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We introduce a new iterative scheme called Jungck-CR iterative scheme and study the stability and strong convergence of this
iterative scheme for a pair of nonself-mappings using a certain contractive condition. Also, convergence speed comparison and
applications of Jungck-type iterative schemes will be shown through examples.

1. Introduction and Preliminaries

Let X be aBanach space, Y an arbitrary set,and S, T: Y — X
such that T(Y) ¢ S(Y). For x,, € Y, consider the following
iterative scheme:

Sx,0 =Tx,, n=0,1,.... 1)

This scheme is called Jungck iterative scheme and was
essentially introduced by Jungck [1] in 1976 and it becomes
the Picard iterative scheme when S = I, (identity mapping)
andY = X.

For a,, € [0, 1], Singh et al. [2] defined the Jungck-Mann
iterative scheme as

Sx,1 = (1-a,)Sx,, + &, Tx,,. ()

For «,, f3,,, ¥, € [0, 1], Olatinwo defined the Jungck-Ishikawa
[3] (see also [4, 5]) and Jungck-Noor [6] iterative schemes as

Sx,.1 = (1-a,)Sx, + a,Ty,,
Sy, = (1= B,) Sx, + B, Tx,,
Sxper = (1 - at,) Sx,, + 0, Ty,
Sy, = (1= B,) Sx, + BTz, (4)

Szn = (1 - Yn) an + ynTxn’

(3)

respectively.

Chugh and Kumar [7] defined the Jungck-SP iterative
scheme as

an+1 = (1 - “n) Syn + ‘anyn’
Syn = (1 - Bn) Szn + ﬁnTZn’ (5)
Szn = (1 - Yn) an + ynTxn’

where {«,},{,}, and {y,} are sequences of positive numbers
in [0, 1].

Remark 1. It X =Y and S = I, (identity mapping), then the
Jungck-SP (5), Jungck-Noor (4), Jungck-Ishikawa (3), and the
Jungck-Mann (2) iterative schemes, respectively, become the
SP [8], Noor [9], Ishikawa [10] and the Mann [11] iterative
schemes.

Jungck [1] used the iterative scheme (1) to approximate
the common fixed points of the mappings S and T satisfying
the following Jungck contraction:

d(Tx,Ty) < ad (Sx,Sy), 0<a<l. (6)

Olatinwo [3] used the following more general contractive
definition than (6) to prove the stability and strong conver-
gence results for the Jungck-Ishikawa iteration process: there
exists a real number a € [0,1) and a monotone increasing
function ¢: R* — R such that ¢)(0) = 0 and forall x, y € Y,
we have

[Tx - Ty| < ¢ (ISx = Tx|)) + a||Sx - Sy]|- (7)



Olatinwo [6] used the convergences of Jungck-Noor iterative
scheme (4) to approximate the coincidence points (not com-
mon fixed points) of some pairs of generalized contractive-
like operators with the assumption that one of each of the
pairs of maps is injective.

Motivated by the above facts, for «,,, f8,,, and y, € [0, 1],
we introduce the following iterative scheme:

S'xn+1 = (1 - (xn) Syn + anTyn’

Syn = (1 - ﬁn) Txn + IBnTZn’

Szn = (1 - Yn) S'xn + YnTxn

(JCR)

and call it Jungck-CR iterative scheme.

Remark 2. Putting o, = 0 and «,, = 0, 8, = 1 in Jungck-CR
iterative scheme, we get Jungck versions of Agarwal et al. [12]

and Sahu and Petrugel [13] iterative schemes, respectively, as
defined below:

an+1 = (1 - [)’n) Txn + ﬂnTyn’

(JA)
Syn = (1 - YH) an + ynwa

X1 = TYps
Js)
syn = (1 - ))n) an + VnTxn'

We will need the following definitions and lemma.
Definition 3 (see [14]). Let {u,} and {v,} be two fixed-point

iteration procedures that converge to the same fixed point p
on a normed space X such that the error estimates

““n - P" <a,

Iv. - ol < B,
are available, where {a,} and {b,} are two sequences of positive

numbers (converging to zero). If {a,} converge faster than
{b,}, then we say that {u,} converges faster to p than {v,}.

(8)

Definition 4 (see [15]). Suppose that {a,} and {b,} are two real
convergent sequences with limits a and b, respectively. Then,
{a,} is said to converge faster than {b,} if

a,—a
b,-b

Definition 5 (see [16, 17]). Let f and g be two self-maps on
X. A point x in X is called (1) a fixed point of f if f(x) = x;
(2) coincidence point of a pair (f, g) if fx = gx; (3) common
fixed point of a pair (f,g) if x = fx = gx. fw = fx = gx
for some x in X, then w is called a point of coincidence of f
and g. A pair (f, g) is said to be weakly compatible if f and g
commute at their coincidence points.

lim

n— 00

= 0. 9)

Lemma 6 (see [18]). If § is a real number such that 0 <
0 < 1and {€,},’, is a sequence of positive numbers such that
lim,_, €, = 0, then for any sequence of positive numbers

