowns and to related differential mixed variational
inequalities (DMVI) in the time-dependent case.



Differential variational inequalities have recently been
introduced and studied in depth by Pang and Stewart [8] in
finite dimensions as a new modeling paradigm of variational
analysis. In their seminal paper the authors have already
shown that this new class of differential inclusions contains
ordinary differential equations with possibly discontinuous
right-hand sides, differential algebraic systems, dynamic
complementarity systems, and evolutionary variational sys-
tems. More recently, some results of [8] have been extended
to DMVI by Li et al. [9] in finite dimensions.

Furthermore in this paper, we are concerned with stability
of the solution set to DMVI. In this connection, let us
refer to [10], where a Lyapunov approach is developed for
strong solutions of evolution variational inequalities and
to [11], where first several sensitivity results are established
for initial value problems of ordinary differential equations
with nonsmooth right hand sides and then applied to treat
differential variational inequalities. Related stability results
for more general evolution inclusions by Papageorgiou [12,
13] and by Hu and Papageorgiou in the memoir [14] are
not applicable here since these results are limited to finite
dimensions, respectively, and need more stringent compact-
ness assumptions.

Here we present a novel upper set convergence result for
DMVI with respect to perturbations in the data. In particular,
we admit perturbations of the nonlinear maps, of the non-
smooth convex functionals, and the convex constraint set
that describe the DMVI. We employ epiconvergence for the
convergence of the functionals and Mosco convergence for
set convergence. Since our analysis of the underlying mixed
nonlinear variational inequality relies on the monotonicity
method of Browder and Minty (see e.g., [15, 16]), we need
to impose comparably weak convergence assumptions on the
perturbations in the nonlinear maps. Thus we extend the
stability results of [17] (without considering slow solutions
here) and of [18] to this new more general class of mixed
differential variational inequalities.

The outline of this paper is as follows. In Sections 2
and 3, we show how the duality approach of Gatica can
be extended to a nonlinear transient heat problem with
unilateral boundary conditions and to a scalar nonsmooth
boundary value problem modelling the steady-state unilat-
eral contact of an elastic body with Tresca friction. Thus we
obtain variational inequalities of mixed form involving three
unknown fields and related differential mixed variational
inequalities (DMVI) in the time-dependent case. Then in
Section 4, we turn to the stability analysis of a general class
of DMVI. After a discussion of some preliminaries including
Mosco set convergence and epiconvergence (Section 4.2), we
establish our novel stability result in Section 4.3 based on
the Browder-Minty monotonicity method. Section 5 gives an
outlook to some open directions of research.

2. A Nonlinear Nonsmooth Boundary Value
Problem from Heat Conduction

In this section we consider a nonlinear boundary value
problem with Signorini boundary conditions that arises from
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nonlinear heat conduction [19] with semipermeable walls
[20]. We first show how the steady-state problem can be
variationally formulated as a variational inequality in mixed
form. Then we turn to the transient problem and derive the
associated differential mixed variational inequality.

To describe the problem of interest, let Q) be a bounded
simply connected domain in R* with the Lipschitz boundary
0Q = T [21]. Then ¥, the outward normal to T, exists almost
everywhere and v € [L®°(I)]? (see [21, Lemma 2.4.2]). Let Iy
and T be parts of T, such that |Tp| > 0, |Tg| >0, T =T, UTy
and I NIy = 0. Also let g; : OxR?> - R,i=1,2be
nonlinear functions satisfying certain conditions (specified in
what follows), and write

a(x%,8) = (a (%,8),a, (x,8)) V(xEeQxR:L ()

Then, for a given right-hand side f: O — R, given function
g : 0Q — R defining the boundary conditions, we look for
afunctionu : Q — R, such that

—diva(,Vu())=f on Q,
u=g on Ip,
u>g, avVu()-v=20, (u—g)a(,Vu())-»=0,
on T,
)

where div is the usual divergence operator. We introduce the
gradient p := Vu in Q and the flux ¢ := a(,,p) in Q as
additional unknowns. In this way, the elliptic pde (2), in (2)
writes as the three equations

—dive = f,
a (') P) =0, (3)
p=Vu,

that should hold in the distributional sense in Q. By this
reformation we can relax the regularity of the unknown u. We
require that u € LZ(Q), pP€ LZ(Q, IRZ), and o € H(div, Q) :=
{o € L*(Q,R?) | dive € L*(Q)}. Thus testing (3),, (3), with
Ve LZ(Q), qc¢€ LZ(Q, IRZ), respectively, gives

