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We will discuss some operator inequalities on chaotic order about several operators, which are generalization of Furuta inequality
and show monotonicity of related Furuta type operator function.

1. Introduction

An operator 𝑇 is said to be positive (denoted by 𝑇 ≥ 0) if
(𝑇𝑥, 𝑥) ≥ 0 for all vectors 𝑥 in a Hilbert space, and 𝑇 is said
to be strictly positive (denoted by 𝑇 > 0) if 𝑇 is positive and
invertible.

Theorem LH (Löwner-Heinz inequality, denoted by (LH)
briefly). If 𝐴 ≥ 𝐵 ≥ 0 holds, then 𝐴

𝛼

≥ 𝐵
𝛼 for any 𝛼 ∈ [0, 1].

This was originally proved in [1, 2] and then in [3].
Although (LH) asserts that 𝐴 ≥ 𝐵 ≥ 0 ensures 𝐴

𝛼

≥ 𝐵
𝛼 for

any 𝛼 ∈ [0, 1], unfortunately 𝐴
𝛼

≥ 𝐵
𝛼 does not always hold

for 𝛼 > 1. The following result has been obtained from this
point of view.

Theorem F (Furuta inequality). If 𝐴 ≥ 𝐵 ≥ 0, then for each
𝑟 ≥ 0,

(i) (𝐵
𝑟/2

𝐴
𝑝

𝐵
𝑟/2

)
1/𝑞

≥ (𝐵
𝑟/2

𝐵
𝑝

𝐵
𝑟/2

)
1/𝑞,

(ii) (𝐴
𝑟/2

𝐴
𝑝

𝐴
𝑟/2

)
1/𝑞

≥ (𝐴
𝑟/2

𝐵
𝑝

𝐴
𝑟/2

)
1/𝑞

hold for 𝑝 ≥ 0 and 𝑞 ≥ 1 with (1 + 𝑟)𝑞 ≥ 𝑝 + 𝑟.

The original proof of Theorem F is shown in [4], an
elementary one-page proof is in [5], and alternative ones are
in [6, 7]. We remark that the domain of the parameters 𝑝, 𝑞,
and 𝑟 inTheorem F is the best possible for the inequalities (i)
and (ii) under the assumption 𝐴 ≥ 𝐵 ≥ 0; see [8].

We write 𝐴 ≫ 𝐵 if log𝐴 ≥ log𝐵 for 𝐴, 𝐵 > 0, which is
called the chaotic order.

Theorem A. For 𝐴, 𝐵 > 0, the following (i) and (ii) hold:

(i) 𝐴 ≫ 𝐵 holds if and only if𝐴𝑟 ≥ (𝐴
𝑟/2

𝐵
𝑝

𝐴
𝑟/2

)
𝑟/(𝑝+𝑟) for

𝑝, 𝑟 ≥ 0;
(ii) 𝐴 ≫ 𝐵 holds if and only if for any fixed 𝛿 ≥ 0,

𝐹
𝐴,𝐵

(𝑝, 𝑟) = 𝐴
−𝑟/2

(𝐴
𝑟/2

𝐵
𝑝

𝐴
𝑟/2

)
(𝛿+𝑟)/(𝑝+𝑟)

𝐴
−𝑟/2 is a de-

creasing function of 𝑝 ≥ 𝛿 and 𝑟 ≥ 0.

(i) inTheorem A is shown in [9, 10], an excellent proof in
[11], a proof in the case 𝑝 = 𝑟 in [12], (ii) in [9, 10], and so
forth.

Lemma B (see [11]). Let 𝐴 be a positive invertible operator,
and let 𝐵 be an invertible operator. For any real number 𝜆,

(𝐵𝐴𝐵
∗

) = 𝐵𝐴
1/2

(𝐴
1/2

𝐵
∗

𝐵𝐴
1/2

)
𝜆−1

𝐴
1/2

𝐵
∗

. (1)

Definition 1. Let 𝐴
𝑛
, 𝐴
𝑛−1

, . . . , 𝐴
2
, 𝐴
1
, 𝐵 ≥ 0, 𝑟

1
, 𝑟
2
, . . . , 𝑟

𝑛
≥

0, and 𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑛
≥ 0 for a natural number 𝑛.

Let 𝐶
𝐴𝑖 ,𝐵

[𝑛] be defined by

𝐶
𝐴𝑖 ,𝐵

[𝑛]

= 𝐴
𝑟𝑛/2

𝑛
{𝐴
𝑟𝑛−1/2

𝑛−1
[⋅ ⋅ ⋅ 𝐴

𝑟3/2

3
{𝐴
𝑟2/2

2
(𝐴
𝑟1/2

1
𝐵
𝑝1𝐴
𝑟1/2

1
)
𝑝2

𝐴
𝑟2/2

2
}

𝑝3

×𝐴
𝑟3/2

3
⋅ ⋅ ⋅ ] 𝐴

𝑟𝑛−1/2

𝑛−1
}

𝑝𝑛

𝐴
𝑟𝑛/2

𝑛
.