{u,}2, satisfying

U, <0u,+¢,, n=012,... (10)

one haslim,, _, u, = 0.
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Definition 7 (see [2]). Let S, T : Y — X be non-self-
operators for an arbitrary set Y such that T(Y) € S(Y) and p
a point of coincidence of S and T. Let {Sx,}7 C X, be the
sequence generated by an iterative procedure

Sxp1 = f(Tox,), n =0,1..., (11)

where x, € X is the initial approximation and f is some func-
tion. Suppose that {Sx,}> converges to p. Let {Sy,}>>) ¢ X
be an arbitrary sequence and set ¢, = d(Sy,, f(T,y,)), n =
0, 1,.... Then, the iterative procedure (11) is said to be (S, T)-
stable or stable if and only if lim,_, €, = 0 implies
limn—>oosyn =p-

The purpose of this paper is to study the stability and
strong convergence of Jungck-CR (JCR) iterative scheme for
nonself-mappings in an arbitrary Banach space by employing
the contractive conditions (7) and then to compare con-
vergence rates of Jungck-type iterative schemes. Moreover,
applications of Jungck-type iterative schemes in recurrent
neural networks (RNN) analysis will be discussed.

2. Strong Convergence in an Arbitrary
Banach Space

Theorem 8. Let (X, || - ||) be an arbitrary Banach space, and
let S, T :Y — X be nonself-operators on an arbitrary set Y
satisfying contractive condition (7). Assume that T(Y) € S(Y),
S(Y) is a complete subspace of X and Sz = Tz = p (say).
For x, € Y, let {Sx,},>, be the Jungck-CR iterative scheme
defined by (JCR), where {a,}, {B,}, {y,} are sequences of
positive numbers in [0, 1] with {a,} satisfying ¥ oo e, = ©0.
Then, the Jungck-CR iterative scheme {Sx,}.., converges
strongly to p. Also, p will be the unique common fixed point of
S, T provided that Y = X, and S and T are weakly compatible.

Proof. First, we prove that Jungck-CR iterative scheme
{Sx,},2, converges strongly to p.
It follows from (JCR) and (7) that

IS0 = 2l = (1 = @) Sy, + @, Ty, = (1 =t + ) p
< (1=a,) 7, = pll + @, [Ty, - 2l
= (1-a,) Sy, = pll + &, [Tz = Ty,
< (1-a,) [y, - pll
+ o, {¢ ISz - Tz|) + a||Sz - Sy, ||}
= (1-a,) Sy, - pll + aa, [[Sy, - pl|

=[1-a, (1= a)]|Sy, - p|-
(12)

Now, we have the following estimates:
187, = pll = (1 = B,) T, + BTz, = (1= B + B.) Pl
< (1= B)Tx, = pll + B, T2, -
< (1= B,)[Tx, = Tz + B, |Tz, - Tz|
< (1-B,) (¢ ISz = Tzll) + a||Sx, - Sz]))
+ B, {¢ ISz - Tz|)) + a||Sz, - Sz|}
<(1-B)alsx, - pll + B.alsz, - ol
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ISz, = pll = (1 = 9) Sx,, + v, T, = (1 =y + 70) P
< (L= ) [Sx, = pll + v [ Tx, - T2]
< (1=, [Sx, - pl
+9,{¢ ISz - Tz|)) + a ||Sx,, — Sz|}

= (1-v,(1-a)|Sx, - p|-
(13)

It follows from (13) that
||Syn _p" < (1 _ﬁn)ausxn - P”
+Bua(l-y,(1-a)|Sx, - p|-

Using (1 - B,)a < (1 - B,) and B,a(l — y,(1 —a)) < B,a,
inequality (14) yields

ISy, = pll < (1 = B, (1 = @) IS, - p]|. (15)
It follows from (15) and (12) that

|lsxn+1 _P” < [1 _an(l - a)] [1 - ﬂn(l - a)] “S'xn _p”
<[1-a,1-a)]|Sx, - p|

(14)

< H [1-a (1-a)][Sx, - p|
k=0

S I s, - ).
(16)

Since 0 < a < L € [0,1] and Y20, = 00, SO
eI Ti0% _, Dasn — oo.

Hence, it follows from (16) that lim, _, . IISx,,,; — pll = 0.
Therefore, {Sx,}2, converges strongly to p.

Now, we prove that p is unique common fixed point of
and T.

Let there exist another point of coincidence say p*. Then,
there exists g* € X such that Sq* = Tq* = p*. But from (7),
we have

o<|p-p'll=ITq-Tq"]
<¢(|Sq-Tql)+a|Sq-Sq"| (17)
=alp-p,

which implies that p = p* as0 < a < 1.

Now, as S and T  are weakly compatible and p = Tq = Sq,
soTp = TTq = TSq = STq and hence Tp = Sp. Therefore,
Tp is a point of coincidence of S, T and since the point of
coincidence is unique then p = Tp. Thus, Tp = Sp = p, and
therefore p is unique common fixed point of S and T. O

Corollary 9. Let (X, | - |) be an arbitrary Banach space, and,
S, T :Y — X be nonself-operators on an arbitrary set Y
satisfying contractive condition (7). Assume that T(Y) < S(Y),
S(Y) is a complete subspace of X and Sz = Tz = p (say). For
xy € Y, let {Sx,}.°, be the iterative scheme defined by (JA),
where {a,},{,} are sequences of positive numbers in [0, 1]

with {a,} satisfying Y2, &, = oo. Then the Jungck-Agarwal
iterative scheme {Sx,,}., converges strongly to p. Also, p will
be the unique common fixed point of S, T provided thatY = X,
and S and T are weakly compatible.