—J divevdx = J fvdx =:(f, V)LZ(Q),
Q Q @
J a(,p)-qdx = J o-qdx =: (o, q)Lzm,Rz).
Q Q

For the last equation (3); in (3) we incorporate the boundary
conditions and use Green’s formula (see [22])

(Vo T) 2oy + (@ dVT) o) = M BT 2y (5)

for ¢ € H'(Q), T € H(div,Q), where yp¢ and y,7 = 7 - v
denote the traces. Testing (3); with T — ¢ € H(div, Q) results
in

(P, T -0y + (U divr —divo)z (g,
= (you ¥, (T — 0)) (6)
= (Yot = . 15T) = (Voh = 9 1,0) + (9,7, (T — 0)) .
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By the boundary conditions, the previous second term
vanishes. The second inequality in the Signorini boundary
condition (2); tells us that we have to require that o belongs
to the convex cone as follows:

H, = H, (div, O, I)
(7)
= {r e H(div,Q) : y,7 | T > 0},

where “> 0” means that (y,0,9,7) > 0 for any smooth
function ¢ on Q with ¢ = 0 on I'; and ¢ > 0 on I§. Thus
we obtain for any 7 € H, (div, Q, Iy),

(P, T - 0)pqprey + (1, div (T — 0))12(q
(8)
2 <g’ Vv (T - U)>L2(FS)'

Altogether we arrive at the following variational inequal-
ity of mixed form: find [p, o, u] € L*(Q,R?) xH, (div, Q,Tg) x
L*(Q), such that for all [q, 7, v] € L*(Q, R*)x H, (div, Q, Tg) x
LX(Q),

(a(5p),q) —(0,q) =0,

(p,7-0) + W div,(r-0) 2(g,9,(T-0) ), (9)
- (vdive) = (f,v).
Note that if the functions g; are Caratheodory functions

and satisfy the growth conditions: 3C > 0, ¢, € L*(Q), i =
1,2 such that

VE e R% ae x€Q,
(10)

ja (6, O] < C{1+ €]} + o ()]

then we obtain the Nemytskii operator q € L*(Q,R?)
a(,q) € L*(Q,R?). Clearly, this nonlinear operator inherits
monotonicity from the vector field a; see, for example, [15].

Now we turn to the time-dependent case. Let I = (0,T)
be the given time interval. Then instead of the elliptic pde (2),
we have the parabolic pde

ou—diva(,Vu())=f inQxI 11)

Also the boundary conditions have to hold in Q x I, where
we assume the gap function g to be time-independent. In
addition, we have the initial condition u = 1 in Q x {0} with
some given 1.

As the solution space for the unknown u, we introduce

We={ueL*(QxI):duel’*(QxI)}. (12)

Then the three-field variational formulation of the consid-
ered initial boundary value problem reads as the following
differential mixed variational inequality: find [u, p, 0] € W x

L2(Q x I, R?) x L1, H,(div,Q,Iy)) =: &, such that for all
[v,q, 7] € X there holds

JI L (Qu—dive)vdxdt = J

I

J frdsd,
Q

LLa(-,p).qudt—JIJQg.qudtZO, .
13
JI jﬂP-(T—a)dxdt+JI LudiV(T—O')dxdt

2j J gt —o0)-vdsdt.
1 Jr

3. A Simplified Scalar Nonsmooth Boundary
Value Problem from Frictional Contact

In this section we treat a non-smooth boundary value
problem that can be considered as a simplified scalar model
of a nonsmooth contact mechanics problem involving Tresca
friction and a unilateral constraint of an elastic body with
a rigid foundation. Instead of the vector Navier-Lamé pde
system or a nonlinear extension of it to model nonlinear elas-
tic material, we are concerned with a nonlinear Helmholtz-
like pde. This pde will be complemented by nonclassical
boundary conditions involving the non-smooth modulus
function. We show how a three-field modelling transforms
this nonsmooth boundary value problem to a variational
inequality of mixed type.

