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We provide an iterative process which converges strongly to a common fixed point of finite family of asymptotically k-strict
pseudocontractive mappings in Banach spaces. Our theorems improve and unify most of the results that have been proved for
this important class of nonlinear operators.

1. Introduction

Let 𝐸 be a real normed linear space with dual 𝐸∗. A gauge
function 𝜑 : [0,∞] := 𝑅

+

→ 𝑅
+ is a continuous and strictly

increasing function satisfying 𝜑(0) = 0 and 𝜑(𝑡) → ∞, as
𝑡 → ∞. The generalized duality mapping from 𝐸 to 2

𝐸
∗

associated with the gauge function 𝜑 (see, e.g., [1]) is defined
by

𝐽
𝜑
(𝑥) := {𝑥

∗

∈ 𝐸
∗

: ⟨𝑥, 𝑥
∗

⟩ = ||𝑥|| 𝜑 (||𝑥||) ,

󵄩󵄩󵄩󵄩𝑥
∗󵄩󵄩󵄩󵄩 = 𝜑 (||𝑥||)} , ∀𝑥 ∈ 𝐸,

(1)

where ⟨⋅, ⋅⟩ denotes the duality pairing. In the case that 𝜑(𝑡) =
𝑡, the duality mapping 𝐽

𝜑
= 𝐽 is called the normalized duality

mapping.
Following Browder [2], we say that a Banach space 𝐸 has

a weakly continuous duality mapping if there exists a gauge 𝜑
for which the duality mapping 𝐽

𝜑
is single valued and weak-

to-weak∗ sequentially continuous (i.e., if {𝑥
𝑛
} is a sequence

in 𝐸weakly convergent to a point 𝑥, then the sequence 𝐽
𝜑
(𝑥
𝑛
)

converges weak∗ to 𝐽
𝜑
(𝑥)). It is known that 𝑙

𝑝
has a weakly

continuous duality mapping with a gauge function 𝜑(𝑡) =

𝑡
𝑝−2, for all 1 < 𝑝 < ∞.

Let 𝐾 be a nonempty subset of 𝐸. A mapping 𝑇 : 𝐾 →

𝐾 is called asymptotically 𝑘-strict pseudocontractive, with
sequence {𝑙

𝑛
} ⊆ [1,∞), lim

𝑛→∞
𝑙
𝑛
= 1 (see, e.g., [3–6]) if

for all 𝑥, 𝑦 ∈ 𝐾, there exist 𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦) and a constant
𝑘 ∈ [0, 1) such that

⟨𝑇
𝑛

𝑥 − 𝑇
𝑛

𝑦, 𝑗 (𝑥 − 𝑦)⟩

≤ 𝑙
𝑛

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

− 𝑘
󵄩󵄩󵄩󵄩(𝐼 − 𝑇

𝑛

) 𝑥 − (𝐼 − 𝑇
𝑛

) 𝑦
󵄩󵄩󵄩󵄩

2

,

(2)

for all 𝑛 ≥ 1.
If 𝐼 denotes the identity operator, then (2) can be equiva-

lently written as

⟨(𝐼 − 𝑇
𝑛

) 𝑥 − (𝐼 − 𝑇
𝑛

) 𝑦, 𝑗 (𝑥 − 𝑦)⟩

≥ 𝑘
󵄩󵄩󵄩󵄩(𝐼 − 𝑇

𝑛

)𝑥 − (𝐼 − 𝑇
𝑛

)𝑦
󵄩󵄩󵄩󵄩

2

− (𝑙
𝑛
− 1)

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

,

(3)

for all 𝑛 ≥ 1.
If 𝐸 = 𝐻, a real Hilbert space, it is shown by Osilike et al.

[4] that (2) (and hence (3)) is equivalent to the inequality
󵄩󵄩󵄩󵄩𝑇
𝑛

𝑥 − 𝑇
𝑛

𝑦
󵄩󵄩󵄩󵄩

2

≤ (1 + 2 (𝑙
𝑛
− 1))

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

+ 𝜆
󵄩󵄩󵄩󵄩(𝐼 − 𝑇

𝑛

)𝑥 − (𝐼 − 𝑇
𝑛

)𝑦
󵄩󵄩󵄩󵄩

2

,

(4)

where 𝜆 = (1 − 2𝑘). 𝑇 is called uniformly Lipschitz if there
exists 𝐿 ≥ 0 such that ‖𝑇𝑛𝑥 − 𝑇

𝑛

𝑦‖ ≤ 𝐿‖𝑥 − 𝑦‖ for all
𝑥, 𝑦 ∈ 𝐷(𝑇). It is shown in [4] that an asymptotically 𝑘-strict
pseudocontractive mapping is uniformly Lipschitz.

The class of asymptotically 𝑘-strict pseudocontractive
mappings was first introduced in Hilbert spaces by Liu [5].
He proved the following theorem.
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Theorem Q (see [5]). Let 𝐾 be a closed convex and bounded
subset of a Hilbert space 𝐻. Let 𝑇 : 𝐾 → 𝐾 be completely
continuous asymptotically 𝑘-strict pseudocontractive mapping
for some 0 ≤ 𝑘 < 1 with sequence {𝑙

𝑛
} ⊂ [0,∞) such that

∑(𝑙
𝑛
− 1) < ∞ and 𝐹(𝑇) ̸= 0. Let {𝑥

𝑛
} be a sequence generated

by the modified Mann’s iteration method:

𝑥
𝑛+1

= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝑇
𝑛

𝑥
𝑛
, 𝑛 ≥ 1, (5)

where {𝛼
𝑛
} is a real sequence satisfying 𝜖 ≤ 𝛼

𝑛
≤ 1 − 𝑘 − 𝜖 for

all 𝑛 ≥ 1 and some 𝜖 > 0. Then, {𝑥
𝑛
} converges strongly to a

fixed point of 𝑇.

The iteration scheme (5) is called modified Mann’s
iterative processes which was introduced by Schu [7, 8] and
has been used by several authors (see, e.g., [3–5, 9–17]). We
observe that Liu [5] proved strong convergence of scheme (5)
to a fixed point of asymptotically 𝑘-strict pseudocontractive
mapping 𝑇 with additional assumption that 𝑇 is completely
continuous, where 𝑇 : 𝐶 → 𝐶 is said to be completely
continuous if for every bounded sequence {𝑥

𝑛
}, there exists

a subsequence, say {𝑥
𝑛
𝑗

} of {𝑥
𝑛
} such that the sequence {𝑇𝑥

𝑛
𝑗

}

converges strongly to some element of the range of 𝑇.
In [12], Kim and Xu studied weak convergence theorem

for the class of asymptotically 𝑘-strict pseudocontractive
mappings in the frame work of Hilbert spaces. In fact, they
proved the following.