Proof. Putting a,, = 0 and f3, = «,,, in iterative scheme (JCR),
convergence of iterative scheme (JA) can be proved on the
same lines as in Theorem 8. O

Corollary 10. Let (X, ||-|) be an arbitrary Banach space and S,
andletT :Y — X be nonself-operators on an arbitrary set Y
satisfying contractive condition (7). Assume that T(Y) € S(Y),
S(Y) is a complete subspace of X and Sz = Tz = p (say). For
xy €Y, let {Sx,}° be the Jungck-S iterative scheme defined
by (JS), where {a, )}, {B,} are sequences of positive numbers in
[0, 1] with {a,} satisfying ¥ > &, = oo. Then the Jungck-S
iterative scheme {Sx, }.°, converges strongly to p. Also, p will
be the unique common fixed point of S, T provided thatY = X,
and S and T are weakly compatible.

Proof. Putting «,, = 0 and y,, = «,,, 8, = 1 in iterative scheme
(JCR), convergence of iterative scheme (JS) can be proved on
the same lines as in the Theorem 8. O

The following examples reveal the validity of our results.

Example 11. Let X =Y = [0, 1]. Define T and S by

0, x€[0,1)
T(x)={1 }, Sx = x%,

- x=1
2
1 (18)

an:ﬁn:)/n: 2n+4’

¢ (t) = 2at.

It is clear that T' and S are quasicontractive operators satis-
tying (7) but do not satisfy contractive condition (6), with a
unique common fixed point 0.

Using computer programming in C++ with initial
approximation x, = 1, convergence of Jungck-CR iterative
scheme to the common fixed point 0 is shown in Table 1.

Example 12. Let Y = X = [0,1]. Define T and S by
T(x) = (1/2)(1/2 + x), S(x) = 1 - x,0p, = B, =y, =
1/V2n + 4, and ¢(t) = 2at. It is clear that T and S are weakly
compatible quasicontractive operators satisfying (7) with a
unique common fixed point 0.5.

Using computer programming in C++ with initial
approximation x, = 0.8, convergence of Jungck-CR iterative
scheme to the common fixed point 0.5 is shown in Table 2.

Theorem 13. Let (X, || - ||) be an arbitrary Banach space and
S,andletT :' Y — X be nonself operators on an arbitrary
set Y satisfying contractive condition (7). Assume that T(Y) ¢
S(Y), S(Y) is a complete subspace of X, and Sz = Tz = p
(say). For x, € Y and « € (0,1), let {Sx,,} 2, be the Jungck-CR
iterative scheme (JCR) converging to p, where {a,}, {8}, {y,}



TABLE 1
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TABLE 2

Number of iterations (1) Jungck-CR iterative scheme (Sx,,,,)

Number of iterations (1) Jungck-CR iterative scheme (Sx,,,,)

0 1

1 0.5
2 0.125
3 0

4 0

are sequences in [0, 1] with {a,} satisfying a < «, for all n.
Then, the Jungck-CR iterative scheme is (S, T')-stable.

Proof. Suppose that {Sy,} > C X be an arbitrary sequence,
& = 1Sy — (1 — «,)Sb, — &, TH,|l, n = 0,1,2,3..., where
Sb, = (1-B,)Ty, + B,Tc, Sc, = (1 —,)Sy, + y,Ty, and let

lim, , €, =0.

Then, for Jungck-CR iterative scheme (JCR), we have
171 = Pl < [9e1 = (1~ at,) Sb, — 1, T8, |
+ (1 - ) B, + @, T, = (1 — @, + o) p|
<&, +(1-a,) |86, - p|l + e, [T, - p|
=&, + (1~ a,) 8B, - p| + a, [Tz = T8,
<e,+(1-a,)[SB, - pl
+a,19(ISz-Tz|) +a ||Sz - Sbn||}
=&, +(1-a,) |88, - pl
+ o, {¢ (I0N) +a [[Sz — S, |}
= [1-a, (1-a)]||Sb, - p]| + ¢,

(19)
Now, we have the following estimates:
IS8, = pll = (1 = B.) Ty + BaTe, = (1 = B + Ba) pll
< (1= BTy, = Pl + Bl Tc, - pll
= (1= B) [ Tyn = Tz| + B, |Tz - Tc,|
< (1-B,) {¢ ISz - Tzl) + a||Sz - Sy, |}
+ B {¢ ISz - Tz|) + a||Sz - Sc, ||}
<(1-Balp Syl +Baalp-Sal.
156, = pll = 1(1 =) Sy + vuTyn = (1= 1+ 7) 2l
< (L=y) 187, = Il + v I Ty - Pl
= (1= y) 7 = pll + v [ T2 = Ty
< (1=7) |y, - T7|
+ 7, {9 (ISz - Tzl) + a ||Sz - Sy, |}
=(1-y,(-) Sy, - p|-
(20)