(2)
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For example,

𝐶
𝐴𝑖 ,𝐵

[2] = 𝐴
𝑟2/2

2
(𝐴
𝑟1/2

1
𝐵
𝑝1𝐴
𝑟1/2

1
)
𝑝2

𝐴
𝑟2/2

2
,

𝐶
𝐴𝑖 ,𝐵

[4] = 𝐴
𝑟4/2

4
{𝐴
𝑟3/2

3
[𝐴
𝑟2/2

2
(𝐴
𝑟1/2

1
𝐵
𝑝1𝐴
𝑟1/2

1
)
𝑝2

𝐴
𝑟2/2

2
]

𝑝3

×𝐴
𝑟3/2

3
}

𝑝4

𝐴
𝑟4/2

4
.

(3)

Let 𝑞[𝑛] be defined by

𝑞 [𝑛] = {⋅ ⋅ ⋅ [(𝑝
1
+ 𝑟
1
) 𝑝
2
+ 𝑟
2
] 𝑝
3
+ ⋅ ⋅ ⋅ + 𝑟

𝑛−1
} 𝑝
𝑛
+ 𝑟
𝑛
. (4)

For example,

𝑞 [1] = 𝑝
1
+ 𝑟
1
, 𝑞 [2] = (𝑝

1
+ 𝑟
1
) 𝑝
2
+ 𝑟
2
,

𝑞 [4] = {[(𝑝
1
+ 𝑟
1
) 𝑝
2
+ 𝑟
2
] 𝑝
3
+ 𝑟
3
} 𝑝
4
+ 𝑟
4
.

(5)

For the sake of convenience, we define

𝐶
𝐴𝑖 ,𝐵

[0] = 𝐵, 𝑞 [0] = 1, (6)

and these definitions in (6) may be reasonable by (2) and (4).

Lemma 2. For 𝐴
𝑛
, 𝐴
𝑛−1

, . . . , 𝐴
2
, 𝐴
1
, 𝐵 ≥ 0 and any natural

number 𝑛, we have

(i) 𝐶
𝐴𝑖 ,𝐵

[𝑛] = 𝐴
𝑟𝑛/2

𝑛
𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛𝐴
𝑟𝑛/2

𝑛
,

(ii) 𝑞[𝑛] = 𝑞[𝑛 − 1]𝑝
𝑛
+ 𝑟
𝑛
.

Proof. (i) and (ii) can be easily obtained by definitions (2) and
(4).

2. Basic Results Associated with
𝐶
𝐴
𝑖
,𝐵
[𝑛] and 𝑞[𝑛]

Wewill give some operator inequalities on chaotic order, and
Theorem 5 is further extension of Theorem 3.1 in [13].

Lemma 3. If 𝐴 ≫ 𝐵, for 𝑝 ≥ 0 and 𝑟 ≥ 0, then 𝐴 ≫

(𝐴
𝑟/2

𝐵
𝑝

𝐴
𝑟/2

)
1/(𝑝+𝑟).

Proof. Since 𝐴 ≫ 𝐵, we can obtain the following inequality.
𝐴
𝑟

≥ (𝐴
𝑟/2

𝐵
𝑝

𝐴
𝑟/2

)
𝑟/(𝑝+𝑟) holds for 𝑝 ≥ 0 and 𝑟 ≥ 0 by (i)

of Theorem A.
Take the logarithm on both sides of the previous inequal-

ity; that is,

log𝐴
𝑟

≥ log (𝐴
𝑟/2

𝐵
𝑝

𝐴
𝑟/2

)
𝑟/(𝑝+𝑟)

, (7)

therefor we have

𝐴 ≫ (𝐴
𝑟/2

𝐵
𝑝

𝐴
𝑟/2

)
1/(𝑝+𝑟)

. (8)

Theorem 4. If 𝐴
𝑛

≫ 𝐴
𝑛−1

≫ ⋅ ⋅ ⋅ ≫ 𝐴
2

≫ 𝐴
1

≫ 𝐵 and
𝑟
1
, 𝑟
2
, . . . , 𝑟

𝑛
≥ 0, 𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑛
≥ 0 for a natural number 𝑛.

Then the following inequality holds:

𝐴
𝑛
≫ 𝐶
𝐴𝑖 ,𝐵

[𝑛]
1/𝑞[𝑛]

, (9)

where 𝐶
𝐴𝑖 ,𝐵

[𝑛] and 𝑞[𝑛] are defined in (2) and (4).

Proof. We will show (9) by mathematical induction. In the
case 𝑛 = 1.

