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We introduce a new iterative scheme called Jungck-CR iterative scheme and study the stability and strong convergence of this
iterative scheme for a pair of nonself-mappings using a certain contractive condition. Also, convergence speed comparison and
applications of Jungck-type iterative schemes will be shown through examples.

1. Introduction and Preliminaries

Let𝑋 be a Banach space,𝑌 an arbitrary set, and 𝑆, 𝑇 : 𝑌 → 𝑋

such that 𝑇(𝑌) ⊆ 𝑆(𝑌). For 𝑥
0
∈ 𝑌, consider the following

iterative scheme:

𝑆𝑥
𝑛+1

= 𝑇𝑥
𝑛
, 𝑛 = 0, 1, . . . . (1)

This scheme is called Jungck iterative scheme and was
essentially introduced by Jungck [1] in 1976 and it becomes
the Picard iterative scheme when 𝑆 = 𝐼

𝑑
(identity mapping)

and 𝑌 = 𝑋.
For 𝛼
𝑛
∈ [0, 1], Singh et al. [2] defined the Jungck-Mann

iterative scheme as

𝑆𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑆𝑥
𝑛
+ 𝛼
𝑛
𝑇𝑥
𝑛
. (2)

For 𝛼
𝑛
, 𝛽
𝑛
, 𝛾
𝑛
∈ [0, 1], Olatinwo defined the Jungck-Ishikawa

[3] (see also [4, 5]) and Jungck-Noor [6] iterative schemes as

𝑆𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑆𝑥
𝑛
+ 𝛼
𝑛
𝑇𝑦
𝑛
,

𝑆𝑦
𝑛
= (1 − 𝛽

𝑛
) 𝑆𝑥
𝑛
+ 𝛽
𝑛
𝑇𝑥
𝑛
,

(3)

𝑆𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑆𝑥
𝑛
+ 𝛼
𝑛
𝑇𝑦
𝑛
,

𝑆𝑦
𝑛
= (1 − 𝛽

𝑛
) 𝑆𝑥
𝑛
+ 𝛽
𝑛
𝑇𝑧
𝑛
,

𝑆𝑧
𝑛
= (1 − 𝛾

𝑛
) 𝑆𝑥
𝑛
+ 𝛾
𝑛
𝑇𝑥
𝑛
,

(4)

respectively.

Chugh and Kumar [7] defined the Jungck-SP iterative
scheme as

𝑆𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑆𝑦
𝑛
+ 𝛼
𝑛
𝑇𝑦
𝑛
,

𝑆𝑦
𝑛
= (1 − 𝛽

𝑛
) 𝑆𝑧
𝑛
+ 𝛽
𝑛
𝑇𝑧
𝑛
,

𝑆𝑧
𝑛
= (1 − 𝛾

𝑛
) 𝑆𝑥
𝑛
+ 𝛾
𝑛
𝑇𝑥
𝑛
,

(5)

where {𝛼
𝑛
}, {𝛽
𝑛
}, and {𝛾

𝑛
} are sequences of positive numbers

in [0, 1].

Remark 1. If 𝑋 = 𝑌 and 𝑆 = 𝐼
𝑑
(identity mapping), then the

Jungck-SP (5), Jungck-Noor (4), Jungck-Ishikawa (3), and the
Jungck-Mann (2) iterative schemes, respectively, become the
SP [8], Noor [9], Ishikawa [10] and the Mann [11] iterative
schemes.

Jungck [1] used the iterative scheme (1) to approximate
the common fixed points of the mappings 𝑆 and 𝑇 satisfying
the following Jungck contraction:

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝛼𝑑 (𝑆𝑥, 𝑆𝑦) , 0 ≤ 𝛼 < 1. (6)

Olatinwo [3] used the following more general contractive
definition than (6) to prove the stability and strong conver-
gence results for the Jungck-Ishikawa iteration process: there
exists a real number 𝑎 ∈ [0, 1) and a monotone increasing
function 𝜙: 𝑅+ → 𝑅

+ such that 𝜙(0) = 0 and for all 𝑥, 𝑦 ∈ 𝑌,
we have

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩 ≤ 𝜙 (‖𝑆𝑥 − 𝑇𝑥‖) + 𝑎

󵄩󵄩󵄩󵄩𝑆𝑥 − 𝑆𝑦
󵄩󵄩󵄩󵄩 . (7)
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Olatinwo [6] used the convergences of Jungck-Noor iterative
scheme (4) to approximate the coincidence points (not com-
mon fixed points) of some pairs of generalized contractive-
like operators with the assumption that one of each of the
pairs of maps is injective.

Motivated by the above facts, for 𝛼
𝑛
, 𝛽
𝑛
, and 𝛾

𝑛
∈ [0, 1],

we introduce the following iterative scheme:

𝑆𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑆𝑦
𝑛
+ 𝛼
𝑛
𝑇𝑦
𝑛
,

𝑆𝑦
𝑛
= (1 − 𝛽

𝑛
) 𝑇𝑥
𝑛
+ 𝛽
𝑛
𝑇𝑧
𝑛
,

𝑆𝑧
𝑛
= (1 − 𝛾

𝑛
) 𝑆𝑥
𝑛
+ 𝛾
𝑛
𝑇𝑥
𝑛

(JCR)

and call it Jungck-CR iterative scheme.

Remark 2. Putting 𝛼
𝑛
= 0 and 𝛼

𝑛
= 0, 𝛽

𝑛
= 1 in Jungck-CR

iterative scheme, we get Jungck versions of Agarwal et al. [12]
and Sahu and Petruşel [13] iterative schemes, respectively, as
defined below:

𝑆𝑥
𝑛+1

= (1 − 𝛽
𝑛
) 𝑇𝑥
𝑛
+ 𝛽
𝑛
𝑇𝑦
𝑛
,

𝑆𝑦
𝑛
= (1 − 𝛾

𝑛
) 𝑆𝑥
𝑛
+ 𝛾
𝑛
𝑇𝑥
𝑛
,

(JA)

𝑆𝑥
𝑛+1

= 𝑇𝑦
𝑛
,

𝑆𝑦
𝑛
= (1 − 𝛾

𝑛
) 𝑆𝑥
𝑛
+ 𝛾
𝑛
𝑇𝑥
𝑛
.

(JS)

We will need the following definitions and lemma.

Definition 3 (see [14]). Let {𝑢
𝑛
} and {V

𝑛
} be two fixed-point

iteration procedures that converge to the same fixed point 𝑝
on a normed space𝑋 such that the error estimates

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ≤ 𝑎𝑛,

󵄩󵄩󵄩󵄩V𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ≤ 𝑏𝑛

(8)

are available, where {𝑎
𝑛
} and {𝑏

𝑛
} are two sequences of positive

numbers (converging to zero). If {𝑎
𝑛
} converge faster than

{𝑏
𝑛
}, then we say that {𝑢

𝑛
} converges faster to 𝑝 than {V

𝑛
}.

Definition 4 (see [15]). Suppose that {𝑎
𝑛
} and {𝑏

𝑛
} are two real

convergent sequences with limits 𝑎 and 𝑏, respectively. Then,
{𝑎
𝑛
} is said to converge faster than {𝑏

𝑛
} if

lim
𝑛→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎
𝑛
− 𝑎

𝑏
𝑛
− 𝑏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0. (9)

Definition 5 (see [16, 17]). Let 𝑓 and 𝑔 be two self-maps on
𝑋. A point 𝑥 in 𝑋 is called (1) a fixed point of 𝑓 if 𝑓(𝑥) = 𝑥;
(2) coincidence point of a pair (𝑓, 𝑔) if 𝑓𝑥 = 𝑔𝑥; (3) common
fixed point of a pair (𝑓, 𝑔) if 𝑥 = 𝑓𝑥 = 𝑔𝑥. If 𝑤 = 𝑓𝑥 = 𝑔𝑥

for some 𝑥 in 𝑋, then 𝑤 is called a point of coincidence of 𝑓
and 𝑔. A pair (𝑓, 𝑔) is said to be weakly compatible if 𝑓 and 𝑔
commute at their coincidence points.

Lemma 6 (see [18]). If 𝛿 is a real number such that 0 ≤

𝛿 < 1 and {∈
𝑛
}
∞

𝑛=0
is a sequence of positive numbers such that

lim
𝑛→∞

∈
𝑛
= 0, then for any sequence of positive numbers

{𝑢
𝑛
}
∞

𝑛=0
satisfying

𝑢
𝑛+1

≤ 𝛿𝑢
𝑛
+ ∈
𝑛
, 𝑛 = 0, 1, 2, . . . (10)

one has lim
𝑛→∞

𝑢
𝑛
= 0.