0 0.2

1 0.523438
2 0.496593
3 0.50065
4 0.499855
5 0.500036
6 0.49999
7 0.500003
8 0.499999
9 0.5

10 0.5

It follows from (19), (20) that
1Sy,1 = Pl < [1 -, 1 = D)] Sy, = p]| + &, (21)

Using 0 < o < &, and a € [0, 1), we have [1 — «,(1 —a)] < 1.
Hence using Lemma 6, (21) yields lim,, _, .,S¥,,; = p-
Conversely, let lim, _, . Sy,,; = p. Then, using contrac-

tive condition (7) and the triangle inequality, we have

&5 =[S = (1 - ,) Sb, - , T |
< [8yer = ol + (1 = 0y + ) p = (1 - ) S, — o, T |
< [8yer = Pl + (1 =) [ p =SBl + e [ p - T8,
= 891 = pll + (1 = &) [ISb, = pl| + e, [Tz - T8, |
< |Syner = pll + (1= ) IS5, - pl| + aex, |52 = B |

=[Sy — Pl + [1 - o, (1 =a)] S, - p||-

(22)
By using estimates (20), (22), yields
g, < [1—a,X-a)]|Sy, — |+ [Sym: - 2l - (23)
Hence, lim, _, ¢, = 0.

Therefore, the JCR iterative scheme is (S, T) stable. O

3. Results on Direct Comparison of Jungck-
Type Iterative Schemes

Various authors [7, 13-15, 19-22] have worked on conver-
gence speed of iterative schemes. In [14], Berinde showed
that Picard iteration is faster than Mann iteration for quasi-
contractive operators. In [15], Qing and Rhoades by taking
an example showed that Ishikawa iteration is faster than
Mann iteration for a certain quasicontractive operator. In
[20], Hussain et al. provided an example of a quasicontractive
operator for which the iterative scheme due to Agarwal et al.
is faster than Mann and Ishikawa iterative schemes. Recently,
Chugh and Kumar [19] showed that SP iterative scheme with
error terms converges faster than Ishikawa and Noor iterative
schemes for accretive-type mappings. For recent work in
this direction, we refer the reader to [23-27] and references
therein.
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Theorem 14. Let (X, || - |) be an arbitrary Banach space, and
let S, T :Y — X be nonself-operators on an arbitrary set Y
satisfying contractive condition (7). Assume that T(Y) < S(Y),
S(Y) is a complete subspace of X and Sz = Tz = p (say).
For x, € Y, let Jungck-Mann iterative scheme be defined by
(JM) and Jungck-Ishikawa iterative scheme be defined by (JI),
with «, € [0,1/(1 + (1 + 2/m)a)],B, < 1 - «,(1 — a),
forsomem > 0 and n € N satisfying ¥ o o, = 00.

Then, the Jungck-Ishikawa iterative scheme converges faster
than Jungck-Mann iterative scheme to p.

Proof. For Jungck-Mann iterative scheme, we have
IS%pe1 = pll 2 (1= at,) [Sx,, - pf| - o, | Tx,, - p|
2 (1-a,)||Sx, = pl| - e |Sx, - p|  (249)
> [1-a,(1+a)]|Su, - p|.

Also, for Jungck-Ishikawa iterative scheme, we have

1825y = ol < (1= o) [Sx, = pll + @[Ty, - p 05)
< (1-a,) [Sx, = p| + x,a[Sy, - p|-
But
IS5y = 2l < (1= Ba) [Sx, = ol + B |Tx, - p 06
<(1-B,(1-a))[Sx, - p|.
Hence,
IS%,1 = pll < (1 - @, (1 - @) — &, B0 (1 - @) |Tx, - p| -
(27)
Using (24) and (27), we have
ll L [ (1-o ((11 _2 . +,ﬂ;)z)(1 a)) 28)
But we observe that
1:2—8;39“% Vi=0,1,2,.... (29)
Using (29) together with 3, < 1 — «,(1 — a), we have
ﬁ (1-a(1-a)-oBa(l-a)
o (1-o1+a) (30)
<1+m(1-a(1-a))<(l+m)e%0™,
As Y a, = 00,50 (28) yields lim,, _, oo |(JL,.,1 — p)/(IM,,; —

pll = 0.
Therefore, by Definition 4, Jungck-Ishikawa iterative

scheme converges faster than Jungck-Mann iterative scheme
to p. O

Theorem 15. Let (X, || - ||) be an arbitrary Banach space, and
let S, T : Y — X be nonself-operators on an arbitrary set Y
satisfying contractive condition (7). Assume that T(Y) < S(Y),