Since 𝐴
1
≫ 𝐵 implies

𝐴
1
≫ (𝐴

𝑟1/2

1
𝐵
𝑝1𝐴
𝑟1/2

1
)
𝑟1/(𝑝1+𝑟1) (10)

holds for any 𝑝
1
≥ 0 and 𝑟

1
≥ 0 by Lemma 3, whence (9) for

𝑛 = 1.
Assume that (9) holds for a natural number 𝑘 (1 ≤ 𝑘 <

𝑛). We will show that (9) holds 𝑟
1
, 𝑟
2
, . . . , 𝑟

𝑘
, 𝑟
𝑘+1

≥ 0 and
𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑘
, 𝑝
𝑘+1

≥ 0 for 𝑘 + 1.
Put 𝐷 = 𝐴

𝑘+1
, 𝐸 = 𝐴

𝑘
, and 𝐹 = C

𝐴𝑖 ,𝐵
[𝑘]
1/𝑞[𝑘], and (9)

holds for 𝑛 = 𝑘 implying

𝐷 ≫ 𝐸 ≫ 𝐹 > 0. (11)

Equation (11) yields the following by Lemma 3, for 𝑟 ≥ 0 and
𝑝 ≥ 0:

𝐷 ≫ (𝐷
𝑟/2

𝐹
𝑝

𝐷
𝑟/2

)
1/(𝑝+𝑟)

, (12)

that is,

𝐴
𝑘+1

≫ (𝐴
𝑟/2

𝑘+1
𝐶
𝐴𝑖 ,𝐵

[𝑘]
𝑝/𝑞[𝑘]

𝐴
𝑟/2

𝑘+1
)
1/(𝑝+𝑟)

. (13)

Put 𝑟 = 𝑟
𝑘+1

, 𝑝 = 𝑞[𝑘]𝑝
𝑘+1

in (13), then by (ii) of Lemma 2,
the exponential power 1/(𝑝 + 𝑟) of the right hand side of (13)
can be written as follows:

1

𝑝 + 𝑟
=

1

𝑞 [𝑘] 𝑝
𝑘+1

+ 𝑟
𝑘+1

=
1

𝑞 [𝑘 + 1]
, (14)

and we have the following desired (15) by (12) and (13):

𝐴
𝑘+1

≫ {𝐴
𝑟𝑘+1/2

𝑘+1
(𝐶
𝐴𝑖 ,𝐵

[𝑘])
𝑝𝑘+1

𝐴
𝑟𝑘+1/2

𝑘+1
}

1/𝑞[𝑘+1]

= 𝐶
𝐴𝑖 ,𝐵

[𝑘 + 1]
1/𝑞[𝑘+1]

,

(15)

so that (15) shows that (9) holds for 𝑘 + 1.
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Theorem 5. If 𝐴
𝑛

≫ 𝐴
𝑛−1

≫ ⋅ ⋅ ⋅ ≫ 𝐴
2

≫ 𝐴
1

≫ 𝐵 and
𝑟
1
, 𝑟
2
, . . . , 𝑟

𝑛
≥ 0 for a natural number 𝑛. For any fixed 𝛿 ≥ 0,

let 𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑛
be satisfied by

𝑝
1
≥ 𝛿,

𝑝
2
≥

𝛿 + 𝑟
1

𝑝
1
+ 𝑟
1

,

...

𝑝
𝑘
≥

𝛿 + 𝑟
1
+ 𝑟
2
+ ⋅ ⋅ ⋅ + 𝑟

𝑘−1

𝑞 [𝑘 − 1]
,

...

𝑝
𝑛
≥

𝛿 + 𝑟
1
+ 𝑟
2
+ ⋅ ⋅ ⋅ + 𝑟

𝑛−1

𝑞 [𝑛 − 1]
.

(16)

The operator function 𝐼
𝑘
(𝑝
𝑘
, 𝑟
𝑘
) for any natural number 𝑘 such

that 1 ≤ 𝑘 ≤ 𝑛 is defined by

𝐼
𝑘
(𝑝
𝑘
, 𝑟
𝑘
) = 𝐴
−𝑟𝑘/2

𝑘
𝐶
𝐴𝑖 ,𝐵

[𝑘]
(𝛿+𝑟1+𝑟2+⋅⋅⋅+𝑟𝑘)/𝑞[𝑘]𝐴

−𝑟𝑘/2

𝑘
. (17)

Then the following inequality holds:

𝐴
𝑟𝑘−1/2

𝑘−1
𝐼
𝑘−1

(𝑝
𝑘−1

, 𝑟
𝑘−1

) 𝐴
𝑟𝑘−1/2

𝑘−1
≥ 𝐼
𝑘
(𝑝
𝑘
, 𝑟
𝑘
) (18)

for every natural number 𝑘 such that 1 ≤ 𝑘 ≤ 𝑛, where𝐶
𝐴𝑖 ,𝐵

[𝑛]

and 𝑞[𝑛] are defined in (2) and (4).

Proof. Since 𝐶
𝐴𝑖 ,𝐵

[0] = 𝐵, 𝑞[0] = 1 in (6), we may define
𝐼
0
(𝑝
0
, 𝑟
0
) = 𝐵
𝛿 for 𝑝

0
= 𝑟
0
= 0.

Because 𝐴
1
≫ 𝐵, then for any fixed 𝛿 ≥ 0,

𝐵
𝛿

≥ 𝐴
−𝑟1/2

1
(𝐴
𝑟1/2

1
𝐵
𝑝1𝐴
𝑟1/2

1
)
(𝛿+𝑟1)/(𝑝1+𝑟1)

𝐴
−𝑟1/2

1

for 𝑝
1
≥ 𝛿, 𝑟

1
≥ 0,

(19)

since 𝐹
𝐴1 ,𝐵

(𝛿, 𝑟
0
) ≥ 𝐹
𝐴1,𝐵

(𝑝
1
, 𝑟
1
) holds by (ii) of Theorem A.