Definition 7 (see [2]). Let 𝑆, 𝑇 : 𝑌 → 𝑋 be non-self-
operators for an arbitrary set 𝑌 such that 𝑇(𝑌) ⊆ 𝑆(𝑌) and 𝑝
a point of coincidence of 𝑆 and 𝑇. Let {𝑆𝑥

𝑛
}
∞

𝑛=0
⊂ 𝑋, be the

sequence generated by an iterative procedure
𝑆𝑥
𝑛+1

= 𝑓 (𝑇, 𝑥
𝑛
) , 𝑛 = 0, 1 . . . , (11)

where 𝑥
0
∈ 𝑋 is the initial approximation and𝑓 is some func-

tion. Suppose that {𝑆𝑥
𝑛
}
∞

𝑛=0
converges to 𝑝. Let {𝑆𝑦

𝑛
}
∞

𝑛=0
⊂ 𝑋

be an arbitrary sequence and set 𝜀
𝑛
= 𝑑(𝑆𝑦

𝑛
, 𝑓(𝑇, 𝑦

𝑛
)), 𝑛 =

0, 1, . . .. Then, the iterative procedure (11) is said to be (𝑆, 𝑇)-
stable or stable if and only if lim

𝑛→∞
∈
𝑛
= 0 implies

lim
𝑛→∞

𝑆𝑦
𝑛
= 𝑝.

The purpose of this paper is to study the stability and
strong convergence of Jungck-CR (JCR) iterative scheme for
nonself-mappings in an arbitrary Banach space by employing
the contractive conditions (7) and then to compare con-
vergence rates of Jungck-type iterative schemes. Moreover,
applications of Jungck-type iterative schemes in recurrent
neural networks (RNN) analysis will be discussed.

2. Strong Convergence in an Arbitrary
Banach Space

Theorem 8. Let (𝑋, ‖ ⋅ ‖) be an arbitrary Banach space, and
let 𝑆, 𝑇 : 𝑌 → 𝑋 be nonself-operators on an arbitrary set 𝑌
satisfying contractive condition (7). Assume that 𝑇(𝑌) ⊆ 𝑆(𝑌),
𝑆(𝑌) is a complete subspace of 𝑋 and 𝑆𝑧 = 𝑇𝑧 = 𝑝 (say).
For 𝑥
0
∈ 𝑌, let {𝑆𝑥

𝑛
}
∞

𝑛=0
be the Jungck-CR iterative scheme

defined by (JCR), where {𝛼
𝑛
}, {𝛽
𝑛
}, {𝛾
𝑛
} are sequences of

positive numbers in [0, 1] with {𝛼
𝑛
} satisfying ∑∞

𝑛=0
𝛼
𝑛
= ∞.

Then, the Jungck-CR iterative scheme {𝑆𝑥
𝑛
}
∞

𝑛=0
converges

strongly to 𝑝. Also, 𝑝 will be the unique common fixed point of
𝑆, 𝑇 provided that 𝑌 = 𝑋, and 𝑆 and 𝑇 are weakly compatible.

Proof. First, we prove that Jungck-CR iterative scheme
{𝑆𝑥
𝑛
}
∞

𝑛=0
converges strongly to 𝑝.

It follows from (JCR) and (7) that
󵄩󵄩󵄩󵄩𝑆𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩(1 − 𝛼𝑛) 𝑆𝑦𝑛 + 𝛼𝑛𝑇𝑦𝑛 − (1 − 𝛼𝑛 + 𝛼𝑛) 𝑝

󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑆𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛼𝑛
󵄩󵄩󵄩󵄩𝑇𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

= (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑆𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛼𝑛
󵄩󵄩󵄩󵄩𝑇𝑧 − 𝑇𝑦𝑛

󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑆𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

+ 𝛼
𝑛
{𝜙 (‖𝑆𝑧 − 𝑇𝑧‖) + 𝑎

󵄩󵄩󵄩󵄩𝑆𝑧 − 𝑆𝑦𝑛
󵄩󵄩󵄩󵄩}

= (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑆𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝑎𝛼𝑛
󵄩󵄩󵄩󵄩𝑆𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

= [1 − 𝛼
𝑛
(1 − 𝑎)]

󵄩󵄩󵄩󵄩𝑆𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩 .

(12)
Now, we have the following estimates:

󵄩󵄩󵄩󵄩𝑆𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩(1 − 𝛽𝑛) 𝑇𝑥𝑛 + 𝛽𝑛𝑇𝑧𝑛 − (1 − 𝛽𝑛 + 𝛽𝑛) 𝑝
󵄩󵄩󵄩󵄩

≤ (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑇𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛽𝑛
󵄩󵄩󵄩󵄩𝑇𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑇𝑥𝑛 − 𝑇𝑧

󵄩󵄩󵄩󵄩 + 𝛽𝑛
󵄩󵄩󵄩󵄩𝑇𝑧𝑛 − 𝑇𝑧

󵄩󵄩󵄩󵄩

≤ (1 − 𝛽
𝑛
) (𝜙 (‖𝑆𝑧 − 𝑇𝑧‖) + 𝑎

󵄩󵄩󵄩󵄩𝑆𝑥𝑛 − 𝑆𝑧
󵄩󵄩󵄩󵄩)

+ 𝛽
𝑛
{𝜙 (‖𝑆𝑧 − 𝑇𝑧‖) + 𝑎

󵄩󵄩󵄩󵄩𝑆𝑧𝑛 − 𝑆𝑧
󵄩󵄩󵄩󵄩}

≤ (1 − 𝛽
𝑛
) 𝑎
󵄩󵄩󵄩󵄩𝑆𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛽𝑛𝑎
󵄩󵄩󵄩󵄩𝑆𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ,
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󵄩󵄩󵄩󵄩𝑆𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩(1 − 𝛾𝑛) 𝑆𝑥𝑛 + 𝛾𝑛𝑇𝑥𝑛 − (1 − 𝛾𝑛 + 𝛾𝑛) 𝑝
󵄩󵄩󵄩󵄩

≤ (1 − 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑆𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛾𝑛
󵄩󵄩󵄩󵄩𝑇𝑥𝑛 − 𝑇𝑧

󵄩󵄩󵄩󵄩

≤ (1 − 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑆𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

+ 𝛾
𝑛
{𝜙 (‖𝑆𝑧 − 𝑇𝑧‖) + 𝑎

󵄩󵄩󵄩󵄩𝑆𝑥𝑛 − 𝑆𝑧
󵄩󵄩󵄩󵄩}

= (1 − 𝛾
𝑛
(1 − 𝑎))

󵄩󵄩󵄩󵄩𝑆𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 .

(13)

It follows from (13) that
󵄩󵄩󵄩󵄩𝑆𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ≤ (1 − 𝛽𝑛) 𝑎
󵄩󵄩󵄩󵄩𝑆𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

+ 𝛽
𝑛
𝑎 (1 − 𝛾

𝑛
(1 − 𝑎))

󵄩󵄩󵄩󵄩𝑆𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 .

(14)

Using (1 − 𝛽
𝑛
)𝑎 ≤ (1 − 𝛽

𝑛
) and 𝛽

𝑛
𝑎(1 − 𝛾

𝑛
(1 − 𝑎)) ≤ 𝛽

𝑛
𝑎,

inequality (14) yields
󵄩󵄩󵄩󵄩𝑆𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ≤ (1 − 𝛽𝑛 (1 − 𝑎))
󵄩󵄩󵄩󵄩𝑆𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 . (15)

It follows from (15) and (12) that
󵄩󵄩󵄩󵄩𝑆𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩 ≤ [1 − 𝛼𝑛 (1 − 𝑎)] [1 − 𝛽𝑛 (1 − 𝑎)]
󵄩󵄩󵄩󵄩𝑆𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ [1 − 𝛼
𝑛
(1 − 𝑎)]

󵄩󵄩󵄩󵄩𝑆𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤

𝑛

∏

𝑘=0

[1 − 𝛼
𝑘
(1 − 𝑎)]

󵄩󵄩󵄩󵄩𝑆𝑥0 − 𝑝
󵄩󵄩󵄩󵄩

≤ 𝑒
−(1−𝑎)∑

∞

𝑘=0
𝛼
𝑘
󵄩󵄩󵄩󵄩𝑆𝑥0 − 𝑝

󵄩󵄩󵄩󵄩 .

(16)

Since 0 ≤ 𝑎 < 1, 𝛼
𝑘
∈ [0, 1] and ∑∞

𝑛=0
𝛼
𝑛
= ∞, so

𝑒
−(1−𝑎)∑

𝑛

𝑘=0
𝛼
𝑘 → 0 as 𝑛 → ∞.

Hence, it follows from (16) that lim
𝑛→∞

‖𝑆𝑥
𝑛+1
− 𝑝‖ = 0.

Therefore, {𝑆𝑥
𝑛
}
∞

𝑛=0
converges strongly to 𝑝.

Now, we prove that 𝑝 is unique common fixed point of 𝑆
and 𝑇.