Similar to the preceding section, let Q ¢ R* be abounded
plane domain with the Lipschitz boundary. Here instead
of the Navier-Lamé-system and instead of (2) we treat the
elliptic Helmholz-like partial differential equation

—diva(,Vu()+u=f in Q. (14)

Again we use the gradient p := Vu in Q) and the flux ¢ :=
a(-, p) in Q as additional unknowns. In this way, the elliptic
pde (14) writes as the following three equations:

—dive +u=f,
a(,p) =o, (15)
p=Vu,

that should hold in the distributional sense in Q. By this
reformation we can again relax the regularity of the unknown
u. We require that u € L*(Q), p € L*(Q,R?), and o €
H(div, Q). Thus testing (15),, (15), with v ¢ L*(Q), q €
L*(Q, R?), respectively, gives

—J divev +uvdx = J frdx=(£v)q)
o o 16)

J a(p)-qdx= J o-qdx= (a,q)Lz(Q’Rz).
Q Q



Now with the given function g € L*(T) with g(x) >
go > 0 ae. onT, we impose the nonclassical boundary
conditions

lul < g,
(17)
u(o-v)=-glo-v.
Note that (17) is equivalent to
lul<g=0-v=0,
(18)

ul=g=0-v=-Au for some A > 0.

These implications reflect Tresca’s law of friction (given
friction model) and the more general Coulomb’s law of
friction [20]. Namely, with o - v denoting (the tangential
component of) the traction in the general elasticity problem,
the first implication means that when the body is not in
contact with the obstacle, there is no tangential stress due
to friction. If on the other hand, the body is in contact with
the rigid obstacle, then—this is the meaning of the second
implication—there arises a tangential stress proportional and
opposite to the tangential displacement .

To obtain a variational formulation of the boundary
condition (17), we consider the boundary integral

(1ot y, (T 0)) + Jrg{lrvl Clooofids (19)

and claim that this boundary integral is nonnegative for any
T € H(div, Q).
Indeed, if |u| < g holds on some part of T, then y,0 =
o - v = 0, and the integrand reduces to
Your,® + g |v7l = = |yul el + glprl = 0. (20)

If otherwise |u| = g holds, then insert y,0 = —Ay,u, and the
integrand becomes
Your,® + Alyoul” + g |, 7] ~ g [you
= Yo + g |17 (21)
= =g |nrl+glprl=0.

Thus we are led to the convex (actually sublinear) non-
smooth functional

i) = L glr-vds. (22)

Remark 1. The obtained convex functional j and the con-
straint |u| < g are related by Fenchel duality of convex
analysis, see for example [4]. Namely, introduce the convex,
lower semicontinuous, proper function ¢(y) := gly| with
g > 0. Then the Fenchel dual function

9" (2) = sup {(.2) -9 (»)} (23)

becomes

0 if|z]<g,

24
00 otherwise, (24)

@ (Z)=<l
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which is the indicator function of the previous constraint.
Moreover it is known that the Fenchel bidual function (¢*)*
coincides with ¢.

Finally in virtue of Green’s formula (5), the proven claim
provides the variational inequality of the second kind as
follows:

(P, T - 0)p2qprey + (1, div (T = 0)) 120
(25)
+j(r)-jle)=0

for any T € H(div, Q2), and altogether we arrive at the varia-
tional inequality of mixed form: find [p, o, u] € L*(Q, R?) x
H(div, Q) x L*(Q), such that for all [q,7,v] € L2(Q, R?) x
H(div, Q) x L*(Q),

(a(-p),q) - (0,9 =0,
(p,t-0)+wdiv(r-0)) +j(r)-j(o) =0, (26)
- (wdive —u) = (f,v).

4. Differential Mixed Variational Inequalities
and Their Stability

Motivated by the non-smooth boundary value problems
and their variational formulation in the previous sections,
we deal in this section with a general class of differential
mixed variational inequalities. As we will see that, with some
changes of notation, all the concrete variational inequalities of
mixed form of the previous sections can be subsumed in this
class, when introducing some appropriate product spaces.

Since in our stability analysis, we permit perturbations
in the non-smooth convex functionals and in the convex
constraint set, we provide auxiliary results on epiconvergence
and Mosco convergence. Using the monotonicity method of
Browder and Minty, we can establish a general stability result
under weak convergence assumptions.

4.1. The Setting of Differential Mixed Variational Inequalities
Considered. Let X, V be two real, separable Hilbert spaces
that are endowed with norms || - |5, || - lly» respectively, and
with scalar products denoted by (.,-), (-,-), respectively.
Further let there be given T > 0, a convex closed subset
K c V, a convex, lower semicontinuous proper functional
¢:V — RU+oo, maps f: [0,T] x X xV — X, and
g:[0,T] x X xV — V,and some fixed x, € X, then we
consider the following problem: find a X-valued function x
and a V-valued function u both defined on [0, T'] that satisfy
for a.a. (almost all) t € [0, T]

) . x(t)=ftxt),u))
DMVL: (f.9. K. ¢:x,) { u(®) € 2 (K, g (t,x(0),")

(27)

complemented by the initial condition x(0) = x,. Here x(t)
denotes the time derivative of x(t). X(K, ¢, g(t, x(¢), )) stands
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for the solution set of the mixed variational inequality defined
by K, ¢, and g(t, x(t), -); that is, u(¢) has to satisfy

u(t) e K,

(gt x(t),u(®),z-ut) +¢(2) - ¢ () =0, (28)
Vz € K.