TheoremKX (see [12]). Let K be a closed and convex subset of
aHilbert space𝐻. Let𝑇 : 𝐾 → 𝐾 be an asymptotically 𝑘-strict
pseudocontractive mapping for some 0 ≤ 𝑘 < 1 with sequence
{𝑙
𝑛
} ⊂ [0,∞) such that∑(𝑙

𝑛
−1) < ∞ and𝐹(𝑇) ̸= 0. Let {𝑥

𝑛
} be

a sequence generated by the modified Mann’s iteration method:

𝑥
𝑛+1

= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝑇
𝑛

𝑥
𝑛
, 𝑛 ≥ 1, (6)

where {𝛼
𝑛
} is a real sequence satisfying 𝑘 + 𝜆 ≤ 𝛼

𝑛
≤ 1 − 𝜆, for

all 𝑛 ≥ 1, and 𝜆 ∈ (0, 1). Then, {𝑥
𝑛
} converges weakly to a fixed

point of 𝑇.

In 2007, Osilike et al. [13] extended Theorem KX by
proving weak convergence of scheme (6) to a fixed point of
𝑇 in the frame work of 𝑞 uniformly smooth Banach spaces
which are also uniformly convex under suitable control
conditions.

In 2011, Zhang and Xie [17] extendedTheorem of Osilike
et al. [13] to a more general real uniformly convex Banach
space 𝐸 with Fréchet differentiable norm. In addition, they
proved strong convergence of scheme (5) to a fixed point of
asymptotically 𝑘-strict pseudocontractive mapping provided
that lim inf

𝑛→∞
𝑑(𝑥
𝑛
, 𝐹(𝑇)) = 0, where 𝑑(𝑥

𝑛
, 𝐹(𝑇)) =

inf
𝑝∈𝐹(𝑇)

||𝑥
𝑛
− 𝑝||.

However, we observe that the convergence obtained
above is either weak or requiring additional assumption like
lim inf

𝑛→∞
𝑑(𝑥
𝑛
, 𝐹(𝑇)) = 0 or 𝑇 is completely continuous.

But the requirement that lim inf
𝑛→∞

𝑑(𝑥
𝑛
, 𝐹(𝑇)) = 0 is not

easy to verify, as 𝐹(𝑇) is in general unknown, and there is
also an example of asymptotically 𝑘-strict pseudocontractive
mappingwhich is not completely continuous as shown below.

An example of asymptotically 𝑘-strict pseudocontractive
mapping which is not completely continuous.

Example 1. Let 𝐸 = 𝑙
2
= {𝑥 = {𝑥

𝑖
}
∞

𝑖=1
, 𝑥
𝑖
∈ R, ∑

∞

𝑖=1
|𝑥
𝑖
|
2

<

∞} and 𝐵 = {𝑥 ∈ 𝑙
2

: ||𝑥|| ≤ 1}. Define 𝑇 : 𝐵 →

𝐵 by 𝑇𝑥 = (0, 𝑥
2

1
, 𝑎
2
𝑥
2
, 𝑎
3
𝑥
3
, . . .), where {𝑎

𝑘
}
∞

𝑘=1
is a real

sequence satisfying 0 < 𝑎
𝑘

< 1, 𝑘 ≥ 2, and Π
∞

𝑘=2
𝑎
𝑘

=

1/2. Then it is shown in [13] that 𝑇 is asymptotically 𝑘-strict
pseudocontractive mapping.

Now, we show that 𝑇 is not completely continuous. Let
{𝑥
𝑛
} be a sequence in 𝐵 defined by 𝑥

1
= (1, 0, 0, . . .), 𝑥

2
=

(0, 1, 0, 0, . . .), 𝑥
3

= (0, 0, 1, 0, 0, . . .), . . .. Then {𝑥
𝑛
} ⊂ 𝐵

and {𝑇𝑥
𝑛
} = {𝑦

𝑛
} is given by 𝑦

1
= (0, 1, 0, 0, . . .), 𝑦

2
=

(0, 0, 𝑎
2
, 0, 0, . . .), 𝑦

3
= (0, 0, 0, 𝑎

3
, 0, 0, . . .), . . .. Hence, since

𝑎
𝑘

→ 1, as 𝑘 → ∞, there is no subsequence {𝑥
𝑛
𝑖

} of
{𝑥
𝑛
} such that {𝑇𝑥

𝑛
𝑖

} converges strongly to a point in 𝐵, as
||𝑇𝑥
𝑛
𝑖

− 𝑇𝑥
𝑛
𝑗

|| = ||𝑦
𝑛
𝑖

− 𝑦
𝑛
𝑗

|| = √|𝑎
𝑛
𝑖

|2 + |𝑎
𝑛
𝑗

|2 󴀀󴀂󴀠 0, as
𝑖, 𝑗 → ∞. Therefore, 𝑇 is not completely continuous.

Thus, one question is raised naturally: can we obtain a
scheme that converges strongly to a fixed point of asymp-
totically 𝑘-strict pseudocontractive mappings without those
additional assumptions?

It is our purpose in this paper to provide an iterative
scheme {𝑥

𝑛
} which converges strongly to a common fixed

point of finite family of asymptotically 𝑘-strict pseudocon-
tractive mappings in Banach spaces. The assumption that
lim inf

𝑛→∞
𝑑(𝑥
𝑛
, 𝐹(𝑇)) = 0 or 𝑇 is completely continuous

is not required.

2. Preliminaries

We need the following definitions from [18]. The Banach
space 𝐸 is said to be uniformly convex if, given 𝜀 > 0, there
exists 𝛿 > 0, such that, for all 𝑥, 𝑦 ∈ 𝐸 with ‖𝑥‖ ≤ 1, ‖𝑦‖ ≤ 1

and ‖𝑥 − 𝑦‖ ≥ 𝜀, ‖(1/2)(𝑥 + 𝑦)‖ ≤ 1 − 𝛿. It is well known that
𝐿
𝑝
, ℓ
𝑝
, and Sobolev spaces 𝑊𝑝

𝑚
, (1 < 𝑝 < ∞), are uniformly

convex.
A Banach space 𝐸 is said to have a Fréchet differentiable

norm if for all 𝑥 ∈ 𝐵 = {𝑥 ∈ 𝐸 : ||𝑥|| = 1}

lim
𝑡→0

󵄩󵄩󵄩󵄩𝑥 + 𝑡𝛾
󵄩󵄩󵄩󵄩 − ‖𝑥‖

𝑡

(7)

exists and is attained uniformly in 𝑦 ∈ 𝐵. It is well known that
uniformly smooth Banach spaces has a Fréchet differentiable
norm.