S(Y) is a complete subspace of X, and Sz = Tz = p (say). For
Xy € Y, let Jungck-Noor iterative scheme be defined by (JN)
and Jungck-Ishikawa iterative scheme defined by (JI), with «,, €
[0,1/(1+(1+2/m)a)], B, < 1-«,(1—-a), forsome m >0 and
n € N satisfying Y > &, = 00. Then, the Jungck-Noor iterative
scheme converges faster than Jungck-Ishikawa iterative scheme

to p.
Proof. For Jungck-Ishikawa iterative scheme, we have
1%, = P 2 (1~ e, L+ @)] S, = p . (3D
Also, for Jungck-Noor iterative scheme, we have
1S40 = Pl
< (1 —a,(1-a)-a,B,a(l-a)—a,p,y.a (1- a))

x| Tx, - pl. )
32

Using (31) and (32), we have

‘INVH-I

]IVH-I

Slg['(1—oc,»(l—a)—ociﬁ,»a(l—a) 0B,y l—a)):|‘
i=0 | (1—061-(1+a))
n -l—oci(l—a)—oc,-ﬁia(l—a)

Sg» (1-o,(1+a) ]

(33)

Making the same calculations as in Theorem 14, (33) yields

I n+l PH (34)

1
n— 00 H ]In+1

By Definition 4, Jungck-Noor iterative scheme converges
faster than Jungck-Ishikawa iterative scheme to p. O

Theorem 16. Let (X, | - ||) be an arbitrary Banach space and
ST :Y — X be nonself operators on an arbitrary set Y
satisfying contractive condition (7). Assume that T(Y) < S(Y),
S(Y) is a complete subspace of X and Sz = Tz = p (say).
For x, € Y, let Jungck-Noor iterative scheme be defined by
(JN) and Jungck-SP iterative scheme defined by (JSP), with
a, € [0,1/(1 + (1 + 2/m)a)], for some m > 0 satisfying
Y20 By = 0. Then, the Jungck-SP iterative scheme converges
faster than Jungck-Noor iterative scheme to p.

Proof. For Jungck-Noor iterative scheme, we have
[S%,0y — 2l = [1 = e, 1+ @)] ||Su,, - p| - (35)
Also, for Jungck-SP iterative scheme, we have
"an+1 - P"
<(l-a,(1-a)(1-B,(1-a) (36)

x (1=, (1-a) |Tx, - pl.



Using (35) and (36), we have

I JSPn+l P ”
]Nn+1

(1-a,(1-a)(1-B,01-a)(1-y,(1~-a))
<H (1-o;(1+a)) ]

H[ (1-a, (11—_62 ((11+a/3;,; l—a))].

(37)
We observe that
i::—gi;gsl+m Vi = 0,1,2,.... (38)
Using (38) together with Y02 B, = 00, (37) yields
SP
nH‘%ol ]IN:: £ ” (39)

Therefore, by Definition 4, Jungck-SP iterative scheme con-
verges faster than Jungck-Noor iterative scheme p. O

Theorem 17. Let (X, || - |) be an arbitrary Banach space, and
let S, T : Y — X be nonself operators on an arbitrary set
Y satisfying contractive condition (7). Assume that T(Y) <
S(Y), S(Y) is a complete subspace of X and Sz = Tz = p
(say). For x, € Y, let Jungck-Agarwals et al. iterative scheme
be defined by (JA) and Jungck-SP iterative scheme be defined
by (JSP) with (i) Y 2o e, = oo, (ii)lim,_, e, = 0, and
(iif)lim,, _, o8, = 0. Then, the Jungck-Agarwal iterative
scheme converges faster than Jungck-SP iterative scheme to p.

Proof. For Jungck-SP iterative scheme, we have
I5%,01 -2l > (1 -, 1+ a5, - pl. (40)
Also, for Jungck-Agarwal iterative scheme, we have
[$%e1 = Pl < a(1 - a,B,(1—a) |Tx, - p||- (41)
Using (40) and (41), we have

SP,, 1-

[Stes=e) . o] [( 0, a))]_ )

]A,,+1 (1-o;(1+a))

Sincea € [0,1) and lim, _, &, = 0,lim,_, 3, = 0.
Hence from (42), we have
ISPn+1 p”

im 43
n—oo I IAn+1 ( )

Therefore, by Definition 4, Jungck-SP iterative scheme con-
verges faster than Jungck-Agarwal et al’s iterative scheme to
p- O

Theorem 18. Let (X, || - ||) be an arbitrary Banach space, and
let S, T : Y — X be nonself-operators on an arbitrary set Y
satisfying contractive condition (7). Assume that T(Y) < S(Y),
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S(Y) is a complete subspace of X and Sz = Tz = p (say).
For x, € Y, let Jungck-S iterative scheme be defined by (JS)
and Jungck-Agarwal iterative scheme defined by (JA). Then,
the Jungck-S iterative scheme converges faster than Jungck-
Agarwal iterative scheme to p.