To give a precise meaning to a DMVI we have to introduce
appropriate function spaces and impose some hypotheses on
the data.

The fixed finite time interval [0, T] gives rise to the Hilbert
space L*(0, T; V) endowed with the scalar product

T
[u,v] = J (u(t),v(t))dt. (29)
0

As in [8, 9] we consider weak solutions of the differential
equation in a DMVI in the sense of Caratheodory. In
particular, the X-valued function x has to be absolutely
continuous with derivative x(¢) defined almost everywhere.
Moreover to define the initial condition, the “trace” x(0) is
needed. Therefore (see [23, Theorem 1, page 473]) we are led
to the function space

L0,T;X) = {x | x e L*(0,T;X), x(t) € L* (0, T; X)} ,
(30)

a Hilbert space endowed with the scalar product [x, y] +
[%, y]. Note that 2°(0,T;X) is continuously and densely
embedded in the space C[0,T; X] of X-valued continuous
functions on [0, T], where the latter space is equipped with
the norm of uniform convergence.

We assume that the map g satisfies the following growth
condition: there exist g, € L*°(0,T), and go € L*(0,T) such
that for all ¢ € (0,T), for all (x,u) € X x V there holds

lg &t x|, < g0 @ (Ixlx + lully) + g° ). (3D

Hence the Nemytskii operator G that acts from L* (0,
T; X) x L*(0, T; V) to L*(0, T; V) derives from g by

GQou)(t) =gt x@),u(), te(0,T). (32)

For the time-independent functional ¢, we simply require
that the functional ® given by

T
O () = L Su®)d, uel’(0,T:V)  (33)

is real valued on L*(0, T; V).
Then it makes sense to introduce the closed convex subset

H =1%(0,T;K)
(34)
={we’(0,T;V) |w(t) €K, Vaa. t € (0,T)}

and replace the previous pointwise formulation of the mixed
variational inequality in a DMVI by its integrated counter-
part,

ue ¥, [Gxu),v-ul+®W)-0u)=0, VveH.

(35)

Clearly, it is sufficient to test the variational inequality with
any dense subset of %, for example, the K-valued continuous
functions on [0, T], as in [8, Section 2.1].

Concerning the map f, we assume the following growth
condition similar to (31): there exist i, € L(0,T), and h° €
L2(0,T) such that for all t € (0,T), forall (x,u) € X xV
there holds

If . xwy < he () (Ixlx + llully) + B (1) (36)

Hence the Nemitskii operator F derived from f by

Flou) ()= f(tx®),u®), te(0.T) (37)

acts from L(0, T; X) x L2(0,T; V) to L*(0, T; X).

Using a standard device in dynamical systems (see, e.g.,
[24]), we can introduce the unknown X := (x,t) and write
the previous DMVI as

dx d (x\ . . (fEO,u0)
E‘m(t)_f(x’”)'_( 1 >

u(t) e (K, ¢, g(X(t),"),

(38)

complemented by the initial condition X(0) = (x,,0).
Therefore in the following we can consider the autonomous
problem without any loss of generality and drop in DMVI the
dependence on t.

In what follows we study stability of differential mixed
variational inequalities formulated as DMVI and admit per-
turbations x, ,, of x, in the initial condition x(0) = x,, f", g"
ofthemaps f : X xV — X,g: XxV — VK,
of the convex closed subset K  V, and ¢" of the convex,
lower semicontinuous proper functional ¢ : V. — R U +o0.
Suppose that (x", u") solves (DMVI)(f", 4", K,,, ¢"; x,,,), and
assume that (x",u"") — (x,u) with respect to an appropriate
convergence for X-valued, respectively, V-valued functions
on [0,T]. Then we seek conditions on " — f,g" —
9K, - K, ¢" - ¢, andx,,, — x, that guarantee that
(x, u) solves the limit problem (DMVI)(f, g, K, ¢; x,). Such
a stability result can be understood as a result of upper set
convergence for the solution set of (DMVI)(f, g, K, ¢; x;).