In order to prove our results, we need the following
lemmas.

Lemma 2 (see [19]). Let 𝐶 be a nonempty close convex subset
of a real Banach space 𝐸 which has the Fréchet differentiable
norm. For 𝑥 ∈ 𝐸, let 𝜌 be defined for 0 < 𝑡 < ∞ by

𝜌 (𝑡) = sup
𝛾∈𝐵

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑥 + 𝑡𝛾
󵄩󵄩󵄩󵄩

2

− ‖𝑥‖
2

𝑡
− 2 ⟨𝛾, 𝑗 (𝑥)⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (8)

Then, lim
𝑡→0

𝜌(𝑡) = 0 and

‖𝑥 + ℎ‖
2

≤ ‖𝑥‖
2

+ 2 ⟨ℎ, 𝑗 (𝑥)⟩ + ||ℎ|| 𝜌 (‖ℎ‖) , ∀ℎ ∈ 𝐸 \ {0} .

(9)
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It is shown in [19] that if 𝐸 = 𝐻, a real Hilbert space, then
𝜌(𝑡) = 𝑡, for 𝑡 > 0. In our general setting, throughout this
paper we assume that 𝜌(𝑡) ≤ 2𝑡.

Lemma 3. Let 𝐸 be a real Banach space. Then the following
inequality holds:

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩

2

≤ ‖𝑥‖
2

+ ⟨𝑦, 𝑗 (𝑥 + 𝑦)⟩ ,

∀𝑥, 𝑦 ∈ 𝐻, 𝑗 (𝑥 + 𝑦) ∈ 𝐽 (𝑥 + 𝑦) .

(10)

Lemma 4 (see [20]). Let 𝐸 be a uniformly convex Banach
space and 𝐵

𝑅
(0) a closed ball of 𝐸. Then, there exists a

continuous strictly increasing convex function 𝑔 : [0,∞) →

[0,∞) with 𝑔(0) = 0 such that

󵄩󵄩󵄩󵄩𝛼0𝑥0 + 𝛼
1
𝑥
1
+ 𝛼
2
𝑥
2
+ ⋅ ⋅ ⋅ + 𝛼

𝑘
𝑥
𝑘

󵄩󵄩󵄩󵄩

2

≤

𝑘

∑

𝑖=0

𝛼
𝑖

󵄩󵄩󵄩󵄩𝑥𝑖
󵄩󵄩󵄩󵄩

2

− 𝛼
𝑖
𝛼
𝑗
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖
− 𝑥
𝑗

󵄩󵄩󵄩󵄩󵄩
) ,

(11)

for each 𝛼
𝑖
∈ (0, 1) and for 𝑥

𝑖
∈ 𝐵
𝑅
(0) := {𝑥 ∈ 𝐸 : ||𝑥|| ≤ 𝑅},

𝑖 = 0, 1, 2, . . . , 𝑘 with ∑𝑘
𝑖=0

𝛼
𝑖
= 1.

Lemma 5 (see [21]). Let {𝑎
𝑛
} be a sequence of nonnegative real

numbers satisfying the following relation:

𝑎
𝑛+1

≤ (1 − 𝛼
𝑛
) 𝑎
𝑛
+ 𝛼
𝑛
𝛿
𝑛
, 𝑛 ≥ 𝑛

0
, (12)

where {𝛼
𝑛
} ⊂ (0, 1) and {𝛿

𝑛
} ⊂ 𝑅 satisfying the following condi-

tions: lim
𝑛→∞

𝛼
𝑛
= 0, ∑

∞

𝑛=1
𝛼
𝑛
= ∞, and lim sup

𝑛→∞
𝛿
𝑛
≤ 0.

Then, lim
𝑛→∞

𝑎
𝑛
= 0.

Lemma 6 (see [17]). Let 𝐶 be a nonempty closed convex
subset of a real uniformly convex Banach space 𝐸 which has
the Fréchet differentiable norm. Let 𝑇 : 𝐶 → 𝐶 be an
asymptotically 𝑘-strict pseudocontractive mapping with fixed
point of 𝑇, 𝐹(𝑇) := {𝑥 ∈ 𝐶 : 𝑇𝑥 = 𝑥} ̸= 0. Then (𝐼 − 𝑇) is
demiclosed at zero, that is, if 𝑥

𝑛
⇀ 𝑥 and 𝑇𝑥

𝑛
− 𝑥
𝑛
→ 0, as

𝑛 → ∞, then 𝑥 = 𝑇(𝑥).

Lemma 7 (see [22]). Let {𝑎
𝑛
} be sequences of real numbers

such that there exists a subsequence {𝑛
𝑖
} of {𝑛} such that 𝑎

𝑛
𝑖

<

𝑎
𝑛
𝑖
+1

for all 𝑖 ∈ 𝑁. Then there exists a nondecreasing sequence
{𝑚
𝑘
} ⊂ 𝑁 such that𝑚

𝑘
→ ∞ and the following properties are

satisfied by all (sufficiently large) numbers 𝑘 ∈ 𝑁:

𝑎
𝑚
𝑘

≤ 𝑎
𝑚
𝑘
+1
, 𝑎

𝑘
≤ 𝑎
𝑚
𝑘
+1
. (13)

In fact,𝑚
𝑘
= max{𝑗 ≤ 𝑘 : 𝑎

𝑗
< 𝑎
𝑗+1

}.

3. Main Results

We now prove our main theorem.

Theorem 8. Let 𝐶 be a nonempty, closed, and convex subset
of a real uniformly convex Banach space 𝐸 which has Fréchet
differentiable normpossessing aweakly sequentially continuous
duality mapping from 𝐸 into 𝐸∗. Let 𝑇