And (19) can be expressed as

𝐵
𝛿

= 𝐴
𝑟0/2

0
𝐼
0
(𝑝
0
, 𝑟
0
) 𝐴
𝑟0/2

0
≥ 𝐼
1
(𝑝
1
, 𝑟
1
) . (20)

We can apply Theorem 4, and we have the following (21) for
any natural number 𝑘 such that 1 ≤ 𝑘 ≤ 𝑛:

𝐴
𝑘+1

≫ 𝐴
𝑘
≫ 𝐶
𝐴𝑖 ,𝐵

[𝑘]
1/𝑞[𝑘]

. (21)

Since 𝑋 ≫ 𝑌 implies that 𝑋𝑡 ≫ 𝑌
𝑡 holds for any 𝑡 ≥ 0, (21)

ensures

𝐴
𝛿+𝑟1+𝑟2+⋅⋅⋅+𝑟𝑘

𝑘+1
≫ 𝐶
𝐴𝑖 ,𝐵

[𝑘]
(𝛿+𝑟1+𝑟2+⋅⋅⋅+𝑟𝑘)/𝑞[𝑘]. (22)

Putting 𝐴 = 𝐴
𝛿+𝑟1+𝑟2+⋅⋅⋅+𝑟𝑘

𝑘+1
, 𝐵
1
= 𝐶
𝐴𝑖 ,𝐵

[𝑘]
(𝛿+𝑟1+𝑟2+⋅⋅⋅+𝑟𝑘)/𝑞[𝑘] and

applying (19) for 𝛿 = 1 and 𝐴 ≫ 𝐵
1
, we have

𝐵
1
≥ 𝐴
−𝑟/2

(𝐴
𝑟/2

𝐵
𝑝

1
𝐴
𝑟/2

)
(1+𝑟)/(𝑝+𝑟)

𝐴
−𝑟/2 (23)

holds for 𝑝 ≥ 1 and 𝑟 ≥ 0.

Putting 𝑟
𝑘+1

= 𝑟(𝛿 + 𝑟
1
+ 𝑟
2
+ ⋅ ⋅ ⋅ + 𝑟

𝑘
) in (23), then (23)

can be rewritten by

𝐵
1
≥ 𝐴
−𝑟𝑘+1/2

𝑘+1
(𝐴
𝑟𝑘+1/2

𝑘+1
𝐶
𝐴𝑖 ,𝐵

[𝑘]
((𝛿+𝑟1+𝑟2+⋅⋅⋅+𝑟𝑘)/𝑞[𝑘])𝑝

× 𝐴
𝑟𝑘+1/2

𝑘+1
)
(1+𝑟)/(𝑝+𝑟)

𝐴
−𝑟𝑘+1/2

𝑘+1
.

(24)

Putting 𝑝 = (𝑞[𝑘]𝑝
𝑘+1

)/(𝛿 + 𝑟
1
+ 𝑟
2
+ ⋅ ⋅ ⋅ + 𝑟

𝑘
) ≥ 1, since

𝑝
𝑘+1

≥ (𝛿 + 𝑟
1
+ 𝑟
2
+ ⋅ ⋅ ⋅ + 𝑟

𝑘
)/𝑞[𝑘] in (16), then we have

𝐴
𝑟𝑘/2

𝑘
𝐼
𝑘
(𝑝
𝑘
, 𝑟
𝑘
) 𝐴
𝑟𝑘/2

𝑘

= 𝐵
1
= 𝐶
𝐴𝑖 ,𝐵

[𝑘]
(𝛿+𝑟1+𝑟2+⋅⋅⋅+𝑟𝑘)/𝑞[𝑘]

≥ 𝐴
−𝑟𝑘+1/2

𝑘+1

× (𝐴
𝑟𝑘+1/2

𝑘+1
𝐶
𝐴𝑖 ,𝐵

[𝑘]
((𝛿+𝑟1+𝑟2+⋅⋅⋅+𝑟𝑘)/𝑞[𝑘])𝑝𝐴

𝑟𝑘+1/2

𝑘+1
)
(1+𝑟)/(𝑝+𝑟)

× 𝐴
−𝑟𝑘+1/2

𝑘+1

= 𝐴
−𝑟𝑘+1/2

𝑘+1
𝐶
𝐴𝑖 ,𝐵

[𝑘 + 1]
(𝛿+𝑟1+𝑟2+⋅⋅⋅+𝑟𝑘+𝑟𝑘+1)/(𝑞[𝑘+1])𝐴

−𝑟𝑘+1/2

𝑘+1

= 𝐼
𝑘+1

(𝑝
𝑘+1

, 𝑟
𝑘+1

) ,

(25)

and we have (18) for 𝑘 such that 1 ≤ 𝑘 ≤ 𝑛 by (25) and (20)
since (20) means (18) for 𝑘 = 1.