Proof. For Jungck-S iterative scheme, we have

[Sxe1 — Pl <a(l-a,(1-a)|Sx, - p|.  (44)

Also, for Jungck-Agarwal iterative scheme, we have

"an+1 _p" Sa(l _(xnﬁn(l —“))stn—P”- (45)
It is obvious that

a(l-a,(1-a))<a(l-oa,B,(1-a)) Vn (46)
Hence by Definition 3, Jungck-S iterative scheme converges
faster than Jungck-Agarwal iterative scheme. O

Theorem 19. Let (X, || - ) be an arbitrary Banach space, and
let S, T : Y — X be nonself operators on an arbitrary set Y
satisfying contractive condition (7). Assume that T(Y) < S(Y),
S(Y) is a complete subspace of X and Sz = Tz = p (say).
For x, € Y, let Jungck-S iterative scheme be defined by (JS)
and Jungck-CR iterative scheme be defined by (JCR). Then,
the Jungck-CR iterative scheme converges faster than Jungck-S
iterative scheme to p.

Proof. For Jungck-S iterative scheme, we have
[$%01 = Pl < a(l -, (1= @) |Sx, - pll .~ (47)

Also, for Jungck-CR iterative scheme, we have

“an+1 _p“
48)
<a(1_‘xn(l_a))(l_ﬁn)}n(l _a)) ”an—p“
It is obvious that
a(l - &, (1 _a)) (1 _ﬁnyn(l - (/'l))
(49)

<a(l-a,(1-a)) Vn

Hence by Definition 3, Jungck-CR iterative scheme converges
faster than Jungck-S iterative scheme. O

The following example supports the above results.

Example 20. LetY =[0,1], X =[0,1/2],S: Y — X = x/2,
T:Y » X=x/4a,=,=y,=0n=12...n,—-1
for somen, € N,andoa, = f8, = y, = 4/vVnn > n,. It
is clear that T' and S are quasicontractive operators satisfying
(7) with the unique common fixed point 0. Also, it is easy to
see that Example 20 satisfies all the conditions of Theorem 8
and Theorems 14-19.
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Proof . For M, J1, JN, JA, JS, JSP, and JCR iterative schemes
with initial approximation x, # 0, we have

|
e[l 55 )
O R PR
n-FIG-2)e
-f1( -2

~(1 1 2 4
]CRn=H<Z—2—\/;—?+i37>XO.

i=n,

Now, for 1, = 16, consider

oy | _ [T-16 (1 -2/Vi- 4/i) X
IM, 11 H?:m(l _2/\/2) X,
B (51)
i—16[ (1—2/\/')]
) i=16 [ ( 2\/-) :H
It is easy to see that
0 l
< lim 11_116 [ ( 2\/_):|
(52)

< 1 15
< lim H(l——,)- lim — =0.
n—ool e i n—o00

Hence, lim, _, ,|J1,..1/IM,,,;| = 0.

Therefore, by Definition 4, Jungck-Ishikawa iterative
scheme converges faster than Jungck-Mann iterative scheme
to the common fixed point 0 of T and S.

Similarly, for n, = 16,

IN,| [T 16( —2/Vi-4fi- 8/1’3/2)x0
ol | TI0 (1-2/Vi-4/i) x,

~ n ~ 8/13/2 :|
- 1_116[1 1-2/i-4/i

(53)

with
1 8
0< lim H I:l - ]
n—»ooi: 13/2 2i 4\/;
< llml_[(l—l)— llml—S—O
n—>00i=16 1 n— oo n
implies
. |JN
lim 1l =0. 55
n— 00 IIn ( )

Therefore, by Definition 4, JN iterative scheme converges
faster than JI iterative scheme to the common fixed point 0
of T and S.

Again, similarly, for n, = 100,

IJSPn _ Hz 100( -6/Vi+12/i- 8/i3/2)x0
JN,, B Hi:wo (1 - 2/\/; —-4/i - 8/1'3/2) X,
T (4/+i - 16/i)
B zl:)[o|:l_1—2/\/;—4/i_8/i3/2:| (56)
s (4i - 16Vi)
_ '1;[‘)[1_ (2 - —4W—8)}
with
u (4i - 16Vi)
li _
- ”Lnéofl;lo [1 (G —M—s)]
(57)
im [ 1 9 _
- "lgréoﬂo<l ~7) = im0
implies
S 11111) =0. (58)

Therefore, by Definition 4, JSP iterative scheme converges
faster than JN iterative scheme to the common fixed point 0
of T and S.

Again, similarly, for n, = 100,

JA, _ H? 100 (1/2 = 4/1) x,
IN 100( —6/Vi+12/i - 8/1'3/2)960
n (1/2-6/Vi+16/i - 8/i"?)
=[] 11- (59)
100 1-6/Vi+12/i— 8/
ﬁ 1 (7 - 12i + 32i - 16)
el (272 - 12i +24vi - 16)
with
n 2 _12i +324/i— 16
0< lim [] 1—(1 i+324i - 16)
ool (277 - 12i +24Vi - 16)

(60)
< lim ]_[ <1—1) lim 22 = 0

n—oo n



implies

nlglgo IJ =0. (61)
Therefore, by Definition 4, JA iterative scheme converges
faster than JSP iterative scheme to the common fixed point
0of T and S.