𝑖
: 𝐶 → 𝐶 be asymp-

totically 𝑘
𝑖
-strict pseudocontractive mappings for 0 ≤ 𝑘

𝑖
< 1

with sequences {𝑙
𝑛,𝑖
} ⊂ [1,∞), for 𝑖 = 1, 2, . . . , 𝑁. Assume that

𝐹 := ∩
𝑁

𝑖=1
𝐹(𝑇
𝑖
) is nonempty. Let {𝑥

𝑛
} be a sequence defined by

𝑥
1
= 𝑢 ∈ 𝐶 and

𝑥
𝑛+1

= 𝛼
𝑛
𝑢 + (1 − 𝛼

𝑛
) ((1 − 𝛽

𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑆
𝑛
𝑥
𝑛
) , 𝑛 ≥ 1,

(14)

where 𝑆
𝑛
:= 𝜃
𝑛,1
𝑇
𝑛

1
+ 𝜃
𝑛,2
𝑇
𝑛

2
+ ⋅ ⋅ ⋅ + 𝜃

𝑛,𝑁
𝑇
𝑛

𝑁
, such that 𝜃

𝑛,1
+

𝜃
𝑛,2

+ ⋅ ⋅ ⋅ + 𝜃
𝑛,𝑁

= 1, for each 𝑛 ≥ 1, {𝛼
𝑛
}, {𝜃
𝑛,𝑖
} ⊂ (0, 𝑐) ⊂

(0, 1), satisfying lim inf
𝑛
𝜃
𝑛,𝑖

> 0, lim
𝑛→∞

𝛼
𝑛
= 0, ∑𝛼

𝑛
= ∞,

lim
𝑛→∞

((𝑙
𝑛,𝑖

− 1)/𝛼
𝑛
) = 0, for 𝑖 = 1, 2, . . . , 𝑁 and {𝛽

𝑛
} ⊂

[𝑎, 𝑏] ⊂ (0, 𝑘) (𝑎, 𝑏, and 𝑐 constants), for 𝑘 = min
1≤𝑖≤𝑁

{𝑘
𝑖
},

Then the sequence {𝑥
𝑛
} generated by (14) converges strongly to

a common fixed point of {𝑇
𝑖
: 𝑖 = 1, 2, . . . , 𝑁}.

Proof. Fix 𝑥
∗

∈ 𝐹. Let 𝑦
𝑛
= (1 − 𝛽

𝑛
)𝑥
𝑛
+ 𝛽
𝑛
𝑆
𝑛
𝑥
𝑛
and 𝑙
𝑛
:=

max{𝑙
𝑛,𝑖

: 𝑖 = 1, 2, . . . , 𝑁}. Then, using Lemma 2 and (3) we
have that
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩(𝑥𝑛 − 𝑥

∗

) − 𝛽
𝑛
(𝑥
𝑛
− 𝑆
𝑛
𝑥
𝑛
)
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩(𝑥𝑛 − 𝑥

∗

)

−𝛽
𝑛
(𝑥
𝑛
− (𝜃
𝑛,1
𝑇
𝑛

1
+ 𝜃
𝑛,2
𝑇
𝑛

2
+ ⋅ ⋅ ⋅ + 𝜃

𝑛,𝑁
𝑇
𝑛

𝑁
) 𝑥
𝑛
)
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

− 2𝛽
𝑛
⟨𝜃
𝑛,1

(𝑥
𝑛
− 𝑇
𝑛

1
𝑥
𝑛
) + 𝜃
𝑛,2

(𝑥
𝑛
− 𝑇
𝑛

2
𝑥
𝑛
)

+ ⋅ ⋅ ⋅ + 𝜃
𝑛,𝑁

(𝑥
𝑛
− 𝑇
𝑛

𝑁
𝑥
𝑛
) , 𝑗 (𝑥

𝑛
− 𝑥
∗

)⟩

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩 𝜌 (𝛽𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩)

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

− 2𝛽
𝑛
𝜃
𝑛,1

⟨𝑥
𝑛
− 𝑇
𝑛

1
𝑥
𝑛
, 𝑗 (𝑥
𝑛
− 𝑥
∗

)⟩

− 2𝛽
𝑛
𝜃
𝑛,2

⟨𝑥
𝑛
− 𝑇
𝑛

2
𝑥
𝑛
, 𝑗 (𝑥
𝑛
− 𝑥
∗

)⟩

− ⋅ ⋅ ⋅ − 2𝛽
𝑛
𝜃
𝑛,𝑁

⟨𝑥
𝑛
− 𝑇
𝑛

𝑁
𝑥
𝑛
, 𝑗 (𝑥
𝑛
− 𝑥
∗

)⟩

+ 2𝛽
2

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

− 2𝛽
𝑛
𝜃
𝑛,1

[𝑘
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑛

1
𝑥
𝑛

󵄩󵄩󵄩󵄩

2

− (𝑙
𝑛
− 1)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

]

− 2𝛽
𝑛
𝜃
𝑛,2

[𝑘
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑛

2
𝑥
𝑛

󵄩󵄩󵄩󵄩

2

− (𝑙
𝑛
− 1)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

]

− ⋅ ⋅ ⋅ − 2𝛽
𝑛
𝜃
𝑛,𝑁

[𝑘
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑛

𝑁
𝑥
𝑛

󵄩󵄩󵄩󵄩

2

− (𝑙
𝑛
− 1)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

]

+ 2𝛽
2

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩

2

≤ [1 + 2𝛽
𝑛
(𝑙
𝑛
− 1)]

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

− 2𝛽
𝑛
𝜃
𝑛,1
𝑘
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑛

1
𝑥
𝑛

󵄩󵄩󵄩󵄩

2

− 2𝛽
𝑛
𝜃
𝑛,2
𝑘
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑛

2
𝑥
𝑛

󵄩󵄩󵄩󵄩

2

− ⋅ ⋅ ⋅ − 2𝛽
𝑛
𝜃
𝑛,𝑁

𝑘
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑛

𝑁
𝑥
𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝛽
2

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩

2

.

(15)
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On the other hand using Lemma 4 we get that

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑥𝑛 − (𝜃

𝑛,1
𝑇
𝑛

1
+ 𝜃
𝑛,2
𝑇
𝑛

2
+ ⋅ ⋅ ⋅ + 𝜃

𝑛,𝑁
𝑇
𝑛

𝑁
) 𝑥
𝑛

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝜃𝑛,1 (𝑥𝑛 − 𝑇

𝑛

1
𝑥
𝑛
) + 𝜃
𝑛,2

(𝑥
𝑛
− 𝑇
𝑛

2
𝑥
𝑛
)

+ ⋅ ⋅ ⋅ + 𝜃
𝑛,𝑁

(𝑥
𝑛
− 𝑇
𝑛

𝑁
𝑥
𝑛
)
󵄩󵄩󵄩󵄩

2

≤ 𝜃
𝑛,1

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇
𝑛

1
𝑥
𝑛

󵄩󵄩󵄩󵄩

2

+ 𝜃
𝑛,2

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇
𝑛

2
𝑥
𝑛

󵄩󵄩󵄩󵄩

2

+ ⋅ ⋅ ⋅ + 𝜃
𝑛,𝑁

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇
𝑛

𝑁
𝑥
𝑛

󵄩󵄩󵄩󵄩

2

.