Let there exist another point of coincidence say 𝑝∗. Then,
there exists 𝑞∗ ∈ 𝑋 such that 𝑆𝑞∗ = 𝑇𝑞∗ = 𝑝∗. But from (7),
we have

0 ≤
󵄩󵄩󵄩󵄩𝑝 − 𝑝

∗󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑇𝑞 − 𝑇𝑞

∗󵄩󵄩󵄩󵄩

≤ 𝜙 (
󵄩󵄩󵄩󵄩𝑆𝑞 − 𝑇𝑞

󵄩󵄩󵄩󵄩) + 𝑎
󵄩󵄩󵄩󵄩𝑆𝑞 − 𝑆𝑞

∗󵄩󵄩󵄩󵄩

= 𝑎
󵄩󵄩󵄩󵄩𝑝 − 𝑝

∗󵄩󵄩󵄩󵄩 ,

(17)

which implies that 𝑝 = 𝑝∗ as 0 ≤ 𝑎 < 1.
Now, as 𝑆 and 𝑇 are weakly compatible and 𝑝 = 𝑇𝑞 = 𝑆𝑞,

so 𝑇𝑝 = 𝑇𝑇𝑞 = 𝑇𝑆𝑞 = 𝑆𝑇𝑞 and hence 𝑇𝑝 = 𝑆𝑝. Therefore,
𝑇𝑝 is a point of coincidence of 𝑆, 𝑇 and since the point of
coincidence is unique then 𝑝 = 𝑇𝑝. Thus, 𝑇𝑝 = 𝑆𝑝 = 𝑝, and
therefore 𝑝 is unique common fixed point of 𝑆 and 𝑇.

Corollary 9. Let (𝑋, ‖ ⋅ ‖) be an arbitrary Banach space, and,
𝑆, 𝑇 : 𝑌 → 𝑋 be nonself-operators on an arbitrary set 𝑌
satisfying contractive condition (7). Assume that 𝑇(𝑌) ⊆ 𝑆(𝑌),
𝑆(𝑌) is a complete subspace of 𝑋 and 𝑆𝑧 = 𝑇𝑧 = 𝑝 (say). For
𝑥
0
∈ 𝑌, let {𝑆𝑥

𝑛
}
∞

𝑛=0
be the iterative scheme defined by (JA),

where {𝛼
𝑛
}, {𝛽
𝑛
} are sequences of positive numbers in [0, 1]

with {𝛼
𝑛
} satisfying ∑∞

𝑛=0
𝛼
𝑛
= ∞. Then the Jungck-Agarwal

iterative scheme {𝑆𝑥
𝑛
}
∞

𝑛=0
converges strongly to 𝑝. Also, 𝑝 will

be the unique common fixed point of 𝑆, 𝑇 provided that 𝑌 = 𝑋,
and 𝑆 and 𝑇 are weakly compatible.

Proof. Putting 𝛼
𝑛
= 0 and 𝛽

𝑛
= 𝛼
𝑛
, in iterative scheme (JCR),

convergence of iterative scheme (JA) can be proved on the
same lines as in Theorem 8.

Corollary 10. Let (𝑋, ‖⋅‖) be an arbitrary Banach space and 𝑆,
and let 𝑇 : 𝑌 → 𝑋 be nonself-operators on an arbitrary set 𝑌
satisfying contractive condition (7). Assume that 𝑇(𝑌) ⊆ 𝑆(𝑌),
𝑆(𝑌) is a complete subspace of 𝑋 and 𝑆𝑧 = 𝑇𝑧 = 𝑝 (say). For
𝑥
0
∈ 𝑌, let {𝑆𝑥

𝑛
}
∞

𝑛=0
be the Jungck-S iterative scheme defined

by (JS), where {𝛼𝑛}, {𝛽𝑛} are sequences of positive numbers in
[0, 1] with {𝛼n} satisfying ∑

∞

𝑛=0
𝛼
𝑛
= ∞. Then the Jungck-S

iterative scheme {𝑆𝑥
𝑛
}
∞

𝑛=0
converges strongly to 𝑝. Also, 𝑝 will

be the unique common fixed point of 𝑆, 𝑇 provided that 𝑌 = 𝑋,
and 𝑆 and 𝑇 are weakly compatible.

Proof. Putting 𝛼
𝑛
= 0 and 𝛾

𝑛
= 𝛼
𝑛
, 𝛽
𝑛
= 1 in iterative scheme

(JCR), convergence of iterative scheme (JS) can be proved on
the same lines as in theTheorem 8.

The following examples reveal the validity of our results.

Example 11. Let𝑋 = 𝑌 = [0, 1]. Define 𝑇 and 𝑆 by

𝑇 (𝑥) = {

0, 𝑥 ∈ [0, 1)

1

2
, 𝑥 = 1

} , 𝑆𝑥 = 𝑥
2
,

𝛼
𝑛
= 𝛽
𝑛
= 𝛾
𝑛
=

1

√2𝑛 + 4
,

𝜙 (𝑡) = 2𝑎𝑡.

(18)

It is clear that 𝑇 and 𝑆 are quasicontractive operators satis-
fying (7) but do not satisfy contractive condition (6), with a
unique common fixed point 0.

Using computer programming in C++ with initial
approximation 𝑥

0
= 1, convergence of Jungck-CR iterative

scheme to the common fixed point 0 is shown in Table 1.

Example 12. Let 𝑌 = 𝑋 = [0, 1]. Define 𝑇 and 𝑆 by
𝑇(𝑥) = (1/2)(1/2 + 𝑥), 𝑆(𝑥) = 1 − 𝑥, 𝛼

𝑛
= 𝛽
𝑛
= 𝛾
𝑛
=

1/√2𝑛 + 4, and 𝜙(𝑡) = 2𝑎𝑡. It is clear that 𝑇 and 𝑆 are weakly
compatible quasicontractive operators satisfying (7) with a
unique common fixed point 0.5.

Using computer programming in C++ with initial
approximation 𝑥

0
= 0.8, convergence of Jungck-CR iterative

scheme to the common fixed point 0.5 is shown in Table 2.

Theorem 13. Let (𝑋, ‖ ⋅ ‖) be an arbitrary Banach space and
𝑆, and let 𝑇 : 𝑌 → 𝑋 be nonself operators on an arbitrary
set Y satisfying contractive condition (7). Assume that 𝑇(𝑌) ⊆
𝑆(𝑌), S(Y) is a complete subspace of 𝑋, and 𝑆𝑧 = 𝑇𝑧 = 𝑝

(say). For 𝑥
0
∈ 𝑌 and 𝛼 ∈ (0, 1), let {𝑆𝑥

𝑛
}
∞

𝑛=0
be the Jungck-CR

iterative scheme (JCR) converging to 𝑝, where {𝛼
𝑛
}, {𝛽
𝑛
}, {𝛾
𝑛
}
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Table 1

Number of iterations (𝑛) Jungck-CR iterative scheme (𝑆𝑥
𝑛+1

)
0 1
1 0.5
2 0.125
3 0
4 0

are sequences in [0, 1] with {𝛼
𝑛
} satisfying 𝛼 ≤ 𝛼

𝑛
for all 𝑛.

Then, the Jungck-CR iterative scheme is (𝑆, 𝑇)-stable.

Proof. Suppose that {𝑆𝑦
𝑛
}
∞

𝑛=0
⊂ 𝑋 be an arbitrary sequence,

𝜀
𝑛
= ‖𝑆𝑦

𝑛+1
− (1 − 𝛼

𝑛
)𝑆𝑏
𝑛
− 𝛼
𝑛
𝑇𝑏
𝑛
‖, 𝑛 = 0, 1, 2, 3 . . ., where

𝑆𝑏
𝑛
= (1 − 𝛽

𝑛
)𝑇𝑦
𝑛
+ 𝛽
𝑛
𝑇𝑐
𝑛
, 𝑆𝑐
𝑛
= (1 − 𝛾

𝑛
)𝑆𝑦
𝑛
+ 𝛾
𝑛
𝑇𝑦
𝑛
and let

lim
𝑛→∞

∈
𝑛
= 0.