4.2. Preliminaries; Mosco Convergence of Sets; Epiconvergence
of Functions. As the convergence of choice in variational
analysis we employ Mosco set convergence for a sequence
{K,} of closed convex subsets which is defined as follows.
A sequence {K,} of closed convex nonvoid subsets of the
Hilbert space V is called Mosco convergent to a closed convex

M
nonvoid subset K of V, written as K,, — K, if and only if

o—limsup K, cK Cs— linnl)i(ngn. (39)

n— 00

Here the prefix o and 2 mean sequentially weak con-
vergence in contrast to strong convergence denoted by the

S . . . .
prefix s and by —. Further, lim sup, lim inf respectively are
in the sense of Kuratowski upper, lower limits respectively of
sequences of sets (see [25] for more information on Mosco



convergence). Here we note that for the nonempty set K the

second inclusion provides g,, € K,,, such that g,, > g forsome
M M

g € K. Clearly, K, — K,ifand onlyifC, := K,—g, — C :=

K - g, this simple translation argument shows that there is no

loss of generality to assume when needed that 0 € K,,, K.

As a preliminary result we next show that Mosco conver-
gence of convex closed sets K,, inherits to Mosco convergence
of the polars K and to Mosco convergence of the associated
sets %, = L*(0,T; K,,), derived from K, similar to (34).

Lemma 2. Let K, 2, K. Then (a) K? R K% (b) %, Mo
in L*(0, T; V).

Proof. To show (a) we verify that

(1) o0 = lim supn_,ong c K°

Let { = o - lim,_, ,{, with {, € K°. Choose z € K
arbitrarily. Then by assumption, there exists (eventually for a
subsequence) z,, € K, with z = s —lim,,_, . z,,. By definition
of polar, ({,,z,) < 1, for all n, hence in the limit ({,z) <
1, for all z € K which gives € K°.

2)K® ¢ s—liminf, _, K°.

By [25, Proposition 3.23], s(K,,) X, s(K), where
SO =swpE2), (e V) (40)

is the support function of K. This means in particular that,
for any { € dom s(K), there exists {,, € dom s(K,,), such that
{ =s-1lim{, and s(K)({) = limsup,, _, . s(K,)(C,).

Now let { € K°. Then s(K)({) < 1, and hence { ¢
dom s(K). For the previous sequences {(,,}, {s, := s(K,,)({,)},
we obtain limsup,, s, < 1. If for a subsequence s,, <1 holds,

then ¢, € K° and the argument is complete. Otherwise, for
e y

almost all n we have s, > 1. But then lims, = 1, Zn = 5;15,, €
K? and's - lim, {, = {; the proof of part (a) terminates.

To show (b) we verify that

(1) o —limsup, , L*(0,T;K,) c L*(0, T; K).

Let w = o - lim,_, w, with w, € L0, T;K,). By
the bipolar theorem (K* = K, assume here without loss of
generality that 0 € K) it is enough to show that for all { € K,
for a.a. t € (0, T) there holds (w(¢),{) < 1.

Assume not . Then there exist Z e K% A c (0,1) with
measure |A| > 0, such that (w(t),{) > 1 on A. Define v =
(1/1ADx AZ’ (with y, denoting the characteristic function of
A). By part (a), there exist {, € K?, such that s — lim, ¢, =
Z; hence for v, = (1/|A|)XAZ,,, we have s — lim,v, = vin
L2(0, T; V). By construction,

1 —_
(W v = T L (w, (®),8,)dt < 1. (41)

Thus we arrive at the limit at

1> [w,v] = ﬁL(w(t),f)dt> L ()

a contradiction proving the claim.
(2) Z ¢ s—liminf, | F,.
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It is enough to verify the claim for a dense subset of %
this follows from a diagonal sequence argument; see also [26,
Lemma 2.6] for a similar reasoning. Here we use the well-
known fact from Bochner-Lebesgue integration theory that
the set 8'(0,T;V) of simple V-valued functions on (0,T) is
dense in L*(0, T; V). This extends to density of (0, T; V)NFE,
the K-valued simple functions on (0,T), in . This can be
seen by taking averages or mean value approximations; see
[26] for approximations on a multidimensional integration
domain instead of the interval (0, T').

Thus let w be a K-valued simple function on (0, T'); that is,
w=2 g Xa,zj where ] is finite, z; € K, and A; € (0,T) are
pairwise disjoint with measure |A;| >0 and UjesA; = (0,T).

M
Since K,, — K, there exist z;,, € K, such that for all j €
J;zj, — zj(n — ©00). Hencew, = ) Xa,Zjn lies in
w, in L*(0, T; V) follows. O

n—o00"n

H,andw = s - lim,

Let us note that part (b) of the preceding lemma is of
intrinsic interest for time-dependent variational inequalities.
An analogous implication (b) (1). was already shown in [26]
in the more general context of probability spaces instead
of the interval (0,T), however for the restricted class of
translated convex closed cones.