Corollary 6. If 𝐴
𝑛

≫ 𝐴
𝑛−1

≫ ⋅ ⋅ ⋅ ≫ 𝐴
2

≫ 𝐴
1

≫ 𝐵 and
𝑟
1
, 𝑟
2
, . . . , 𝑟

𝑛
≥ 0 for a natural number 𝑛. For any fixed 𝛿 ≥ 0,

let 𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑛
be satisfied by (16).

Then the following inequalities hold:

𝐵
𝛿

≥ 𝐴
−𝑟1/2

1
(𝐴
𝑟1/2

1
𝐵
𝑝1𝐴
𝑟1/2

1
)
(𝛿+𝑟1)/(𝑝1+𝑟1)

𝐴
−𝑟1/2

1

≥ 𝐴
−𝑟1/2

1
𝐴
−𝑟2/2

2

× [𝐴
𝑟2/2

2
(𝐴
𝑟1/2

1
𝐵
𝑝1𝐴
𝑟1/2

1
)
𝑝2

𝐴
𝑟2/2

2
]

(𝛿+𝑟1+𝑟2)/((𝑝1+𝑟1)𝑝2+𝑟2)

× 𝐴
−𝑟2/2

2
𝐴
−𝑟1/2

1

...

≥ 𝐴
−𝑟1/2

1
𝐴
−𝑟2/2

2
𝐴
−𝑟3/3

3
⋅ ⋅ ⋅ 𝐴
−𝑟𝑛−1/2

𝑛−1
𝐴
−𝑟𝑛/2

𝑛

× 𝐶
𝐴𝑖 ,𝐵

[𝑛]
(𝛿+𝑟1+𝑟2+⋅⋅⋅+𝑟𝑛)/𝑞[𝑛]

× 𝐴
−𝑟𝑛/2

𝑛
𝐴
−𝑟𝑛−1/2

𝑛−1
⋅ ⋅ ⋅ 𝐴
−𝑟3/3

3
𝐴
−𝑟2/2

2
𝐴
−𝑟1/2

1
,

(26)

where 𝐶
𝐴𝑖 ,𝐵

[𝑛], 𝑞[𝑛], and 𝐼
𝑘
(𝑝
𝑘
, 𝑟
𝑘
) (1 ≤ 𝑘 ≤ 𝑛) are defined in

(2), (4), and (17).
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Proof. Applying (18) of Theorem 5 for 𝑘 such that 1 ≤ 𝑘 ≤ 𝑛,
we have

𝐵
𝛿

= 𝐴
𝑟0/2𝐼
0
(𝑝
0
, 𝑟
0
) 𝐴
𝑟0/2

≥ 𝐼
1
(𝑝
1
, 𝑟
1
)

= 𝐴
−𝑟1/2

1
(𝐴
𝑟1/2

1
𝐵
𝑝1𝐴
𝑟1/2

1
)
(𝛿+𝑟1)/(𝑝1+𝑟1)

𝐴
−𝑟1/2

1

≥ 𝐴
−𝑟1/2

1
𝐼
2
(𝑝
2
, 𝑟
2
) 𝐴
−𝑟1/2

1

= 𝐴
−𝑟1/2

1
𝐴
−𝑟2/2

2
[𝐴
𝑟2/2

2
(𝐴
𝑟1/2

1
𝐵
𝑝1𝐴
𝑟1/2

1
)
𝑝2

× 𝐴
𝑟2/2

2
]

(𝛿+𝑟1+𝑟2)/((𝑝1+𝑟1)𝑝2+𝑟2)

× 𝐴
−𝑟2/2

2
𝐴
−𝑟1/2

1

...

≥ 𝐴
−𝑟1/2

1
𝐴
−𝑟2/2

2
𝐴
−𝑟3/3

3
⋅ ⋅ ⋅ 𝐴
−𝑟𝑛−1/2

𝑛−1
𝐼
𝑛
(𝑝
𝑛
, 𝑟
𝑛
)

× 𝐴
−𝑟𝑛−1/2

𝑛−1
⋅ ⋅ ⋅ 𝐴
−𝑟3/3

3
𝐴
−𝑟2/2

2
𝐴
−𝑟1/2

1

= 𝐴
−𝑟1/2

1
𝐴
−𝑟2/2

2
𝐴
−𝑟3/3

3
⋅ ⋅ ⋅ 𝐴
−𝑟𝑛−1/2

𝑛−1
𝐴
−𝑟𝑛/2

𝑛

× 𝐶
𝐴𝑖 ,𝐵

[𝑛]
(𝛿+𝑟1+𝑟2+⋅⋅⋅+𝑟𝑛)/𝑞[𝑛]

× 𝐴
−𝑟𝑛/2

𝑛
𝐴
−𝑟𝑛−1/2

𝑛−1
⋅ ⋅ ⋅ 𝐴
−𝑟3/3

3
𝐴
−𝑟2/2

2
𝐴
−𝑟1/2

1
.

(27)

3. Monotonicity Property on
Operator Functions

We would like to emphasize that the condition of Theorem 7
is stronger than Theorem 5, and moreover when we discuss
monotonicity property on operator functions, we can only
apply Theorem 7.