Then, for Jungck-CR iterative scheme (JCR), we have
󵄩󵄩󵄩󵄩𝑆𝑦𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑆𝑦𝑛+1 − (1 − 𝛼𝑛) 𝑆𝑏𝑛 − 𝛼𝑛𝑇𝑏𝑛

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩(1 − 𝛼𝑛) 𝑆𝑏𝑛 + 𝛼𝑛𝑇𝑏𝑛 − (1 − 𝛼𝑛 + 𝛼𝑛) 𝑝

󵄩󵄩󵄩󵄩

≤ 𝜀
𝑛
+ (1 − 𝛼

𝑛
)
󵄩󵄩󵄩󵄩𝑆𝑏𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛼𝑛
󵄩󵄩󵄩󵄩𝑇𝑏𝑛 − 𝑝

󵄩󵄩󵄩󵄩

= 𝜀
𝑛
+ (1 − 𝛼

𝑛
)
󵄩󵄩󵄩󵄩𝑆𝑏𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛼𝑛
󵄩󵄩󵄩󵄩𝑇𝑧 − 𝑇𝑏𝑛

󵄩󵄩󵄩󵄩

≤ 𝜀
𝑛
+ (1 − 𝛼

𝑛
)
󵄩󵄩󵄩󵄩𝑆𝑏𝑛 − 𝑝

󵄩󵄩󵄩󵄩

+ 𝛼
𝑛
{𝜙 (‖𝑆𝑧 − 𝑇𝑧‖) + 𝑎

󵄩󵄩󵄩󵄩𝑆𝑧 − 𝑆𝑏𝑛
󵄩󵄩󵄩󵄩}

= 𝜀
𝑛
+ (1 − 𝛼

𝑛
)
󵄩󵄩󵄩󵄩𝑆𝑏𝑛 − 𝑝

󵄩󵄩󵄩󵄩

+ 𝛼
𝑛
{𝜙 (‖0‖) + 𝑎

󵄩󵄩󵄩󵄩𝑆𝑧 − 𝑆𝑏𝑛
󵄩󵄩󵄩󵄩}

= [1 − 𝛼
𝑛
(1 − 𝑎)]

󵄩󵄩󵄩󵄩𝑆𝑏𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝜀𝑛.

(19)

Now, we have the following estimates:
󵄩󵄩󵄩󵄩𝑆𝑏𝑛 − 𝑝

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩(1 − 𝛽𝑛) 𝑇𝑦𝑛 + 𝛽𝑛𝑇𝑐𝑛 − (1 − 𝛽𝑛 + 𝛽𝑛) 𝑝

󵄩󵄩󵄩󵄩

≤ (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑇𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛽𝑛
󵄩󵄩󵄩󵄩𝑇𝑐𝑛 − 𝑝

󵄩󵄩󵄩󵄩

= (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑇𝑦𝑛 − 𝑇𝑧

󵄩󵄩󵄩󵄩 + 𝛽𝑛
󵄩󵄩󵄩󵄩𝑇𝑧 − 𝑇𝑐𝑛

󵄩󵄩󵄩󵄩

≤ (1 − 𝛽
𝑛
) {𝜙 (‖𝑆𝑧 − 𝑇𝑧‖) + 𝑎

󵄩󵄩󵄩󵄩𝑆𝑧 − 𝑆𝑦𝑛
󵄩󵄩󵄩󵄩}

+ 𝛽
𝑛
{𝜙 (‖𝑆𝑧 − 𝑇𝑧‖) + 𝑎

󵄩󵄩󵄩󵄩𝑆𝑧 − 𝑆𝑐𝑛
󵄩󵄩󵄩󵄩}

≤ (1 − 𝛽
𝑛
) 𝑎
󵄩󵄩󵄩󵄩𝑝 − 𝑆𝑦𝑛

󵄩󵄩󵄩󵄩 + 𝛽𝑛𝑎
󵄩󵄩󵄩󵄩𝑝 − 𝑆𝑐𝑛

󵄩󵄩󵄩󵄩 ,

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑆𝑐𝑛 − 𝑝
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨 =
󵄩󵄩󵄩󵄩(1 − 𝛾𝑛) 𝑆𝑦𝑛 + 𝛾𝑛𝑇𝑦𝑛 − (1 − 𝛾𝑛 + 𝛾𝑛) 𝑝

󵄩󵄩󵄩󵄩

≤ (1 − 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑆𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛾𝑛
󵄩󵄩󵄩󵄩𝑇𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

= (1 − 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑆𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛾𝑛
󵄩󵄩󵄩󵄩𝑇𝑧 − 𝑇𝑦𝑛

󵄩󵄩󵄩󵄩

≤ (1 − 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑆𝑦𝑛 − 𝑇𝑧

󵄩󵄩󵄩󵄩

+ 𝛾
𝑛
{𝜙 (‖𝑆𝑧 − 𝑇𝑧‖) + 𝑎

󵄩󵄩󵄩󵄩𝑆𝑧 − 𝑆𝑦𝑛
󵄩󵄩󵄩󵄩}

= (1 − 𝛾
𝑛
(1 − 𝑎))

󵄩󵄩󵄩󵄩𝑆𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩 .

(20)

Table 2

Number of iterations (𝑛) Jungck-CR iterative scheme (𝑆𝑥
𝑛+1

)
0 0.2
1 0.523438
2 0.496593
3 0.50065
4 0.499855
5 0.500036
6 0.49999
7 0.500003
8 0.499999
9 0.5
10 0.5

It follows from (19), (20) that
󵄩󵄩󵄩󵄩𝑆𝑦𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩 ≤ [1 − 𝛼𝑛 (1 − 𝑎)]
󵄩󵄩󵄩󵄩𝑆𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝜀𝑛. (21)

Using 0 < 𝛼 ≤ 𝛼
𝑛
and 𝑎 ∈ [0, 1), we have [1 − 𝛼

𝑛
(1 − 𝑎)] < 1.

Hence using Lemma 6, (21) yields lim
𝑛→∞

𝑆𝑦
𝑛+1

= 𝑝.
Conversely, let lim

𝑛→∞
𝑆𝑦
𝑛+1

= 𝑝. Then, using contrac-
tive condition (7) and the triangle inequality, we have

𝜀
𝑛
=
󵄩󵄩󵄩󵄩𝑆𝑦𝑛+1 − (1 − 𝛼𝑛) 𝑆𝑏𝑛 − 𝛼𝑛𝑇𝑏𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑆𝑦𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(1 − 𝛼𝑛 + 𝛼𝑛) 𝑝 − (1 − 𝛼𝑛) 𝑆𝑏𝑛 − 𝛼𝑛𝑇𝑏𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑆𝑦𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩 + (1 − 𝛼𝑛)
󵄩󵄩󵄩󵄩𝑝 − 𝑆𝑏𝑛

󵄩󵄩󵄩󵄩 + 𝛼𝑛
󵄩󵄩󵄩󵄩𝑝 − 𝑇𝑏𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑆𝑦𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩 + (1 − 𝛼𝑛)
󵄩󵄩󵄩󵄩𝑆𝑏𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛼𝑛
󵄩󵄩󵄩󵄩𝑇𝑧 − 𝑇𝑏𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑆𝑦𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩 + (1 − 𝛼𝑛)
󵄩󵄩󵄩󵄩𝑆𝑏𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝑎𝛼𝑛
󵄩󵄩󵄩󵄩𝑆𝑧 − 𝑆𝑏𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑆𝑦𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩 + [1 − 𝛼𝑛 (1 − 𝑎)]
󵄩󵄩󵄩󵄩𝑆𝑏𝑛 − 𝑝

󵄩󵄩󵄩󵄩 .

(22)

By using estimates (20), (22), yields

𝜀
𝑛
≤ [1 − 𝛼

𝑛
(1 − 𝑎)]

󵄩󵄩󵄩󵄩𝑆𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑆𝑦𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩 . (23)

Hence, lim
𝑛→∞

𝜀
𝑛
= 0.

Therefore, the JCR iterative scheme is (𝑆, 𝑇) stable.

3. Results on Direct Comparison of Jungck-
Type Iterative Schemes

Various authors [7, 13–15, 19–22] have worked on conver-
gence speed of iterative schemes. In [14], Berinde showed
that Picard iteration is faster than Mann iteration for quasi-
contractive operators. In [15], Qing and Rhoades by taking
an example showed that Ishikawa iteration is faster than
Mann iteration for a certain quasicontractive operator. In
[20], Hussain et al. provided an example of a quasicontractive
operator for which the iterative scheme due to Agarwal et al.
is faster thanMann and Ishikawa iterative schemes. Recently,
Chugh and Kumar [19] showed that SP iterative scheme with
error terms converges faster than Ishikawa andNoor iterative
schemes for accretive-type mappings. For recent work in
this direction, we refer the reader to [23–27] and references
therein.
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Theorem 14. Let (𝑋, ‖ ⋅ ‖) be an arbitrary Banach space, and
let 𝑆, 𝑇 : 𝑌 → 𝑋 be nonself-operators on an arbitrary set 𝑌
satisfying contractive condition (7). Assume that 𝑇(𝑌) ⊆ 𝑆(𝑌),
𝑆(𝑌) is a complete subspace of X and 𝑆𝑧 = 𝑇𝑧 = 𝑝 (say).
For 𝑥
0
∈ 𝑌, let Jungck-Mann iterative scheme be defined by

(JM) and Jungck-Ishikawa iterative scheme be defined by (JI),
with 𝛼

𝑛
∈ [0, 1/(1 + (1 + 2/𝑚)𝑎)],𝛽n ≤ 1 − 𝛼n(1 − 𝑎),

for some𝑚 > 0 and 𝑛 ∈ 𝑁 satisfying ∑∞
𝑛=0
𝛼
𝑛
= ∞.