Since the epigraph epi¢p = {(r,w) : r > ¢(w)} of
a convex, lower semicontinuous (Isc) proper function ¢ :
V. — R U +00 is nonempty, closed, and convex in R x
V, Mosco convergence applies to such sets. This is known
as epiconvergence (see e.g., [25]). Thus a sequence {¢,} of
convex Isc proper functions on the Hilbert space V' is called
epiconvergent to a convex Isc proper function ¢ on V, written

b, i ¢, if and only if
1) w=0-lim,_, w, = ¢w) < liﬂi&f ¢, (w,),
(2) for all w with ¢(w) < +00 FHw,},en

w=s- lim w, ¢ (w) 2 limsup ¢, (w,).  (43)

As a further preliminary result we next show that epi-
convergence of convex Isc functions ¢, inherits to epicon-
vergence of the associated functionals ®,, derived from ¢,
similar to (33).

Lemma 3. Let the convex Isc proper functionals ¢,, epiconverge
to a convex Isc proper functional ¢ on V. Suppose that the
functionals ¢,, are equi-lower bounded in the sense that there
exist ¢, € R, wy € V, such that

¢, (W) >+ (wy,w), VneN,weV. (44)

Then the associated functionals ©, epiconverge to ® on
L*(0,T; V).

Proof. To show (1) letv = o—lim,, , v, in L*(0,T; V). Hence
v(t) = o—lim, _, v,(t) in V for almost all t € (0, T). Now by
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equi-lower boundedness, conclude from the lemma of Fatou
using the nonnegativity of the integrand that

i {0, )~ [ e+ (oo )]t}

T
= liminf | 19, (v ) =6 = (v, ()] d
(45)

> JTlim inf [¢,, (v, () — ¢ — (wg, v, (1))] dt
0 n— 00

T
>0 (v) - L [ + (wy, v (1))] dt

To show (2) let u € L*(0,T;V) with ®(u) < co. Hence
p(t) := ¢(u(t)) is real valued for almost all t € (0,7T)
and [p,u] € L*(0,T;epi¢). Now in virtue of the previous
Lemma 2, part (b), there exists a sequence {[p,, u,,]} strongly
convergent to [p,u] € L*(0,T;R x V). Hence u, — u €
L3(0,T; V), u,(t) — u(t) € Vforalmostallt,and p, — p €
L*(0,T). Therefore conclude from the lemma of Fatou using
the nonpositivity of the integrand that

T
lim sup {(Dn (u,) - J p(t) dt}
n— 00 0

_11msupJ. (¢, (u, (1) — p, ()] dt

n— 00

(46)
T
< | timsup (9 (o, () = p, ()]
T
< ®(u) —J p(t) dt.
0
O

By combination of the previous lemmata we obtain the
following auxiliary result.

Lemma 4. Let K, 2, K in V. Let the convex Isc proper
functionals ¢, : K, — R epiconvergetodp : K — R on
V. Suppose that the functionals ¢,, are equi-lower bounded in
the sense that there exist ¢, € R, wy € V, such that

¢n (wn) = Gt (wO’wn) >

Then the associated functionals ®, : L*(0,T;K,) — R epi-
converge to O : L*(0,T;K) — R in L*(0,T;V).

vneN, w, € K,. (47)

The details of the proof are omitted.
As a further tool in our stability analysis we recall from
[17] the following technical result.

Lemma 5. Let H be a separable Hilbert space, and let T > 0
be fixed. Then for any sequence {z,},cn converging to some
z in L'(0,T; H) there exists a subsequence {2y Yken> such

that for some set N of zero measure, z,, (t) 5ozt for all
te[0,T]\ N.

4.3. The Stability Result. Before stating the result, some
remarks are in order. In view of the existence theory of
variational inequalities in infinite dimensional spaces (see,
e.g., [15]) the best one can hope for is weak convergence of the
perturbations #” in the general case of nonunique solutions
of the underlying variational inequalities in (DMVI). Weak
convergence can, namely, be readily derived from a posteriori
estimates. However, continuity of a nonlinear map (here g, f)
with respect to weak convergence is a hard requirement. To
circumvent these weak convergence difficulties we apply the
monotonicity method of Browder and Minty. Then as we shall
see below, a stability condition on the maps g” with respect
to the basic Hilbert space norm sufhices.