(16)

Now substituting (16) into (15) we obtain that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

≤ [1 + 2𝛽
𝑛
(𝑙
𝑛
− 1)]

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

− 2𝛽
𝑛
𝜃
𝑛,1

(𝑘 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑛

1
𝑥
𝑛

󵄩󵄩󵄩󵄩

2

− 2𝛽
𝑛
𝜃
𝑛,2

(𝑘 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑛

2
𝑥
𝑛

󵄩󵄩󵄩󵄩

2

− ⋅ ⋅ ⋅ − 2𝛽
𝑛
𝜃
𝑛,𝑁

(𝑘 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑛

𝑁
𝑥
𝑛

󵄩󵄩󵄩󵄩

2

(17)

≤ [1 + 2𝛽
𝑛
(𝑙
𝑛
− 1)]

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

, (18)

since (𝑘 − 𝛽
𝑛
) ≥ 0 for each 𝑛 ≥ 1. Then now, from (14) and

(18) we get that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛼𝑛(𝑢 − 𝑥

∗

) + (1 − 𝛼
𝑛
)(𝑦
𝑛
− 𝑥
∗

)
󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑢 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑢 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+ (1 − 𝛼
𝑛
) [1 + 2𝛽

𝑛
(𝑙
𝑛
− 1)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

]

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑢 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+ (1 − 𝛼
𝑛
+ 𝜖𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

, ∀𝑛 ≥ 𝑁
0
,

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑢 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+ (1 − 𝛼
𝑛
(1 − 𝜖))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

, ∀𝑛 ≥ 𝑁
0
,

(19)

where 𝑁
0
is a positive integer such that 2(1 − 𝛼

𝑛
)𝛽
𝑛
(𝑙
𝑛
−

1)/𝛼
𝑛
< 𝜖, for all 𝑛 ≥ 𝑁

0
, for some 𝜖 > 0. Therefore, by

induction,

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

≤ max {󵄩󵄩󵄩󵄩󵄩𝑥𝑁0 − 𝑥
∗
󵄩󵄩󵄩󵄩󵄩

2

, (1 − 𝜖)
−1󵄩󵄩󵄩󵄩𝑢 − 𝑥

∗󵄩󵄩󵄩󵄩

2

} ,

∀𝑛 ≥ 𝑁
0
,

(20)

which implies that {𝑥
𝑛
} and hence {𝑦

𝑛
} are bounded.

Furthermore, from (14), Lemma 3, and (17) we get that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛼𝑛 (𝑢 − 𝑥

∗

) + (1 − 𝛼
𝑛
)(𝑦
𝑛
− 𝑥
∗

)
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑢 − 𝑥

∗

, 𝐽 (𝑥
𝑛+1

− 𝑥
∗

)⟩

≤ (1 − 𝛼
𝑛
) [1 + 2𝛽

𝑛
(𝑙
𝑛
− 1)]

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑢 − 𝑥

∗

, 𝐽 (𝑥
𝑛+1

− 𝑥
∗

)⟩

− 2𝛽
𝑛
𝜃
𝑛,1

(𝑘 − 𝛽
𝑛
) (1 − 𝛼

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑛

1
𝑥
𝑛

󵄩󵄩󵄩󵄩

2

− 2𝛽
𝑛
𝜃
𝑛,2

(𝑘 − 𝛽
𝑛
) (1 − 𝛼

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑛

2
𝑥
𝑛

󵄩󵄩󵄩󵄩

2

− ⋅ ⋅ ⋅ − 2𝛽
𝑛
𝜃
𝑛,𝑁

(𝑘 − 𝛽
𝑛
) (1 − 𝛼

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑛

𝑁
𝑥
𝑛

󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑢 − 𝑥

∗

, 𝐽 (𝑥
𝑛+1

− 𝑥
∗

)⟩

+ 2𝛽
𝑛
𝑀(𝑙
𝑛
− 1)

− 2𝛽
𝑛
𝜃
𝑛,1

(1 − 𝛼
𝑛
) (𝑘 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑛

1
𝑥
𝑛

󵄩󵄩󵄩󵄩

2

− 2𝛽
𝑛
𝜃
𝑛,2

(𝑘 − 𝛽
𝑛
) (1 − 𝛼

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑛

2
𝑥
𝑛

󵄩󵄩󵄩󵄩

2

− ⋅ ⋅ ⋅ − 2𝛽
𝑛
𝜃
𝑛,𝑁

(𝑘 − 𝛽
𝑛
) (1 − 𝛼

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑛

𝑁
𝑥
𝑛

󵄩󵄩󵄩󵄩

2

(21)

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑢 − 𝑥

∗

, 𝐽 (𝑥
𝑛+1

− 𝑥
∗

)⟩

+ 2𝛽
𝑛
𝑀(𝑙
𝑛
− 1) ,

(22)

for some𝑀 > 0.
Now, the rest of the proof is divided into two parts.

Case 1. Suppose that there exists𝑁
1
≥ 0 such that {||𝑥

𝑛
−𝑥
∗

||}

is decreasing for all 𝑛 ≥ 𝑁
1
. Then we have that {||𝑥

𝑛
−𝑥
∗

||)} is
convergent.Then from (21) and the assumptions on {𝛽

𝑛
}, {𝛼
𝑛
},

and {𝑙
𝑛
} we have that 𝛽

𝑛
𝜃
𝑛,𝑖
(1 − 𝑐)(𝑘 − 𝛽

𝑛
)||𝑥
𝑛
−𝑇
𝑛

𝑖
𝑥
𝑛
||
2

→ 0,
as 𝑛 → ∞, which implies that

𝑥
𝑛
− 𝑇
𝑛

𝑖
𝑥
𝑛
󳨀→ 0, as 𝑛 󳨀→ ∞, (23)

for 𝑖 = 1, 2, . . . , 𝑁. Then from (14) we obtain that

𝑥
𝑛+1

− 𝑦
𝑛
= 𝛼
𝑛
(𝑢 − 𝑦

𝑛
) 󳨀→ 0, as 𝑛 󳨀→ ∞. (24)

Again, from (23) we get that
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝛽𝑛 (𝑆𝑛𝑥𝑛 − 𝑥

𝑛
)
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩

≤ 𝜃
𝑛,1

󵄩󵄩󵄩󵄩𝑇
𝑛

1
𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩 + 𝜃
𝑛,2

󵄩󵄩󵄩󵄩𝑇
𝑛

2
𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩

+ ⋅ ⋅ ⋅ + 𝜃
𝑛,𝑁

󵄩󵄩󵄩󵄩𝑇
𝑛

𝑁
𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0,

(25)

as 𝑛 → ∞. Thus, (24) and (25) imply that

𝑥
𝑛+1

− 𝑥
𝑛
󳨀→ 0, as 𝑛 󳨀→ ∞. (26)
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Therefore, since each 𝑇
𝑖
, for 𝑖 = 1, 2, . . . , 𝑁, is uniformly 𝐿-