Then, the Jungck-Ishikawa iterative scheme converges faster
than Jungck-Mann iterative scheme to 𝑝.

Proof. For Jungck-Mann iterative scheme, we have
󵄩󵄩󵄩󵄩𝑆𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩 ≥ (1 − 𝛼𝑛)
󵄩󵄩󵄩󵄩𝑆𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 − 𝛼𝑛
󵄩󵄩󵄩󵄩𝑇𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≥ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑆𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 − 𝛼𝑛𝑎
󵄩󵄩󵄩󵄩𝑆𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≥ [1 − 𝛼
𝑛
(1 + 𝑎)]

󵄩󵄩󵄩󵄩𝑆𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩 .

(24)

Also, for Jungck-Ishikawa iterative scheme, we have
󵄩󵄩󵄩󵄩𝑆𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩 ≤ (1 − 𝛼𝑛)
󵄩󵄩󵄩󵄩𝑆𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝑎
󵄩󵄩󵄩󵄩𝑇𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑆𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛼𝑛𝑎
󵄩󵄩󵄩󵄩𝑆𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩 .

(25)

But
󵄩󵄩󵄩󵄩𝑆𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩 ≤ (1 − 𝛽𝑛)
󵄩󵄩󵄩󵄩𝑆𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛽𝑛
󵄩󵄩󵄩󵄩𝑇𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ (1 − 𝛽
𝑛 (1 − 𝑎))

󵄩󵄩󵄩󵄩𝑆𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 .

(26)

Hence,
󵄩󵄩󵄩󵄩𝑆𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩 ≤ (1 − 𝛼𝑛 (1 − 𝑎) − 𝛼𝑛𝛽𝑛𝑎 (1 − 𝑎))
󵄩󵄩󵄩󵄩𝑇𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 .

(27)

Using (24) and (27), we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

JI
𝑛+1

JM
𝑛+1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

𝑛

∏

𝑖=0

[
(1 − 𝛼

𝑖 (1 − 𝑎) − 𝛼𝑖𝛽𝑖𝑎 (1 − 𝑎))

(1 − 𝛼
𝑖
(1 + 𝑎))

] . (28)

But we observe that

1 − 𝛼
𝑖
(1 − 𝑎)

1 − 𝛼
𝑖
(1 + 𝑎)

≤ 1 + 𝑚 ∀𝑖 = 0, 1, 2, . . . . (29)

Using (29) together with 𝛽
𝑛
≤ 1 − 𝛼

𝑛
(1 − 𝑎), we have

𝑛

∏

𝑖=0

[
(1 − 𝛼

𝑖
(1 − 𝑎) − 𝛼

𝑖
𝛽
𝑖
𝑎 (1 − 𝑎))

(1 − 𝛼
𝑖 (1 + 𝑎))

]

≤ (1 + 𝑚) (1 − 𝛼
𝑖
(1 − 𝑎)) ≤ (1 + 𝑚) 𝑒

−𝛼
𝑖
(1−𝑎)

.

(30)

As∑∞
𝑛=0
𝛼
𝑛
= ∞, so (28) yields lim

𝑛→∞
‖(JI
𝑛+1
−𝑝)/(JM

𝑛+1
−

𝑝)‖ = 0.
Therefore, by Definition 4, Jungck-Ishikawa iterative

scheme converges faster than Jungck-Mann iterative scheme
to 𝑝.

Theorem 15. Let (𝑋, ‖ ⋅ ‖) be an arbitrary Banach space, and
let 𝑆, 𝑇 : 𝑌 → 𝑋 be nonself-operators on an arbitrary set Y
satisfying contractive condition (7). Assume that 𝑇(𝑌) ⊆ 𝑆(𝑌),

𝑆(𝑌) is a complete subspace of 𝑋, and 𝑆𝑧 = 𝑇𝑧 = 𝑝 (say). For
𝑥
0
∈ 𝑌, let Jungck-Noor iterative scheme be defined by (JN)

and Jungck-Ishikawa iterative scheme defined by (JI), with 𝛼
𝑛
∈

[0, 1/(1+(1+2/𝑚)𝑎)],𝛽
𝑛
≤ 1−𝛼

𝑛
(1−𝑎), for some 𝑚 > 0 and

𝑛 ∈ 𝑁 satisfying∑∞
𝑛=0
𝛼
𝑛
= ∞.Then, the Jungck-Noor iterative

scheme converges faster than Jungck-Ishikawa iterative scheme
to 𝑝.

Proof. For Jungck-Ishikawa iterative scheme, we have
󵄩󵄩󵄩󵄩𝑆𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩 ≥ [1 − 𝛼𝑛 (1 + 𝑎)]
󵄩󵄩󵄩󵄩𝑆𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩 . (31)

Also, for Jungck-Noor iterative scheme, we have
󵄩󵄩󵄩󵄩𝑆𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛 (1 − 𝑎) − 𝛼𝑛𝛽𝑛𝑎 (1 − 𝑎) − 𝛼𝑛𝛽𝑛𝛾𝑛𝑎

2
(1 − 𝑎))

×
󵄩󵄩󵄩󵄩𝑇𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 .

(32)

Using (31) and (32), we have
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

JN
𝑛+1

JI
𝑛+1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

𝑛

∏

𝑖=0

[

(1 − 𝛼
𝑖 (1 − 𝑎) − 𝛼𝑖𝛽𝑖𝑎 (1 − 𝑎) − 𝛼𝑛𝛽𝑛𝛾𝑛𝑎

2
(1 − 𝑎))

(1 − 𝛼
𝑖 (1 + 𝑎))

]

≤

𝑛

∏

𝑖=0

[
1 − 𝛼
𝑖 (1 − 𝑎) − 𝛼𝑖𝛽𝑖𝑎 (1 − 𝑎)

(1 − 𝛼
𝑖 (1 + 𝑎))

]

.

(33)

Making the same calculations as inTheorem 14, (33) yields

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

JN
𝑛+1
− 𝑝

JI
𝑛+1
− 𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= 0. (34)

By Definition 4, Jungck-Noor iterative scheme converges
faster than Jungck-Ishikawa iterative scheme to 𝑝.

Theorem 16. Let (𝑋, ‖ ⋅ ‖) be an arbitrary Banach space and
𝑆, 𝑇 : 𝑌 → 𝑋 be nonself operators on an arbitrary set 𝑌
satisfying contractive condition (7). Assume that 𝑇(𝑌) ⊆ 𝑆(𝑌),
𝑆(𝑌) is a complete subspace of 𝑋 and 𝑆𝑧 = 𝑇𝑧 = 𝑝 (say).
For 𝑥
0
∈ 𝑌, let Jungck-Noor iterative scheme be defined by

(JN) and Jungck-SP iterative scheme defined by (JSP), with
𝛼
𝑛
∈ [0, 1/(1 + (1 + 2/𝑚)𝑎)], for some 𝑚 > 0 satisfying

∑
∞

𝑛=0
𝛽
𝑛
= ∞. Then, the Jungck-SP iterative scheme converges

faster than Jungck-Noor iterative scheme to 𝑝.

Proof. For Jungck-Noor iterative scheme, we have
󵄩󵄩󵄩󵄩𝑆𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩 ≥ [1 − 𝛼𝑛 (1 + 𝑎)]
󵄩󵄩󵄩󵄩𝑆𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩 . (35)

Also, for Jungck-SP iterative scheme, we have
󵄩󵄩󵄩󵄩𝑆𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛
(1 − 𝑎)) (1 − 𝛽

𝑛
(1 − 𝑎))

× (1 − 𝛾
𝑛
(1 − 𝑎))

󵄩󵄩󵄩󵄩𝑇𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 .

(36)
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Using (35) and (36), we have
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

JSP
𝑛+1
− 𝑝

JN
𝑛+1
− 𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

𝑛

∏

𝑖=0

[
(1 − 𝛼

𝑛 (1 − 𝑎)) (1 − 𝛽𝑛 (1 − 𝑎)) (1 − 𝛾𝑛 (1 − 𝑎))

(1 − 𝛼
𝑖
(1 + 𝑎))

]

≤

𝑛

∏

𝑖=0

[
(1 − 𝛼

𝑛
(1 − 𝑎)) (1 − 𝛽

𝑛
(1 − 𝑎))

(1 − 𝛼
𝑖
(1 + 𝑎))

] .

(37)

We observe that

1 − 𝛼
𝑖
(1 − 𝑎)

1 − 𝛼
𝑖 (1 + 𝑎)

≤ 1 + 𝑚 ∀𝑖 = 0, 1, 2, . . . . (38)

Using (38) together with ∑∞
𝑛=0
𝛽
𝑛
= ∞, (37) yields

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

JSP
𝑛+1
− 𝑝

JN
𝑛+1
− 𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= 0. (39)

Therefore, by Definition 4, Jungck-SP iterative scheme con-
verges faster than Jungck-Noor iterative scheme 𝑝.