These weak convergence difficulties also affect f". There-
fore we have to impose a generally strong stability condition
on the nonlinear maps f”. In the situation of linear operators
this condition can be drastically simplified to a stability
condition with respect to convergence in the operator norm,
see [18, Theorem 4.1] in the case ¢ = ¢" = 0.

On the other hand, stronger assumptions on g",
like uniform monotonicity, imply that the solution sets

(K, ¢",G(x",-)) are single valued. Uniform monotonicity
with respect to n moreover entails that the sequence u"
strongly converges. Then the stability assumption for f” can
be relaxed.

Since our stability assumptions pertain the given maps
g", g, not the derived maps G", G, we have a delicate inter-
play between the pointwise almost everywhere formulation
and the integrated formulation of the variational inequality
in the perturbed DMVI and in the limit DMVL

We need the following hypotheses on the convergence of

(f", g") to (f, 9).

(HI) Let z,, 2 zin X and w, 2 win V. Moreover, let
f(z,,w,)~ pin X. Then p = f(z,w).

(H2) All maps g (z, -) for any z € X are monotone. If
z, S oz w S win X, and V respectively, then
g (z,, w,) 5 g(z,w) in V. g is hemicontinuous in
the sense that for any z € X; v,w € V, the real-

valued function r € R — (g(z, v + rw), rw) is lower
semicontinuous.

Now we can state the following stability result.

Theorem 6. Let (x",u") solve (DMVI)(f", 4", K, ¢"; xy,,)-
Suppose that f", f, g", and g, respectively, satisfy (H1), (H2),

respectively. Let x,, 5 x,. Let the convex closed nonvoid sets
K,, Mosco-converge to K in V, and let the convex Isc proper
functions ¢" : K, — R epiconvergeto¢ : K — Ron V.
Suppose that the functions ¢" are equi-lower bounded in the
sense of (47). Assume that x" 5 xin 20, T; X) and that
u' € LZ(O, T; V) converges weakly to u pointwise in V for
a.a. t € (0,T) with |[u"(t)l, < m(t), for all a.a.t € (0,T)
for some m € L*(0,T). Then (x,u) is a solution to (DMVI)

(f. 9. K, ¢5.x0)-

Proof. The proof consists of three parts.
(1) Feasibility: u € #, x(0) = x,.



First we observe that, for any w € L2(0, T; V), in virtue of
Lebesgue’s theorem of dominated convergence,

T
[u",w] = Jo W' ), w(t)dt — [uw]. (48)

Thus " 5 wand u € L*(0,T;V). Moreover directly by
Mosco convergence of {K,,} or invoking Lemma 2 (b), u € &
follows. .

Since by continuous embedding x" — x in C[0, T; X], we
conclude that x™(0) = x,, 5 x(0) = x,.

(2) u solves the variational inequality in (DMVI)(f, g, K,
&5 xp):

u(t) e (K, ¢,g(x(t),)), Vaa.te(0,T). (49)

Fix an arbitrary w € . Then by Lemma 4, there

exist w" € %, such that w" % win L*0,T;V) and
lim sup,,®"(w") < ®(w). Moreover, by extracting eventually
a subsequence, we have by Lemma 5 that also w"(t) strongly
converges to w(t) for a.a. t € (0,T). For any measureable set
A c (0,T) we can define w); € L%(0,T;V) by w), = w" on A,
w) =u" on (0,T) \ A. Hence v/, € %, and by construction
it follows:

j (9" (=" @), u" (), " (&) - " (1))
! (50)

+¢" (W' (1) - ¢" (u" () dt > 0.

Hence a contradiction argument shows that we have point-
wise for a.a. t € (0,T),

(9" (" (), u" (1)), w" (1) - u" (1))
+¢" (W' (1) - ¢" (U (1) = 0.

(51)

By (H2), monotonicity entails pointwise for a.a. t € (0,T) as
follows:

(" (x" (1), w" (1), u" (t) —w" (1))
<¢" (W' (@) - ¢" (W' (1))

Again by (H2), the growth condtion (31), and by epiconver-
gence, we arrive taking the lim sup at

(52)

T
G, w),u—w] = L (gx@®),w®), u(t)—w(t))dt
<O(w)-d(u), YweH.
(53)

Hence by a well-known argument in monotone operator

theory (see, e.g., [16]) we obtain that u € F satisfies the

variational inequality
[Gx,u),w-—u]l+DP(w)-D(u) >0, YweH, (54)

provided that the map G(x,-) is hemicontinuous. But this
follows from the hemicontinuity assumption in (H2) for
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g(x,-) as follows. To show for any y € L0, T; X); v,w €
L*(0,T; V),

lim inf [G (y,v + rw),rw] 2 [G (y,v + row) , rew],  (55)

subtract
Jim [G(y,v),rw] =[G (y,v), row], (56)

and apply Fatou’s lemma to the nonnegative integrand to
conclude that

T
lim infj (gly@®,vt) +rw(t)),rw(t))dt
r—ry Jo
T
> J lim inf (g (y (¢),v(t) + rw (1)), rw (¢))dt  (57)
)

T
> Jo (gly @), v(t) +row(t)),row (t))dt.