Lipschitzian and
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑖
𝑥
𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛+1

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛+1

− 𝑇
𝑛+1

𝑖
𝑥
𝑛+1

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛+1

𝑖
𝑥
𝑛+1

− 𝑇
𝑛+1

𝑖
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛+1

𝑖
𝑥
𝑛
− 𝑇
𝑖
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛+1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛+1

− 𝑇
𝑛+1

𝑖
𝑥
𝑛+1

󵄩󵄩󵄩󵄩󵄩
+ 𝐿

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
𝑛

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑇𝑖 (𝑇

𝑛

𝑖
𝑥
𝑛
) − 𝑇
𝑖
𝑥
𝑛

󵄩󵄩󵄩󵄩

= (1 + 𝐿)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛+1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛+1

− 𝑇
𝑛+1

𝑖
𝑥
𝑛+1

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑇𝑖 (𝑇

𝑛

𝑖
𝑥
𝑛
) − 𝑇
𝑖
𝑥
𝑛

󵄩󵄩󵄩󵄩 ,

(27)

we have from (23), (26), and uniform continuity of 𝑇
𝑖
that

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇
𝑖
𝑥
𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0, as 𝑛 󳨀→ ∞, (28)

for each 𝑖 = 1, 2, . . . , 𝑁. Furthermore, the fact that {𝑥
𝑛
} is

bounded and 𝐸 is reflexive implies that we can choose a
subsequence {𝑥

𝑛
𝑖
+1
} of {𝑥

𝑛+1
} such that 𝑥

𝑛
𝑖
+1

⇀ 𝑧 and

lim sup
𝑛→∞

⟨𝑢 − 𝑥
∗

, 𝐽 (𝑥
𝑛+1

− 𝑥
∗

)⟩

= lim
𝑖→∞

⟨𝑢 − 𝑥
∗

, 𝐽 (𝑥
𝑛
𝑖
+1

− 𝑥
∗

)⟩ .

(29)

Now, from (26) we get that 𝑥
𝑛
𝑖

⇀ 𝑧 and from Lemma 6
we have that 𝑧 ∈ 𝐹(𝑇

𝑖
), for each 𝑖 = 1, 2, . . . , 𝑁. Hence,

𝑧 ∈ ∩
𝑁

𝑖=1
𝐹(𝑇
𝑖
).Therefore, putting 𝑥∗ = 𝑧 in (29) and using the

fact that 𝐽 is weakly sequentially continuous we immediately
obtain that lim sup

𝑛→∞
⟨𝑢 − 𝑧, 𝐽(𝑥

𝑛+1
− 𝑧)⟩ = lim

𝑖→∞
⟨𝑢 −

𝑧, 𝐽(𝑥
𝑛
𝑖
+1

− 𝑧)⟩ = ⟨𝑢 − 𝑧, 𝐽(𝑧 − 𝑧)⟩ = 0. Again, putting 𝑥∗ = 𝑧

in inequality (22), we get that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑢 − 𝑧, 𝐽 (𝑥

𝑛+1
− 𝑧)⟩

+ 2𝛽
𝑛
𝑀(𝑙
𝑛
− 1) ,

(30)

and, hence, it follows from (30) and Lemma 5 that ||𝑥
𝑛
−𝑧|| →

0, as 𝑛 → ∞. Consequently, 𝑥
𝑛
→ 𝑧.

Case 2. Suppose that there exists a subsequence {𝑛
𝑖
} of {𝑛}

such that
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
𝑖

− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩
<
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
𝑖
+1

− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩
, (31)

for all 𝑖 ∈ 𝑁. Then, by Lemma 7, there exists a nondecreasing
sequence {𝑚

𝑗
} ⊂ 𝑁 such that 𝑚

𝑗
→ ∞, ||𝑥

𝑚
𝑗

− 𝑥
∗

|| ≤

||𝑥
𝑚
𝑗
+1

− 𝑥
∗

|| and ||𝑥
𝑗
− 𝑥
∗

|| ≤ ||𝑥
𝑚
𝑗
+1

− 𝑥
∗

|| for all 𝑗 ∈ 𝑁.
Then from (21) and following the method of Case 1, we get
that

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚
𝑗

− 𝑇
𝑚
𝑗

𝑖
𝑥
𝑚
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩
󳨀→ 0, as 𝑗 󳨀→ ∞, (32)

for each 𝑖 = 1, 2, . . . , 𝑁. Thus, again following the method of
Case 1, we obtain that 𝑥

𝑚
𝑗
+1
−𝑥
𝑚
𝑗

→ 0 and 𝑥
𝑚
𝑗

−𝑇
𝑖
𝑥
𝑚
𝑗

→ 0,
as 𝑗 → ∞, for each 𝑖 = 1, 2, . . . , 𝑁 and there exists 𝑧∗ ∈

∩
𝑁

𝑖=1
𝐹(𝑇
𝑖
) such that

lim sup
𝑗→∞

⟨𝑢 − 𝑧
∗

, 𝐽 (𝑥
𝑚
𝑗
+1

− 𝑧
∗

)⟩ = 0. (33)

Then now, putting 𝑥∗ = 𝑧
∗ in (22) we have that

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚
𝑗
+1

− 𝑧
∗
󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼
𝑚
𝑗

)
󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚
𝑗

− 𝑧
∗
󵄩󵄩󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑚
𝑗

⟨𝑢 − 𝑧
∗

, 𝐽 (𝑥
𝑚
𝑗
+1

− 𝑧
∗

)⟩

+ 2𝛽
𝑚
𝑗

𝑀(𝑙
𝑚
𝑗

− 1) .

(34)

Since ‖𝑥
𝑚
𝑗

− 𝑧
∗

‖
2

≤ ‖𝑥
𝑚
𝑗
+1

− 𝑧
∗

‖
2, (34) implies that

𝛼
𝑚
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚
𝑗

− 𝑧
∗
󵄩󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚
𝑗

− 𝑧
∗
󵄩󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚
𝑗
+1

− 𝑧
∗
󵄩󵄩󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑚
𝑗

⟨𝑢 − 𝑧
∗

, 𝐽 (𝑥
𝑚
𝑗
+1

− 𝑧
∗

)⟩

+ 2𝛽
𝑚
𝑗

𝑀(𝑙
𝑚
𝑗

− 1) .