Theorem 17. Let (𝑋, ‖ ⋅ ‖) be an arbitrary Banach space, and
let 𝑆, 𝑇 : 𝑌 → 𝑋 be nonself operators on an arbitrary set
𝑌 satisfying contractive condition (7). Assume that 𝑇(𝑌) ⊆
𝑆(𝑌), 𝑆(𝑌) is a complete subspace of 𝑋 and 𝑆𝑧 = 𝑇𝑧 = 𝑝

(say). For 𝑥
0
∈ 𝑌, let Jungck-Agarwal’s et al. iterative scheme

be defined by (JA) and Jungck-SP iterative scheme be defined
by (JSP) with (i) ∑∞

𝑛=0
𝛼
𝑛
= ∞, (ii) lim

𝑛→∞
𝛼
𝑛
= 0, and

(iii) lim
𝑛→∞

𝛽
𝑛
= 0. Then, the Jungck-Agarwal iterative

scheme converges faster than Jungck-SP iterative scheme to 𝑝.

Proof. For Jungck-SP iterative scheme, we have
󵄩󵄩󵄩󵄩𝑆𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩 ≥ [1 − 𝛼𝑛 (1 + 𝑎)]
󵄩󵄩󵄩󵄩𝑆𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 . (40)

Also, for Jungck-Agarwal iterative scheme, we have
󵄩󵄩󵄩󵄩𝑆𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩 ≤ 𝑎 (1 − 𝛼𝑛𝛽𝑛 (1 − 𝑎))
󵄩󵄩󵄩󵄩𝑇𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 . (41)

Using (40) and (41), we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

JSP
𝑛+1
− 𝑝

JA
𝑛+1
− 𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝑎
𝑛

𝑛

∏

𝑖=0

[
(1 − 𝛼

𝑛
𝛽
𝑛
(1 − 𝑎))

(1 − 𝛼
𝑖
(1 + 𝑎))

] . (42)

Since 𝑎 ∈ [0, 1) and lim
𝑛→∞

𝛼
𝑛
= 0, lim

𝑛→∞
𝛽
𝑛
= 0.

Hence from (42), we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

JSP
𝑛+1
− 𝑝

JA
𝑛+1
− 𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= 0. (43)

Therefore, by Definition 4, Jungck-SP iterative scheme con-
verges faster than Jungck-Agarwal et al.’s iterative scheme to
𝑝.

Theorem 18. Let (𝑋, ‖ ⋅ ‖) be an arbitrary Banach space, and
let 𝑆, 𝑇 : 𝑌 → 𝑋 be nonself-operators on an arbitrary set 𝑌
satisfying contractive condition (7). Assume that 𝑇(𝑌) ⊆ 𝑆(𝑌),

𝑆(𝑌) is a complete subspace of 𝑋 and 𝑆𝑧 = 𝑇𝑧 = 𝑝 (say).
For 𝑥
0
∈ 𝑌, let Jungck-S iterative scheme be defined by (JS)

and Jungck-Agarwal iterative scheme defined by (JA). Then,
the Jungck-S iterative scheme converges faster than Jungck-
Agarwal iterative scheme to 𝑝.

Proof. For Jungck-S iterative scheme, we have

󵄩󵄩󵄩󵄩𝑆𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩 ≤ 𝑎 (1 − 𝛼𝑛 (1 − 𝑎))

󵄩󵄩󵄩󵄩𝑆𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 . (44)

Also, for Jungck-Agarwal iterative scheme, we have

󵄩󵄩󵄩󵄩𝑆𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩 ≤ 𝑎 (1 − 𝛼𝑛𝛽𝑛 (1 − 𝑎))

󵄩󵄩󵄩󵄩𝑆𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 . (45)

It is obvious that

𝑎 (1 − 𝛼
𝑛
(1 − 𝑎)) ≤ 𝑎 (1 − 𝛼

𝑛
𝛽
𝑛
(1 − 𝑎)) ∀𝑛. (46)

Hence by Definition 3, Jungck-S iterative scheme converges
faster than Jungck-Agarwal iterative scheme.

Theorem 19. Let (𝑋, ‖ ⋅ ‖) be an arbitrary Banach space, and
let 𝑆, 𝑇 : 𝑌 → 𝑋 be nonself operators on an arbitrary set Y
satisfying contractive condition (7). Assume that 𝑇(𝑌) ⊆ 𝑆(𝑌),
𝑆(𝑌) is a complete subspace of 𝑋 and 𝑆𝑧 = 𝑇𝑧 = 𝑝 (say).
For 𝑥
0
∈ 𝑌, let Jungck-S iterative scheme be defined by (JS)

and Jungck-CR iterative scheme be defined by (JCR). Then,
the Jungck-CR iterative scheme converges faster than Jungck-S
iterative scheme to 𝑝.

Proof. For Jungck-S iterative scheme, we have

󵄩󵄩󵄩󵄩𝑆𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩 ≤ 𝑎 (1 − 𝛼𝑛 (1 − 𝑎))

󵄩󵄩󵄩󵄩𝑆𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 . (47)

Also, for Jungck-CR iterative scheme, we have

󵄩󵄩󵄩󵄩𝑆𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

≤ 𝑎 (1 − 𝛼
𝑛
(1 − 𝑎)) (1 − 𝛽

𝑛
𝛾
𝑛
(1 − 𝑎))

󵄩󵄩󵄩󵄩𝑆𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 .

(48)

It is obvious that

𝑎 (1 − 𝛼
𝑛
(1 − 𝑎)) (1 − 𝛽

𝑛
𝛾
𝑛
(1 − 𝑎))

≤ 𝑎 (1 − 𝛼
𝑛 (1 − 𝑎)) ∀𝑛.

(49)

Hence byDefinition 3, Jungck-CR iterative scheme converges
faster than Jungck-S iterative scheme.

The following example supports the above results.

Example 20. Let 𝑌 = [0, 1], 𝑋 = [0, 1/2], 𝑆 : 𝑌 → 𝑋 = 𝑥/2,
𝑇 : 𝑌 → 𝑋 = 𝑥/4, 𝛼

𝑛
= 𝛽
𝑛
= 𝛾
𝑛
= 0, 𝑛 = 1, 2 . . . 𝑛

0
− 1

for some 𝑛
0
∈ 𝑁, and 𝛼

𝑛
= 𝛽
𝑛
= 𝛾
𝑛
= 4/√𝑛, 𝑛 ≥ 𝑛

0
. It

is clear that 𝑇 and 𝑆 are quasicontractive operators satisfying
(7) with the unique common fixed point 0. Also, it is easy to
see that Example 20 satisfies all the conditions of Theorem 8
andTheorems 14–19.
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Proof . For JM, JI, JN, JA, JS, JSP, and JCR iterative schemes
with initial approximation 𝑥

0
̸= 0, we have

JM
𝑛
=

𝑛

∏

𝑖=𝑛
0

(
1

2
−
1

√𝑖

) 𝑥
0
,

JI
𝑛
=

𝑛

∏

𝑖=𝑛
0

(
1

2
−
1

√𝑖

−
2

𝑖
) 𝑥
0
,

JN
𝑛
=

𝑛

∏

𝑖=𝑛
0

(1 −
2

√𝑖

−
4

𝑖
−
8

𝑖3/2
)𝑥
0
,

JSP
𝑛
=

𝑛

∏

𝑖=𝑛
0

(
1

2
−
3

√𝑖

+
6

𝑖
−
4

𝑖3/2
)𝑥
0
,

JA
𝑛
=

𝑛

∏

𝑖=𝑛
0

(
1

4
−
2

𝑖
) 𝑥
0
,

JS
𝑛
=

𝑛

∏

𝑖=𝑛
0

(
1

4
−
2

𝑖
) 𝑥
0
,

JCR
𝑛
=

𝑛

∏

𝑖=𝑛
0

(
1

4
−

1

2√𝑖

−
2

𝑖
+
4

𝑖3/2
)𝑥
0
.

(50)

Now, for 𝑛
0
= 16, consider

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

JI
𝑛+1

JM
𝑛+1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∏
𝑛

𝑖=16
(1 − 2/√𝑖 − 4/𝑖) 𝑥

0

∏
𝑛

𝑖=16
(1 − 2/√𝑖) 𝑥

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∏

𝑖=16

[1 −
4/𝑖

(1 − 2/√𝑖)

]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∏

𝑖=16

[1 −
4

(𝑖 − 2√𝑖)

]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(51)

It is easy to see that

0 ≤ lim
𝑛→∞

𝑛

∏

𝑖=16

[1 −
4

(𝑖 − 2√𝑖)

]

≤ lim
𝑛→∞

𝑛

∏

𝑖=16

(1 −
1

𝑖
) = lim
𝑛→∞

15

𝑛
= 0.