(3) (x, u) solves the limit (DMVI)(f, g, K, ¢; x,).

By Lemma 5 applied to {x"} and {x"}, we can extract a
subsequence, such that x"(t) — x(t) and Xx"(t) — x(¢)
strongly in X pointwise for all t € (0,T) \ N,, where N,
is a null set. Fix t € (0,T) \ Ny. Then by assumption, for
all n € N we have x"(t) = f"(x"(¢),u"(t)). Then in virtue
of (H1), x(t) = f(x(t),u(t)) follows, and (x,u) solves the
(DMVID)(f, g, K, ¢; x;). O

When the DMVI has a separable structure, the hypothe-
ses (H1) and (H2) can be expressed more explicitly. Similar to
[9], we have

f(z,w) = f,(2) + B(z) w,
fulzow) = f1,,(2) + B, (z2) w
with linear operators B, B, € L(X, #(V, X)), then B, — B

in the operator norm along with f ,(z,) 5 fi1(z) for z, Sz
implies (H1).
More simply, also with [9], let

(58)

g(z,w) =g, (2) + g, (W),
(59)
gn (Z, LU) = gl,n (Z) + gZ,n (LU) .

Then (H2) is satisfied, if the g,, are monotone, g, is
. . S s N
hemicontinuous, g, ,(z,) = g,(z) forz, — z,and g, ,(w,) —

g, (w) for w, Sw.

In the variational inequalities of mixed form (see in
particular (13)), we find this separable structure. Here in
particular we have for y = [p, ],

_(Z0C) -C\_(fo
gz()’)—<c* 0>—<g0 (60)
with fixed f,, g, and an appropriate linear operator C
with its adjoint C*. Then g, inherits monotonicity from the
nonlinear operator <.
We refrain from deriving a stability result for stationary

problems from Theorem 6. Instead we can refer to [27,
Theorem 3] for a much stronger result.
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5. Some Concluding Remarks

Let us first shortly remark on possible extensions and lim-
itations of the previous stability result. The monotonicity
method extends easily to set-valued operators. Also, mono-
tonicity can be replaced by the more general, however more
abstract notion of (order-) pseudomonotonicity.

Here motivated by the considered non-smooth boundary
value problems we discussed differential variational inequal-
ities in a Hilbert space framework. Let us point out that
differential variational inequalities and their stability using
Mosco convergence can be investigated in more general
reflexive Banach spaces, but not beyond [28].

Finally let us give an outlook of some open directions of
research. In this paper we confined the three-field modelling
to a simplified scalar model of nonsmooth contact in con-
tinuum mechanics. An extension of the three-field duality
approach to such non-smooth boundary value problems
will involve the tensor fields of continuum mechanics. In
particular, the basic Green’s formula (5) has then to be
replaced by the more general “integration by parts” formula
(29, (3.46)].

In this paper, we did not touch the issue of existence
of solutions to DMVI. As shown by Pang and Stewart [8]
and Li et al. respectively, [9], existence of solutions to DMVI
can be obtained from the theory of multivalued differential
equations [30] and the theory of the more general differential
inclusions [31]. However, compactness assumptions as used
in [8, 9] are too strong in infinite dimensions; moreover the
feasible set K defined by the unilateral boundary conditions
is a convex cone, but not compact. For an existence result for
linear differential variational inequalities based on maximal
monotone operator theory, we can refer to [18].

When it comes to numerical approximation, note that
Galerkin approximation with respect to space discretization
leads in the case of higher than piecewise linear approx-
imation; to a nonconforming approximation, that is, the
approximating convex set K is not a subset of the given
convex K. In this situation Mosco convergence (and more
refined Glowinski convergence) is instrumental to arrive at
convergence of Galerkin approximation; see [7, 32]. Thus our
stability result can be seen as an important step towards con-
vergence of semidiscretization methods that provide finite
dimensional differential variational inequalities. Clearly a full
space time discretization needs an additional analysis (see,
e.g., [33]) and is beyond the scope of the present paper.
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