Again, for n; = 16,

JA,
SP,

[T (1/2 = 1/7i) x,
[Th 6 (1/2 = 4/i) x,

. ﬁ[l_w]l ©

35,
A,

1/2 — 4/i

-]

with
n 2Vi-8
0< lim [] [1 - ( )]
T ®ilie i-8
(63)
L 1 15
< lim <1——,>—11m——0
n—>00i:16 1 n— oo n
implies
. ]IS
lim i=0. 64
n— 00 ]An ( )

Therefore, by Definition 4, JS iterative scheme converges
faster than JA iterative scheme to the common fixed point 0
of T and S.

Similarly, again, for n, = 16,

H?:m (1/2 - 1/\/2— 4/i + 8/i3/2)x0
H?:ls(l/Z— 1/\/;) X

R (47— 8/P°?)
- [IW ©

JCR,
JS,

32 - 2i

-]

with
(66)

implies

=0. (67)
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Therefore, by Definition 4, JCR iterative scheme converges
faster than JS iterative scheme to the common fixed point 0
of T and S.

From Example 20, we observe that the decreasing order
of Jungck-type iterative schemes is as follows:

JCR,JS, JA, JSP,IN, JI, and JM. O

4. Applications

4.1. Jungck-Type Iterative Schemes in RNN Analysis. Recur-
rent neural networks (RNNs) are a class of densely connected
single-layer nonlinear networks of perceptrons. RNNs not
only operate on an input space but also on an internal states-
pace. This is equivalent to a with-memory Iterated Function
System [28]. The state space enables the representation (and
learning) of temporally/sequentially extended dependencies
over unspecified (and potentially infinite) intervals according
to

y()=G(s()
s(t)=F(s(t-1),x(t)).

(68)

Because of the network’s nonlinearity, a number of undesir-
able local energy minima emerge from the learning proce-
dure. This has been shown to significantly affect the network’s
performance. The iterative schemes like Mann, Ishikawa and
J-iteration may be used to estimate the number of iterations
required to achieve a stable state in recurrent autoassociative
neural networks.

4.1.1. Decreasing Function (1 —x)°. In order to solve this
function by Jungck-type iterative schemes, we write it in the
form Sx = Tx, where the functions T, S : [0,1] — [0,2]
are defined as T(x) = (1-x)° and Sx = x, respectively.
By taking initial approximation x, = 0.8 and o, = S, =
Y, = 1/3/n+1, the obtained results are listed in Table 3
showing convergence of different Jungck-type schemes to p =
0.175699 = T0.175699 = S0.175699.

4.1.2. Increasing Function x* — 2x — 3. In order to solve this
function by Jungck-type iterative schemes, we write it in the
form Sx = Tx, where the functions T, S : [3,4] — [9, 16] are
defined as Tx = 2x + 3 and Sx = x?, respectively. By taking
initial approximation x, = 4and o, = 8, =y, = 1/Vn+1,
the obtained results are listed in Table 4 showing convergence
of different Jungck-type schemesto p =9 = T3 = §3.

4.1.3. Oscillating Function 1/x. In order to solve this function
by Jungck-type iterative schemes, we write it in the form
Sx = Tx, where the functions T, S : [0.5,2] — [0.25,4]
are defined as Tx = 1/x and Sx = x?, respectively. By taking
initial approximation x, = 2and o, = 8, =y, = 1/Vn+1,
the obtained results are listed in Table 5 showing convergence
of different Jungck type schemesto p =1 =T1 = SI.

4.14. Biquadratic Equation x* —36x* —52x + 87 = 0. In
order to solve this equation, we rewrite it in the form Sx = Tx,
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where the functions T, S : [0.5,1.5] — [9, 81] are defined as
Tx = x* —52x+87 and Sx = 36x7, respectively. Taking initial
approximation x, = 0.5and a, = 8, = ¥, = 1/Vn+ 1, the
obtained results are listed in Table 6 showing convergence of
different Jungck-type schemes to p = 36 = T'1 = SI.

For detailed study, these programs are again executed
after changing the parameters, and some observations are
given as below.

Decreasing Function

(1) Taking initial guess x, = 0.3 (near common fixed
point), Jungck-Noor iterative scheme converges in
14 iterations, Jungck-Ishikawa and Jungck-Agarwal
iterative schemes converge in a similar manner in
8 iterations, Jungck-CR and the Jungck-SP iterative
schemes converge in a similar manner in 5 itera-
tions, and Jungck-S iterative scheme converges in 25
iterations while Jungck-Mann iterative scheme shows
strange constant behavior.

(2) Taking &, = B8, = y,, = 1/(1+n)"/® and x, = 0.8, we
observe that Jungck-Noor iterative scheme converges
in 13 iterations, Jungck-Ishikawa and Jungck-Agarwal
iterative schemes converge in a similar manner in
11 iterations, Jungck-CR and the Jungck-SP iterative
schemes converge in a similar manner in 8 itera-
tions, and Jungck-S iterative scheme converges in 27
iterations while Jungck-Mann iterative scheme shows
strange constant behavior.

Increasing Functions

(1) Takinginitial guess x, = 3.2 (near coincidence point),
Jungck-Noor iterative scheme converges in 7 itera-
tions, Jungck-Ishikawa and Jungck-Agarwal iterative
schemes converge in a similar manner in 8 iterations,
Jungck-CR and the Jungck-SP iterative schemes con-
verge in a similar manner in 6 iterations, and Jungck-S
iterative scheme converges in 7 iterations while
Jungck-Mann iterative scheme converges in 13 itera-
tions.