(35)

Moreover, since 𝛼
𝑚
𝑗

> 0, inequality (35) gives that

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚
𝑗

− 𝑧
∗
󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ 2⟨𝑢 − 𝑧
∗

, 𝐽 (𝑥
𝑚
𝑗
+1

− 𝑧
∗

)⟩

+

2𝛽
𝑚
𝑗

𝑀(𝑙
𝑚
𝑗

− 1)

𝛼
𝑚
𝑗

.

(36)

Then, from (33) and the fact that 2𝛽
𝑚
𝑗

𝑀(𝑙
𝑚
𝑗

− 1)/𝛼
𝑚
𝑗

→ 0,
we obtain that ||𝑥

𝑚
𝑗

− 𝑧
∗

|| → 0, as 𝑗 → ∞. This together
with (34) gives that ||𝑥

𝑚
𝑗
+1

− 𝑧
∗

|| → 0, as 𝑗 → ∞. But
||𝑥
𝑗
− 𝑧
∗

|| ≤ ||𝑥
𝑚
𝑗
+1

− 𝑧
∗

||, for all 𝑗 ∈ 𝑁; thus we obtain
that 𝑥

𝑗
→ 𝑧
∗. Therefore, from the above two cases, we can

conclude that {𝑥
𝑛
} converges strongly to an element of 𝐹 and

the proof is complete.

If, in Theorem 8, we assume a single asymptotically
𝑘-strict pseudocontractive mapping we get the following
corollary.

Corollary 9. Let 𝐶 be a nonempty, closed, and convex subset
of a real uniformly convex Banach space 𝐸 which has Fréchet
differentiable normpossessing aweakly sequentially continuous
duality mapping from 𝐸 into 𝐸

∗. Let 𝑇 : 𝐶 → 𝐶 be an
asymptotically 𝑘-strict pseudocontractive mapping for 0 ≤ 𝑘 <

1with sequences {𝑙
𝑛
} ⊂ [1,∞). Assume that 𝐹(𝑇) is nonempty.

Let {𝑥
𝑛
} be a sequence defined by 𝑥

1
= 𝑢 ∈ 𝐶 and

𝑥
𝑛+1

= 𝛼
𝑛
𝑢 + (1 − 𝛼

𝑛
) ((1 − 𝛽

𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑇
𝑛

𝑥
𝑛
) , 𝑛 ≥ 1,

(37)

where {𝛼
𝑛
} ⊂ (0, 𝑐) ⊂ (0, 1), satisfying lim

𝑛→∞
𝛼
𝑛
= 0, ∑𝛼

𝑛
=

∞, lim
𝑛→∞

((𝑙
𝑛
− 1)/𝛼

𝑛
) = 0, and {𝛽

𝑛
} ⊂ [𝑎, 𝑏] ⊂ (0, 𝑘) (𝑎,

𝑏, and 𝑐 constants). Then the sequence {𝑥
𝑛
} generated by (37)

converges strongly to a fixed point of 𝑇.
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Proof. Putting 𝑇 = 𝑇
1
= 𝑇
2
= ⋅ ⋅ ⋅ = 𝑇

𝑁
in (14), we get that

𝑆
𝑛
= 𝑇
𝑛 and the scheme reduces to scheme (37) and following

the method of proof of Theorem 8 we get that (see (21) and
(22))

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑢 − 𝑥

∗

, 𝐽 (𝑥
𝑛+1

− 𝑥
∗

)⟩

− 2𝛽
𝑛
(𝑘 − 𝛽

𝑛
) (1 − 𝛼

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝛽
𝑛
𝑀
󸀠

(𝑙
𝑛
− 1)

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑢 − 𝑥

∗

, 𝐽 (𝑥
𝑛+1

− 𝑥
∗

)⟩

− 2𝛽
𝑛
(𝑘 − 𝛽

𝑛
) (1 − 𝑐)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝛽
𝑛
𝑀
󸀠

(𝑙
𝑛
− 1)

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑢 − 𝑥

∗

, 𝐽 (𝑥
𝑛+1

− 𝑥
∗

)⟩

+ 2𝛽
𝑛
𝑀
󸀠

(𝑙
𝑛
− 1) ,

(38)

for some 𝑀󸀠 > 0. Now, considering cases, as in the proof of
Theorem 8, we obtain the required result.

Corollary 10. Let𝐾 be a nonempty, closed, and convex subset
of 𝑙
𝑝
, 1 < 𝑝 < ∞. Let 𝑇

𝑖
: 𝐶 → 𝐶 be asymptotically 𝑘

𝑖
-strict

pseudocontractive mappings for 0 ≤ 𝑘
𝑖
< 1 with sequences

{𝑙
𝑛,𝑖
} ⊂ [1,∞), for 𝑖 = 1, 2, . . . , 𝑁. Assume that 𝐹 := ∩

𝑛

𝑖=1
𝐹(𝑇
𝑖
)

is nonempty. Let {𝑥
𝑛
} be a sequence defined by 𝑥

1
= 𝑢 ∈ 𝐶 and

𝑥
𝑛+1

= 𝛼
𝑛
𝑢 + (1 − 𝛼

𝑛
) ((1 − 𝛽

𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑆
𝑛
𝑥
𝑛
) , 𝑛 ≥ 1,

(39)

where 𝑆
𝑛
:= 𝜃
𝑛,1
𝑇
𝑛

1
+ 𝜃
𝑛,2
𝑇
𝑛

2
+ ⋅ ⋅ ⋅ + 𝜃

𝑛,𝑁
𝑇
𝑛

𝑁
, such that 𝜃

𝑛,1
+

𝜃
𝑛,2

+ ⋅ ⋅ ⋅+𝜃
𝑛,𝑁

= 1, for each 𝑛 ≥ 1, {𝛼
𝑛
}, {𝜃
𝑛,𝑖
} ⊂ (0, 𝑐) ⊂ (0, 1),

satisfying lim inf
𝑛→∞

𝜃
𝑛,𝑖

> 0, lim
𝑛→∞

𝛼
𝑛
= 0, ∑𝛼

𝑛
= ∞,

lim
𝑛→∞

((𝑙
𝑛,𝑖
− 1)/𝛼

𝑛
) = 0 and {𝛽

𝑛
} ⊂ [𝑎, 𝑏] ⊂ (0, 𝑘) (for 𝑎, 𝑏,

and 𝑐 constants), for 𝑘 = min
1≤𝑖≤𝑁

{𝑘
𝑖
}. Then the sequence {𝑥

𝑛
}

generated by (39) converges strongly to a common fixed point
of {𝑇
𝑖
: 𝑖 = 1, 2, . . . , 𝑁}.

Proof. We note that 𝑙
𝑝
, 1 < 𝑝 < ∞, spaces are uniformly

convex which have Fréchet differentiable norm possessing a
weakly sequentially continuous duality mapping from 𝐸 into
𝐸
∗ (see, e.g., [18]). Thus, the result follows from Theorem 8.