Theorem 7. If 𝐴
𝑛

≫ 𝐴
𝑛−1

≫ ⋅ ⋅ ⋅ ≫ 𝐴
2

≫ 𝐴
1

≫ 𝐵 and
𝑟
1
, 𝑟
2
, . . . , 𝑟

𝑛
≥ 0, 𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑛
≥ 0 for a natural number 𝑛.

Then the following inequality holds:

𝐴
𝑟𝑛

𝑛
≥ 𝐶
𝐴𝑖 ,𝐵

[𝑛]
𝑟𝑛/𝑞[𝑛], (28)

where 𝐶
𝐴𝑖 ,𝐵

[𝑛] and 𝑞[𝑛] are defined in (2) and (4).

Proof. We will show (28) by mathematical induction. In the
case 𝑛 = 1.

Since 𝐴
1
≫ 𝐵 implies

𝐴
1
≥ (𝐴
𝑟1/2

1
𝐵
𝑝1𝐴
𝑟1/2

1
)
𝑟1/(𝑝1+𝑟1) (29)

holds for any, 𝑝
1
≥ 0 and 𝑟

1
≥ 0 by (i) of Theorem A, whence

(28) for 𝑛 = 1.
Assume that (28) holds for a natural number 𝑘 (1 ≤

𝑘 < 𝑛). We will show (28) for 𝑟
1
, 𝑟
2
, . . . , 𝑟

𝑘+1
≥ 0 and

𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑘
, 𝑝
𝑘+1

≥ 0 for 𝑘 + 1.

We can obtain the following inequality from the hypoth-
esis (28) for the case 𝑛 = 𝑘:

𝐴
𝑟𝑘

𝑘
≥ 𝐶
𝐴𝑖 ,𝐵

[𝑘]
𝑟𝑘/𝑞[𝑘], (30)

hence we have 𝐴
𝑘+1

≫ 𝐴
𝑘

≫ 𝐶
𝐴𝑖 ,𝐵

[𝑘]
1/𝑞[𝑘], and (i) of

Theorem A ensures

𝐴
𝑟

𝑘+1
≥ (𝐴
𝑟/2

𝑘+1
𝐶
𝐴𝑖 ,𝐵

[𝑘]
𝑝/𝑞[𝑘]

𝐴
𝑟/2

𝑘+1
)
𝑟/(𝑝+𝑟)

for 𝑝, 𝑟 ≥ 0. (31)

Putting 𝑟 = 𝑟
𝑘+1

and𝑝 = 𝑞[𝑘]𝑝
𝑘+1

, thenwe have the following
inequality:

𝐴
𝑟𝑘+1

𝑘+1
≥ (𝐴
𝑟𝑘+1/2

𝑘+1
𝐶
𝐴𝑖 ,𝐵

[𝑘]
𝑝𝑘+1𝐴
𝑟𝑘+1/2

𝑘+1
)
𝑟𝑘+1/(𝑞[𝑘]𝑝𝑘+1+𝑟𝑘+1)

= 𝐶
𝐴𝑖 ,𝐵

[𝑘 + 1]
𝑟𝑘+1/𝑞[𝑘+1],

(32)

so that (32) shows (28) for 𝑘 + 1.

Theorem 8. If 𝐴
𝑛

≫ 𝐴
𝑛−1

≫ ⋅ ⋅ ⋅ ≫ 𝐴
2

≫ 𝐴
1

≫ 𝐵 and
𝑟
1
, 𝑟
2
, . . . , 𝑟

𝑛
≥ 0 for a natural number 𝑛. For any fixed 𝛿 ≥ 0,

let 𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑛
be satisfied by (16).

Then

𝐼
𝑛
(𝑝
𝑛
, 𝑟
𝑛
) = 𝐴
−𝑟𝑛/2

𝑛
𝐶
𝐴𝑖 ,𝐵

[𝑛]
(𝛿+𝑟1+𝑟2+⋅⋅⋅+𝑟𝑛)/𝑞[𝑛]𝐴

−𝑟𝑛/2

𝑛
(33)

is a decreasing function of both 𝑟
𝑛
≥ 0 and 𝑝

𝑛
which satisfies

𝑝
𝑛
≥

𝛿 + 𝑟
1
+ 𝑟
2
+ ⋅ ⋅ ⋅ + 𝑟

𝑛−1

𝑞 [𝑛 − 1]
, (34)

where 𝐶
𝐴𝑖 ,𝐵

[𝑛] and 𝑞[𝑛] are defined in (2) and (4).

Proof. Since the condition (16) with 𝛿 ≥ 0 suffices (28) in
Theorem 7, we have the following inequality by Theorem 7;
see (28).