(2) Taking &, = 8, = y, = 1/(1 +n)"/® and x, = 4, we
observe that Jungck-Noor iterative scheme converges
in 7 iterations, Jungck-Ishikawa and Jungck-Agarwal
iterative schemes converge in a similar manner in
8 iterations, Jungck-CR and the Jungck-SP iterative
schemes converge in a similar manner in 6 iterations,
and Jungck-S iterative scheme converges in 7 itera-
tions while Jungck-Mann iterative scheme converges
in 14 iterations.

Oscillatory Function

(1) Taking initial guess x, = 1.3 (near common fixed
point), Jungck-Noor iterative scheme converges in 8
iterations, Jungck-Ishikawa and Jungck-Agarwal iter-
ative schemes converge in a similar manner in 6 tera-
tions, Jungck-CR and the Jungck-SP iterative schemes

Abstract and Applied Analysis

converge in a similar manner in 5 iterations, Jungck-S
iterative scheme converges in 11 iterations while
Jungck-Mann iterative scheme converges in 19 itera-
tions.

(2) Taking o, = B, =y, = 1/(1+m)® and x, = 2, we
observe that Jungck-Noor iterative scheme converges
in 8 iterations, Jungck-Ishikawa and Jungck-Agarwal
iterative schemes converge in a similar manner in 9
iterations, Jungck-CR and the Jungck-SP iterative
schemes converge in a similar manner in 6 iterations,
Jungck-S iterative scheme converges in 12 iterations
while Jungck-Mann iterative scheme converges in 21
iterations.

Biquadratic Equation

(1) Taking initial guess x, = 0.8 (near coincidence point),
Jungck-Noor iterative scheme converges in 11 itera-
tions, Jungck-Ishikawa and Jungck-Agarwal iterative
schemes converge in a similar manner in 7 iterations,
Jungck-CR and the Jungck-SP iterative schemes con-
verge in a similar manner in 4 iterations, and Jungck-
S iterative scheme converges in 18 iterations while
Jungck-Mann iterative scheme converges in 35 itera-
tions.

(2) Takingt, = B, =y, = 1/(1 + n)1/4 and x, = 0.5, we
observe that Jungck-Noor iterative scheme converges
in 12 iterations, Jungck-Ishikawa and Jungck-Agarwal
iterative schemes converge in a similar manner in
8 iterations, Jungck-CR and the Jungck-SP iterative
schemes converge in a similar manner in 6 iterations,
and Jungck-S iterative scheme converges in 19 itera-
tions while Jungck-Mann iterative scheme converges
in 37 iterations.

5. Conclusions

The speed of iterative schemes depends on «,, f3,, and y,,.
From Tables 3-6 and observations made above, we make the
following conjectures.

5.1. Decreasing Function

(1) Decreasing order of rate of convergence of Jungck
type iterative schemes is as follows: Jungck-CR
(Jungck-SP), Jungck-Agarwal (Jungck-Ishikawa),
Jungck-Noor, and Jungck-S iterative scheme.

(2) For initial guess near to common fixed point, Jungck-
CR (Jungck-SP), Jungck-Noor, and Jungck-S itera-
tive schemes show a decrease while Jungck-Agarwal
(Jungck-Ishikawa) iterative scheme shows no change
in the number of iterations to converge.

5.2. Increasing Functions

(1) Decreasing order of rate of convergence of Jungck-
type iterative schemes is as follows: Jungck-CR
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(Jungck-SP), Jungck-S (Jungck-Noor), Jungck-Agar-
wal (Jungck-Ishikawa), and Jungck Mann iterative
scheme.

(2) For initial guess near to the coincidence point, all
Jungck-type iterative schemes show a decrease in the
number of iterations to converge.

5.3. Oscillatory Functions

(1) Decreasing order of rate of convergence of Jungck-
type iterative schemes is as follows: Jungck-CR
(Jungck-SP), Jungck-Agarwal (Jungck-Ishikawa),
Jungck-Noor, Jungck-S, and Jungck-Mann iterative
scheme.

(2) For initial guess near to the common fixed point,
Jungck-Mann and Jungck-S iterative schemes show
a decrease while Jungck-CR (Jungck-SP), Jungck-
Agarwal (Jungck-Ishikawa), and Jungck-Noor itera-
tive schemes show no change in the number of
iterations to converge.

5.4. Biquadratic Equation

(1) Decreasing order of rate of convergence of Jungck
type iterative schemes is as follows: Jungck-CR
(Jungck-SP), Jungck-Agarwal (Jungck-Ishikawa),
Jungck-Noor, Jungck-S, and Jungck-Mann iterative
scheme.

(2) For initial guess near to the coincidence point, all
Jungck-type iterative schemes show a decrease in the
number of iterations to converge.

Remark 21. In each case mentioned above, Jungck-CR and
Jungck-SP iterative schemes have better convergence rate as
compared to other iterative schemes and hence have a good
potential for further applications.
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