(52)

Hence, lim
𝑛→∞

|JI
𝑛+1
/JM
𝑛+1
| = 0.

Therefore, by Definition 4, Jungck-Ishikawa iterative
scheme converges faster than Jungck-Mann iterative scheme
to the common fixed point 0 of 𝑇 and 𝑆.

Similarly, for 𝑛
0
= 16,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

JN
𝑛

JI
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∏
𝑛

𝑖=16
(1 − 2/√𝑖 − 4/𝑖 − 8/𝑖

3/2
) 𝑥
0

∏
𝑛

𝑖=16
(1 − 2/√𝑖 − 4/𝑖) 𝑥

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∏

𝑖=16

[1 −
8/𝑖
3/2

1 − 2/√𝑖 − 4/𝑖

]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∏

𝑖=16

[1 −
8

(𝑖3/2 − 2𝑖 − 4√𝑖)

]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(53)

with

0 ≤ lim
𝑛→∞

𝑛

∏

𝑖=16

[1 −
8

(𝑖3/2 − 2𝑖 − 4√𝑖)

]

≤ lim
𝑛→∞

𝑛

∏

𝑖=16

(1 −
1

𝑖
) = lim
𝑛→∞

15

𝑛
= 0

(54)

implies

lim
𝑛→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

JN
𝑛

JI
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0. (55)

Therefore, by Definition 4, JN iterative scheme converges
faster than JI iterative scheme to the common fixed point 0
of 𝑇 and 𝑆.

Again, similarly, for 𝑛
0
= 100,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

JSP
𝑛

JN
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∏
𝑛

𝑖=100
(1 − 6/√𝑖 + 12/𝑖 − 8/𝑖

3/2
) 𝑥
0

∏
𝑛

𝑖=100
(1 − 2/√𝑖 − 4/𝑖 − 8/𝑖3/2) 𝑥

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∏

𝑖=100

[1 −

(4/√𝑖 − 16/𝑖)

1 − 2/√𝑖 − 4/𝑖 − 8/𝑖3/2
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∏

𝑖=100

[1 −

(4𝑖 − 16√𝑖)

(𝑖3/2 − 2𝑖 − 4√𝑖 − 8)

]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(56)

with

0 ≤ lim
𝑛→∞

𝑛

∏

𝑖=100

[1 −

(4𝑖 − 16√𝑖)

(𝑖3/2 − 2𝑖 − 4√𝑖 − 8)

]

≤ lim
𝑛→∞

𝑛

∏

𝑖=100

(1 −
1

𝑖
) = lim
𝑛→∞

99

𝑛
= 0

(57)

implies

lim
𝑛→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

JSP
𝑛

JN
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0. (58)

Therefore, by Definition 4, JSP iterative scheme converges
faster than JN iterative scheme to the common fixed point 0
of 𝑇 and 𝑆.

Again, similarly, for 𝑛
0
= 100,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

JA
𝑛

JSP
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∏
𝑛

𝑖=100
(1/2 − 4/𝑖) 𝑥

0

∏
𝑛

𝑖=100
(1 − 6/√𝑖 + 12/𝑖 − 8/𝑖3/2) 𝑥

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∏

𝑖=100

[1 −

(1/2 − 6/√𝑖 + 16/𝑖 − 8/𝑖
3/2
)

1 − 6/√𝑖 + 12/𝑖 − 8/𝑖3/2
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∏

𝑖=100

[1 −

(𝑖
3/2
− 12𝑖 + 32√𝑖 − 16)

(2𝑖3/2 − 12𝑖 + 24√𝑖 − 16)

]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(59)

with

0 ≤ lim
𝑛→∞

𝑛

∏

𝑖=100

[1 −

(𝑖
3/2
− 12𝑖 + 32√𝑖 − 16)

(2𝑖3/2 − 12𝑖 + 24√𝑖 − 16)

]

≤ lim
𝑛→∞

𝑛

∏

𝑖=100

(1 −
1

𝑖
) = lim
𝑛→∞

99

𝑛
= 0

(60)
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implies

lim
𝑛→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

JA
𝑛

JSP
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0. (61)

Therefore, by Definition 4, JA iterative scheme converges
faster than JSP iterative scheme to the common fixed point
0 of 𝑇 and 𝑆.

Again, for 𝑛
0
= 16,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

JS
𝑛

JA
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∏
𝑛

𝑖=16
(1/2 − 1/√𝑖) 𝑥

0

∏
𝑛

𝑖=16
(1/2 − 4/𝑖) 𝑥

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∏

𝑖=16

[1 −

(1/√𝑖 − 4/𝑖)

1/2 − 4/𝑖
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∏

𝑖=16

[1 −

(2√𝑖 − 8)

𝑖 − 8
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(62)

with

0 ≤ lim
𝑛→∞

𝑛

∏

𝑖=16

[1 −

(2√𝑖 − 8)

𝑖 − 8
]

≤ lim
𝑛→∞

𝑛

∏

𝑖=16

(1 −
1

𝑖
) = lim
𝑛→∞

15

𝑛
= 0

(63)

implies

lim
𝑛→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

JS
𝑛

JA
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0. (64)

Therefore, by Definition 4, JS iterative scheme converges
faster than JA iterative scheme to the common fixed point 0
of 𝑇 and 𝑆.

Similarly, again, for 𝑛
0
= 16,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

JCR
𝑛

JS
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∏
𝑛

𝑖=16
(1/2 − 1/√𝑖 − 4/𝑖 + 8/𝑖

3/2
) 𝑥
0

∏
𝑛

𝑖=16
(1/2 − 1/√𝑖) 𝑥

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∏

𝑖=16

[1 −

(4/𝑖 − 8/𝑖
3/2
)

1/2 − 1/√𝑖

]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∏

𝑖=16

[1 −

(8√𝑖 − 16)

𝑖3/2 − 2𝑖
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(65)

with

0 ≤ lim
𝑛→∞

𝑛

∏

𝑖=16

[1 −

(8√𝑖 − 16)

𝑖3/2 − 2𝑖
]

≤ lim
𝑛→∞

𝑛

∏

𝑖=16

(1 −
1

𝑖
) = lim
𝑛→∞

15

𝑛
= 0

(66)

implies

lim
𝑛→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

JCR
𝑛

JS
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0. (67)

Therefore, by Definition 4, JCR iterative scheme converges
faster than JS iterative scheme to the common fixed point 0
of 𝑇 and 𝑆.

From Example 20, we observe that the decreasing order
of Jungck-type iterative schemes is as follows:

JCR, JS, JA, JSP, JN, JI, and JM.

4. Applications

4.1. Jungck-Type Iterative Schemes in RNN Analysis. Recur-
rent neural networks (RNNs) are a class of densely connected
single-layer nonlinear networks of perceptrons. RNNs not
only operate on an input space but also on an internal states-
pace. This is equivalent to a with-memory Iterated Function
System [28]. The state space enables the representation (and
learning) of temporally/sequentially extended dependencies
over unspecified (and potentially infinite) intervals according
to

𝑦 (𝑡) = 𝐺 (𝑠 (𝑡))

𝑠 (𝑡) = 𝐹 (𝑠 (𝑡 − 1) , 𝑥 (𝑡)) .

(68)

Because of the network’s nonlinearity, a number of undesir-
able local energy minima emerge from the learning proce-
dure.This has been shown to significantly affect the network’s
performance. The iterative schemes like Mann, Ishikawa and
𝐽-iteration may be used to estimate the number of iterations
required to achieve a stable state in recurrent autoassociative
neural networks.

4.1.1. Decreasing Function (1 − 𝑥)9. In order to solve this
function by Jungck-type iterative schemes, we write it in the
form 𝑆𝑥 = 𝑇𝑥, where the functions 𝑇, 𝑆 : [0, 1] → [0, 2]

are defined as 𝑇(𝑥) = (1 − 𝑥)
9 and 𝑆𝑥 = 𝑥, respectively.

By taking initial approximation 𝑥
0
= 0.8 and 𝛼

𝑛
= 𝛽
𝑛
=

𝛾
𝑛
= 1/

4

√𝑛 + 1, the obtained results are listed in Table 3
showing convergence of different Jungck-type schemes to𝑝 =
0.175699 = 𝑇0.175699 = 𝑆0.175699.

4.1.2. Increasing Function 𝑥2 − 2𝑥 − 3. In order to solve this
function by Jungck-type iterative schemes, we write it in the
form 𝑆𝑥 = 𝑇𝑥, where the functions𝑇, 𝑆 : [3, 4] → [9, 16] are
defined as 𝑇𝑥 = 2𝑥 + 3 and 𝑆𝑥 = 𝑥2, respectively. By taking
initial approximation 𝑥

0
= 4 and 𝛼

𝑛
= 𝛽
𝑛
= 𝛾
𝑛
= 1/

4

√𝑛 + 1,
the obtained results are listed in Table 4 showing convergence
of different Jungck-type schemes to 𝑝 = 9 = 𝑇3 = 𝑆3.