We state the following important inequality (35) for the
forthcoming discussion which is the inequality in (16):

𝑞 [𝑛] = 𝑞 [𝑛 − 1] 𝑝
𝑛
+ 𝑟
𝑛
≥ 𝛿 + 𝑟

1
+ 𝑟
2
+ ⋅ ⋅ ⋅ + 𝑟

𝑛−1
+ 𝑟
𝑛

(35)

because the inequality in (35) follows by (ii) of Lemma 2, and
the inequality follows by

𝑞 [𝑛 − 1] 𝑝
𝑛
≥ 𝛿 + 𝑟

1
+ 𝑟
2
+ ⋅ ⋅ ⋅ + 𝑟

𝑛−1
(36)

obtained by (34).
(a) Proof of the result that 𝐼

𝑛
(𝑝
𝑛
, 𝑟
𝑛
) is a decreasing

function of 𝑝
𝑛
.

Without loss of generality, we can assume that 𝑝
𝑛

> 0.
We can obtain the following inequality by (28) and by (i) of
Lemma 2:

𝐴
𝑟𝑛

𝑛
≥ 𝐶
𝐴𝑖 ,𝐵

[𝑛]
𝑟𝑛/𝑞[𝑛] = (𝐴

𝑟𝑛/2

𝑛
𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛𝐴
𝑟𝑛/2

𝑛
)
𝑟𝑛/𝑞[𝑛]

= 𝐴
𝑟𝑛/2

𝑛
𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛/2

× (𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛/2𝐴
𝑟𝑛

𝑛
𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛/2)
(𝑟𝑛−𝑞[𝑛])/𝑞[𝑛]

× 𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛/2𝐴
𝑟𝑛/2

𝑛
,

(37)
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and (37) implies

(𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛/2𝐴
𝑟𝑛

𝑛
𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛/2)
(𝑞[𝑛]−𝑟𝑛)/𝑞[𝑛]

≥ 𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛 .

(38)

Put 𝛼 = 𝜔/𝑝
𝑛
∈ [0, 1] for 𝑝

𝑛
≥ 𝜔 ≥ 0, then we raise each side

of (38) to the power 𝛼 = 𝜔/𝑝
𝑛
∈ [0, 1], then

(𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛/2𝐴
𝑟𝑛

𝑛
𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛/2)
((𝑞[𝑛]−𝑟𝑛)𝜔)/(𝑞[𝑛]𝑝𝑛)

≥ 𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝜔

.

(39)

Whence we have
𝐼
𝑛
(𝑝
𝑛
, 𝑟
𝑛
)

= 𝐴
−𝑟𝑛/2

𝑛
(𝐴
𝑟𝑛/2

𝑛
𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛𝐴
𝑟𝑛/2

𝑛
)
(𝛿+𝑟1+𝑟2+⋅⋅⋅+𝑟𝑛)/𝑞[𝑛]

𝐴
−𝑟𝑛/2

𝑛

= 𝐴
−𝑟𝑛/2

𝑛

× { (𝐴
𝑟𝑛/2

𝑛
𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛

×𝐴
𝑟𝑛/2

𝑛
)
(𝑞[𝑛]+𝑞[𝑛−1]𝜔)/𝑞[𝑛]

}

(𝛿+𝑟1+𝑟2+⋅⋅⋅+𝑟𝑛)/(𝑞[𝑛]+𝑞[𝑛−1]𝜔)

× 𝐴
−𝑟𝑛/2

𝑛

= 𝐴
−𝑟𝑛/2

𝑛
{𝐴
𝑟𝑛/2

𝑛
𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛/2

× (𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛/2𝐴
𝑟𝑛

𝑛

×𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛/2)
(𝑞[𝑛−1]𝜔)/𝑞[𝑛]

× 𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛/2𝐴
𝑟𝑛/2

𝑛
}
(𝛿+𝑟1+𝑟2+⋅⋅⋅+𝑟𝑛)/(𝑞[𝑛]+𝑞[𝑛−1]𝜔)

× 𝐴
−𝑟𝑛/2

𝑛
by Lemma B

= 𝐴
−𝑟𝑛/2

𝑛
{𝐴
𝑟𝑛/2

𝑛
𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛/2

× (𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛/2𝐴
𝑟𝑛

𝑛

× 𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛/2)
((𝑞[𝑛]−𝑟𝑛)𝜔)/(𝑞[𝑛]𝑝𝑛)

× 𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛/2

× 𝐴
𝑟𝑛/2

𝑛
}
(𝛿+𝑟1+𝑟2+⋅⋅⋅+𝑟𝑛)/(𝑞[𝑛]+𝑞[𝑛−1]𝜔)

𝐴
−𝑟𝑛/2

𝑛

≥ 𝐴
−𝑟𝑛/2

𝑛
(𝐴
𝑟𝑛/2

𝑛
𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛/2𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝜔

×𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛/2𝐴
𝑟𝑛/2

𝑛
)
(𝛿+𝑟1+𝑟2+⋅⋅⋅+𝑟𝑛)/(𝑞[𝑛−1](𝑝𝑛+𝜔)+𝑟𝑛)

× 𝐴
−𝑟𝑛/2

𝑛

= 𝐼
𝑛
(𝑝
𝑛
+ 𝜔, 𝑟
𝑛
) ,

(40)

and the last inequality holds by LH because (39) and (𝛿 + 𝑟
1
+

𝑟
2
+ ⋅ ⋅ ⋅ + 𝑟

𝑛
)/(𝑞[𝑛 − 1](𝑝

𝑛
+ 𝜔) + 𝑟

𝑛
) ∈ [0, 1] which is ensured

by (35) and 𝑞[𝑛] + 𝑞[𝑛 − 1]𝜔 = 𝑞[𝑛 − 1](𝑝
𝑛
+ 𝜔) + 𝑟

𝑛
≥ 𝑞[𝑛]

by (4), so that 𝐼
𝑛
(𝑝
𝑛
, 𝑟
𝑛
) is a decreasing function of 𝑝

𝑛
.