Corollary 11. Let 𝐾 be a nonempty, closed, and convex subset
of 𝑙
𝑝
, 1 < 𝑝 < ∞. Let 𝑇 : 𝐶 → 𝐶 be an asymptotically 𝑘-strict

pseudocontractive mapping for some 0 ≤ 𝑘 < 1 with sequences
{𝑙
𝑛
} ⊂ [1,∞). Assume that 𝐹(𝑇) is nonempty. Let {𝑥

𝑛
} be a

sequence defined by 𝑥
1
= 𝑢 ∈ 𝐶 and

𝑥
𝑛+1

= 𝛼
𝑛
𝑢 + (1 − 𝛼

𝑛
) ((1 − 𝛽

𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑇
𝑛

𝑥
𝑛
) , 𝑛 ≥ 1,

(40)

where {𝛼
𝑛
} ⊂ (0, 𝑐) ⊂ (0, 1), and {𝛽

𝑛
} ⊂ [𝑎, 𝑏] ⊂ (0, 𝑘) (for 𝑎,

𝑏, and 𝑐 constants) satisfying lim
𝑛→∞

𝛼
𝑛
= 0, ∑𝛼

𝑛
= ∞ and

lim
𝑛→∞

((𝑙
𝑛
− 1)/𝛼

𝑛
) = 0. Then the sequence {𝑥

𝑛
} converges

strongly to a fixed point of 𝑇.

If in Theorem 8 we have that 𝐸 = 𝐻, a real Hilbert
space, then 𝐸 is uniformly convex with Fréchet differentiable
norm possessing a weakly sequentially continuous duality
mapping. Thus, we have the following corollary.

Corollary 12. Let 𝐶 be a nonempty, closed, and convex subset
of a real Hilbert space 𝐻. Let 𝑇

𝑖
: 𝐶 → 𝐶 be asymptotically

𝑘
𝑖
-strict pseudocontractive mappings for 0 ≤ 𝑘

𝑖
< 1 with

sequences {𝑙
𝑛,𝑖
} ⊂ [1,∞), for 𝑖 = 1, 2, . . . , 𝑁. Assume that

𝐹 := ∩
𝑛

𝑖=1
𝐹(𝑇
𝑖
) is nonempty. Let {𝑥

𝑛
} be a sequence defined

by 𝑥
1
= 𝑢 ∈ 𝐶 and

𝑥
𝑛+1

= 𝛼
𝑛
𝑢 + (1 − 𝛼

𝑛
) ((1 − 𝛽

𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑆
𝑛
𝑥
𝑛
) , 𝑛 ≥ 1,

(41)

where 𝑆
𝑛
:= 𝜃
𝑛,1
𝑇
𝑛

1
+ 𝜃
𝑛,2
𝑇
𝑛

2
+ ⋅ ⋅ ⋅ + 𝜃

𝑛,𝑁
𝑇
𝑛

𝑁
, such that 𝜃

𝑛,1
+

𝜃
𝑛,2

+ ⋅ ⋅ ⋅ + 𝜃
𝑛,𝑁

= 1, for each 𝑛 ≥ 1, {𝛼
𝑛
}, {𝜃
𝑛,𝑖
} ⊂ (0, 𝑐) ⊂

(0, 1), satisfying lim inf
𝑛
𝜃
𝑛,𝑖

> 0, lim
𝑛→∞

𝛼
𝑛
= 0, ∑𝛼

𝑛
= ∞,

lim
𝑛→∞

((𝑙
𝑛,𝑖
− 1)/𝛼

𝑛
) = 0 and {𝛽

𝑛
} ⊂ [𝑎, 𝑏] ⊂ (0, 𝑘) (for 𝑎, 𝑏,

and 𝑐 constants), for 𝑘 = min
1≤𝑖≤𝑁

{𝑘
𝑖
}. Then the sequence {𝑥

𝑛
}

generated by (41) converges strongly to a common fixed point
of {𝑇
𝑖
: 𝑖 = 1, 2, . . . , 𝑁}.

Corollary 13. Let 𝐶 be a nonempty, closed, and convex subset
of a real Hilbert space𝐻. Let 𝑇 : 𝐶 → 𝐶 be an asymptotically
𝑘-strict pseudocontractive mapping for some 0 ≤ 𝑘 < 1 with
sequences {𝑙

𝑛
} ⊂ [1,∞). Assume that 𝐹(𝑇) is nonempty. Let

{𝑥
𝑛
} be a sequence defined by 𝑥

1
= 𝑢 ∈ 𝐶 and

𝑥
𝑛+1

= 𝛼
𝑛
𝑢 + (1 − 𝛼

𝑛
) ((1 − 𝛽

𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑇
𝑛

𝑥
𝑛
) , 𝑛 ≥ 1,

(42)

where {𝛼
𝑛
} ⊂ (0, 𝑐) ⊂ (0, 1), and {𝛽

𝑛
} ⊂ [𝑎, 𝑏] ⊂ (0, 𝑘) (for 𝑎,

𝑏, and 𝑐 constants) satisfying lim
𝑛→∞

𝛼
𝑛
= 0, ∑𝛼

𝑛
= ∞ and

lim
𝑛→∞

((𝑙
𝑛
− 1)/𝛼

𝑛
) = 0. Then the sequence {𝑥

𝑛
} converges

strongly to a fixed point of 𝑇.

Remark 14. We note that Corollary 9 generalizes several
recent results of this nature. Particularly, it extends Theorem
KX of [12],Theorem 2 of Liu [5], and corresponding theorem
of Schu [7] in the sense that our convergence is strong in
more general Banach spaces possessing weakly sequentially
continuous duality mappings without the requirement that 𝑇
be completely continuous.

Remark 15. Corollary 9 is an improvement of Theorem 3.2
of Osilike et al. [13] and Theorems 3.1 and 3.2 of Zhang
and Xie [17] in the sense that our convergence is strong
without the requirement that lim inf

𝑛→∞
𝑑(𝑥
𝑛
, 𝐹(𝑇)) = 0,

provided that 𝐸 possesses weakly sequentially continuous
duality mappings.



Abstract and Applied Analysis 7

Acknowledgments

N. Shahzad gratefully acknowledges research support from
the Deanship of Scientific Research (DSR), King Abdulaziz
University, Jeddah, Saudi Arabia.

References

[1] J. M. A. Toledano, T. D. Benavides, and G. L. Acedo,Measure of
Noncoin Metric Fixed Point Theory, Birkhäauser, Boston, Mass,
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