4.1.3. Oscillating Function 1/𝑥. In order to solve this function
by Jungck-type iterative schemes, we write it in the form
𝑆𝑥 = 𝑇𝑥, where the functions 𝑇, 𝑆 : [0.5, 2] → [0.25, 4]

are defined as 𝑇𝑥 = 1/𝑥 and 𝑆𝑥 = 𝑥2, respectively. By taking
initial approximation 𝑥

0
= 2 and 𝛼

𝑛
= 𝛽
𝑛
= 𝛾
𝑛
= 1/

4

√𝑛 + 1,
the obtained results are listed in Table 5 showing convergence
of different Jungck type schemes to 𝑝 = 1 = 𝑇1 = 𝑆1.

4.1.4. Biquadratic Equation 𝑥4 − 36𝑥2 − 52𝑥 + 87 = 0. In
order to solve this equation, we rewrite it in the form 𝑆𝑥 = 𝑇𝑥,



Abstract and Applied Analysis 9
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where the functions 𝑇, 𝑆 : [0.5, 1.5] → [9, 81] are defined as
𝑇𝑥 = 𝑥

4
−52𝑥+87 and 𝑆𝑥 = 36𝑥2, respectively. Taking initial

approximation 𝑥
0
= 0.5 and 𝛼

𝑛
= 𝛽
𝑛
= 𝛾
𝑛
= 1/

2

√𝑛 + 1, the
obtained results are listed in Table 6 showing convergence of
different Jungck-type schemes to 𝑝 = 36 = 𝑇1 = 𝑆1.

For detailed study, these programs are again executed
after changing the parameters, and some observations are
given as below.

Decreasing Function

(1) Taking initial guess 𝑥
𝑜
= 0.3 (near common fixed

point), Jungck-Noor iterative scheme converges in
14 iterations, Jungck-Ishikawa and Jungck-Agarwal
iterative schemes converge in a similar manner in
8 iterations, Jungck-CR and the Jungck-SP iterative
schemes converge in a similar manner in 5 itera-
tions, and Jungck-S iterative scheme converges in 25
iterations while Jungck-Mann iterative scheme shows
strange constant behavior.

(2) Taking 𝛼
𝑛
= 𝛽
𝑛
= 𝛾
𝑛
= 1/(1 + 𝑛)

1/6 and 𝑥
𝑜
= 0.8, we

observe that Jungck-Noor iterative scheme converges
in 13 iterations, Jungck-Ishikawa and Jungck-Agarwal
iterative schemes converge in a similar manner in
11 iterations, Jungck-CR and the Jungck-SP iterative
schemes converge in a similar manner in 8 itera-
tions, and Jungck-S iterative scheme converges in 27
iterations while Jungck-Mann iterative scheme shows
strange constant behavior.

Increasing Functions

(1) Taking initial guess𝑥
𝑜
= 3.2 (near coincidence point),

Jungck-Noor iterative scheme converges in 7 itera-
tions, Jungck-Ishikawa and Jungck-Agarwal iterative
schemes converge in a similar manner in 8 iterations,
Jungck-CR and the Jungck-SP iterative schemes con-
verge in a similarmanner in 6 iterations, and Jungck-S
iterative scheme converges in 7 iterations while
Jungck-Mann iterative scheme converges in 13 itera-
tions.

(2) Taking 𝛼
𝑛
= 𝛽
𝑛
= 𝛾
𝑛
= 1/(1 + 𝑛)

1/6 and 𝑥
𝑜
= 4, we

observe that Jungck-Noor iterative scheme converges
in 7 iterations, Jungck-Ishikawa and Jungck-Agarwal
iterative schemes converge in a similar manner in
8 iterations, Jungck-CR and the Jungck-SP iterative
schemes converge in a similar manner in 6 iterations,
and Jungck-S iterative scheme converges in 7 itera-
tions while Jungck-Mann iterative scheme converges
in 14 iterations.

Oscillatory Function

(1) Taking initial guess 𝑥
𝑜
= 1.3 (near common fixed

point), Jungck-Noor iterative scheme converges in 8
iterations, Jungck-Ishikawa and Jungck-Agarwal iter-
ative schemes converge in a similar manner in 6 tera-
tions, Jungck-CR and the Jungck-SP iterative schemes

converge in a similar manner in 5 iterations, Jungck-S
iterative scheme converges in 11 iterations while
Jungck-Mann iterative scheme converges in 19 itera-
tions.

(2) Taking 𝛼
𝑛
= 𝛽
𝑛
= 𝛾
𝑛
= 1/(1 + 𝑛)

1/6 and 𝑥
𝑜
= 2, we

observe that Jungck-Noor iterative scheme converges
in 8 iterations, Jungck-Ishikawa and Jungck-Agarwal
iterative schemes converge in a similar manner in 9
iterations, Jungck-CR and the Jungck-SP iterative
schemes converge in a similar manner in 6 iterations,
Jungck-S iterative scheme converges in 12 iterations
while Jungck-Mann iterative scheme converges in 21
iterations.

Biquadratic Equation

(1) Taking initial guess𝑥
𝑜
= 0.8 (near coincidence point),

Jungck-Noor iterative scheme converges in 11 itera-
tions, Jungck-Ishikawa and Jungck-Agarwal iterative
schemes converge in a similar manner in 7 iterations,
Jungck-CR and the Jungck-SP iterative schemes con-
verge in a similar manner in 4 iterations, and Jungck-
S iterative scheme converges in 18 iterations while
Jungck-Mann iterative scheme converges in 35 itera-
tions.

(2) Taking 𝛼
𝑛
= 𝛽
𝑛
= 𝛾
𝑛
= 1/(1 + 𝑛)

1/4 and 𝑥
𝑜
= 0.5, we

observe that Jungck-Noor iterative scheme converges
in 12 iterations, Jungck-Ishikawa and Jungck-Agarwal
iterative schemes converge in a similar manner in
8 iterations, Jungck-CR and the Jungck-SP iterative
schemes converge in a similar manner in 6 iterations,
and Jungck-S iterative scheme converges in 19 itera-
tions while Jungck-Mann iterative scheme converges
in 37 iterations.

5. Conclusions

The speed of iterative schemes depends on 𝛼
𝑛
, 𝛽
𝑛
, and 𝛾

𝑛
.

From Tables 3–6 and observations made above, we make the
following conjectures.

5.1. Decreasing Function

(1) Decreasing order of rate of convergence of Jungck
type iterative schemes is as follows: Jungck-CR
(Jungck-SP), Jungck-Agarwal (Jungck-Ishikawa),
Jungck-Noor, and Jungck-S iterative scheme.

(2) For initial guess near to common fixed point, Jungck-
CR (Jungck-SP), Jungck-Noor, and Jungck-S itera-
tive schemes show a decrease while Jungck-Agarwal
(Jungck-Ishikawa) iterative scheme shows no change
in the number of iterations to converge.

5.2. Increasing Functions

(1) Decreasing order of rate of convergence of Jungck-
type iterative schemes is as follows: Jungck-CR
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(Jungck-SP), Jungck-S (Jungck-Noor), Jungck-Agar-
wal (Jungck-Ishikawa), and Jungck Mann iterative
scheme.

(2) For initial guess near to the coincidence point, all
Jungck-type iterative schemes show a decrease in the
number of iterations to converge.

5.3. Oscillatory Functions

(1) Decreasing order of rate of convergence of Jungck-
type iterative schemes is as follows: Jungck-CR
(Jungck-SP), Jungck-Agarwal (Jungck-Ishikawa),
Jungck-Noor, Jungck-S, and Jungck-Mann iterative
scheme.

(2) For initial guess near to the common fixed point,
Jungck-Mann and Jungck-S iterative schemes show
a decrease while Jungck-CR (Jungck-SP), Jungck-
Agarwal (Jungck-Ishikawa), and Jungck-Noor itera-
tive schemes show no change in the number of
iterations to converge.

5.4. Biquadratic Equation

(1) Decreasing order of rate of convergence of Jungck
type iterative schemes is as follows: Jungck-CR
(Jungck-SP), Jungck-Agarwal (Jungck-Ishikawa),
Jungck-Noor, Jungck-S, and Jungck-Mann iterative
scheme.

(2) For initial guess near to the coincidence point, all
Jungck-type iterative schemes show a decrease in the
number of iterations to converge.

Remark 21. In each case mentioned above, Jungck-CR and
Jungck-SP iterative schemes have better convergence rate as
compared to other iterative schemes and hence have a good
potential for further applications.
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