(b) Proof of the result that 𝐼
𝑛
(𝑝
𝑛
, 𝑟
𝑛
) is a decreasing

function of 𝑟
𝑛
.

Without loss of generality, we can assume that 𝑟
𝑛

> 0.
Raise each side of (28) to the power 𝜇/𝑟

𝑛
∈ [0, 1] for 𝑟

𝑛
≥ 𝜇 ≥

0 by LH, then

𝐴
𝜇

𝑛
≥ (𝐴
𝑟𝑛/2

𝑛
𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛𝐴
𝑟𝑛/2

𝑛
)
𝜇/𝑞[𝑛]

. (41)

We state the following inequality by (ii) of Lemma 3 and (35):

𝑞 [𝑛] − (𝛿 + 𝑟
1
+ 𝑟
2
+ ⋅ ⋅ ⋅ + 𝑟

𝑛
)

= 𝑞 [𝑛 − 1] 𝑝
𝑛
+ 𝑟
𝑛
− (𝛿 + 𝑟

1
+ 𝑟
2
+ ⋅ ⋅ ⋅ + 𝑟

𝑛
)

= 𝑞 [𝑛 − 1] 𝑝
𝑛
− (𝛿 + 𝑟

1
+ 𝑟
2
+ ⋅ ⋅ ⋅ + 𝑟

𝑛−1
) ≥ 0.

(42)

Then we have

𝐼
𝑛
(𝑝
𝑛
, 𝑟
𝑛
)

= 𝐴
−𝑟𝑛/2

𝑛
𝐶
𝐴𝑖 ,𝐵

[𝑛]
(𝛿+𝑟1+𝑟2+⋅⋅⋅+𝑟𝑛)/𝑞[𝑛]𝐴

−𝑟𝑛/2

𝑛

= 𝐴
−𝑟𝑛/2

𝑛
(𝐴
𝑟𝑛/2

𝑛
𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛𝐴
𝑟𝑛/2)
(𝛿+𝑟1+𝑟2+⋅⋅⋅+𝑟𝑛)/𝑞[𝑛]

𝐴
−𝑟𝑛/2

𝑛

= 𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛/2

× (𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛/2𝐴
𝑟𝑛

𝑛

× 𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛/2)
(𝛿+𝑟1+𝑟2+⋅⋅⋅+𝑟𝑛−𝑞[𝑛])/𝑞[𝑛]

𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛/2

= 𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛/2

× { (𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛/2𝐴
𝑟𝑛

𝑛

×𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛/2)
(𝑞[𝑛]+𝜇)/𝑞[𝑛]

}

(𝛿+𝑟1+𝑟2+⋅⋅⋅+𝑟𝑛−𝑞[𝑛])/(𝑞[𝑛]+𝜇)

× 𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛/2

= 𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛/2

× {𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛/2𝐴
𝑟𝑛/2

𝑛

× (𝐴
𝑟𝑛/2

𝑛
𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛𝐴
𝑟𝑛/2

𝑛
)
𝜇/𝑞[𝑛]

𝐴
𝑟𝑛/2

𝑛

×𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛/2}
(𝛿+𝑟1+𝑟2+⋅⋅⋅+𝑟𝑛−𝑞[𝑛])/(𝑞[𝑛]+𝜇)

× 𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛/2



6 Abstract and Applied Analysis

≥ 𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛/2

× {𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛/2𝐴
𝑟𝑛+𝜇

𝑛

× 𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛/2}
(𝛿+𝑟1+𝑟2+⋅⋅⋅+𝑟𝑛−𝑞[𝑛])/(𝑞[𝑛]+𝜇)

× 𝐶
𝐴𝑖 ,𝐵

[𝑛 − 1]
𝑝𝑛/2

= 𝐼
𝑛
(𝑝
𝑛
, 𝑟
𝑛
+ 𝜇) ,

(43)

and the last inequality holds by LH because (41) and

𝛿 + 𝑟
1
+ 𝑟
2
+ ⋅ ⋅ ⋅ + 𝑟

𝑛
− 𝑞 [𝑛]

𝑞 [𝑛] + 𝜇

= −
𝑞 [𝑛] − (𝛿 + 𝑟

1
+ 𝑟
2
+ ⋅ ⋅ ⋅ + 𝑟

𝑛
)

𝑞 [𝑛] + 𝜇
∈ [−1, 0] ,

(44)

so that 𝐼
𝑘
(𝑝
𝑘
, 𝑟
𝑘
) is a decreasing function of 𝑟

𝑛
.
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