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We address the problem of asymptotic stability and region-of-attraction analysis of nonlinear dynamical systems. A hybrid
symbolic-numeric method is presented to compute exact Lyapunov functions and exact estimates of regions of attraction of
nonlinear systems efficiently. A numerical Lyapunov function and an estimate of region of attraction can be obtained by solving
an (bilinear) SOS programming via BMI solver, then the modified Newton refinement and rational vector recovery techniques are
applied to obtain exact Lyapunov functions and verified estimates of regions of attraction with rational coefficients. Experiments
on some benchmarks are given to illustrate the efficiency of our algorithm.

1. Introduction

Lyapunov’s stability theory, which concern is with the behav-
ior of trajectories of differential systems, plays an impor-
tant role in analysis and synthesis of nonlinear continuous
systems. Lyapunov functions can be used to verify the
asymptotic stability, including locally asymptotic stability and
globally asymptotic stability. In the literature, there has been
lots of work on constructing Lyapunov functions [1–12].
For example, [4, 5] used the linear matrix inequality (LMI)
method to compute quadratic Lyapunov functions. In [8, 13],
based on sum of squares (SOS) decomposition, a method
is proposed to construct high-degree numerical polynomial
Lyapunov functions. Reference [9] proposed a new method
for computing polynomials Lyapunov functions by solving
semialgebraic constraints via the tool DISCOVERER [14].
Reference [15] constructed Lyapunov functions beyond poly-
nomials by using radial basis functions. In [11], the Gröbner
based method is used to choose the parameters in Lyapunov
functions in an optimal way.

Since the analysis of asymptotic stability is not sufficient
for safety critical systems, the analysis of the region of
attraction (ROA) of an asymptotically stable equilibrium

point is a topic of significant importance. The ROA is the
set of initial states from which the system converges to
the equilibrium point. Computing exact regions of attrac-
tion (ROAs) for nonlinear dynamical systems is very hard
if not impossible; therefore, researchers have focused on
finding estimates of the actual ROAs. There are many well-
established techniques for computation of ROAs [5, 16–22].
Among all methods, those based on Lyapunov functions
are dominant in the literature. These methods compute
both a Lyapunov function as a stability certificate and the
sublevel sets of this Lyapunov function, which give rise
to estimates of the ROA. In [17], the authors computed
quadratic Lyapunov functions to optimize the volume of an
ellipsoid contained inROAby using nonlinear programming.
Reference [5] employed LMI based method to compute
the optimal quadratic Lyapunov function for maximizing
the volume of an ellipsoid contained in the ROA of odd
polynomial systems. In [22], based on SOS decomposition,
a method is presented to search for polynomial Lyapunov
functions that enlarge a provable ROA of nonlinear polyno-
mial system. Reference [18] used discretization (in time) to
flow invariant sets backwards along the flow of the vector
field, obtaining larger and larger estimates for the ROA.
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Reference [21] employed quantifier elimination (QE)method
via QEPCAD to find Lyapunov functions for estimating the
ROA.

Taking advantage of the efficiency of numerical compu-
tation and the error-free property of symbolic computation,
in this paper, we present a hybrid symbolic-numeric algo-
rithm to compute exact Lyapunov functions for asymptotic
stability and verified estimates of the ROAs of continuous
systems. The algorithm is based on SOS relaxation [23] of
a parametric polynomial optimization problem with LMI
or bilinear matrix inequality (BMI) constraints, which can
be solved directly using LMI or BMI solver in MAT-
LAB, such as SOSTOOLS [24], YALMIP [25], SeDuMi
[26], PENBMI [27], and exact SOS representation recovery
techniques presented in [28, 29]. Unlike the numerical
approaches, our method can yield exact Lyapunov functions
and verified estimates of ROAs, which can overcome the
unsoundness in analysis of nonlinear systems caused by
numerical errors [30]. In comparison with some symbolic
approaches based on qualifier elimination technique, our
approach is more efficient and practical, because parametric
polynomial optimization problem based on SOS relaxation
with fixed size can be solved in polynomial time theoreti-
cally.

The rest of the paper is organized as follows. In Section 2,
we introduce some definitions and notions about Lyapunov
stability and ROA. Section 3 is devoted to transform the
problem of computing Lyapunov functions and estimates
of ROAs into a parametric program with LMI or BMI
constraints. In Section 4, a symbolic-numeric approach via
SOS relaxation and exact rational vector recovery is proposed
to compute Lyapunov functions and estimates of ROAs,
and an algorithm is described. In Section 5, experiments on
some benchmarks are shown to illustrate our algorithm on
asymptotic stability and ROA analysis. At last, we conclude
our results in Section 6.

2. Lyapunov Stability and Region of Attraction

In this section, we will present the notion of Lyapunov stabil-
ity and regions of attraction (ROAs) of dynamical systems.

Consider the autonomous system

ẋ = f (x) , (1)

where f : R𝑛 → R𝑛 is continuous and f satisfies the
Lipschitz condition. Denote by 𝜙(𝑡; x

0
) the solution of (1)

corresponding to the initial state x
0
= x(0), evaluated at time

𝑡 > 0.
A vector x ∈ R𝑛 is an equilibrium point of the system (1)

if f(x) = 0. Since any equilibrium point can be shifted to the
origin 0 via a change of variables, without loss of generality,
we may always assume that the equilibrium point of interest
occurs at the origin.

Lyapunov theory is concerned with the behavior of the
solution 𝜙(𝑡; x

0
) where the initial state x

0
is not at the

equilibrium 0 but is “close” to it.

Definition 1 (Lyapunov stability). The equilibrium point 0 of
(1) is

(i) stable, if for any 𝜖 > 0, there exists 𝛿 = 𝛿(𝜖) such that
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< 𝜖, ∀𝑡 > 0, (2)
here ‖ ⋅ ‖ denotes any norm defined on R𝑛;

(ii) unstable, if it is not stable,
(iii) asymptotically stable, if it is stable, and 𝛿 can be chosen

such that
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< 𝛿 ⇒ lim
𝑡→∞

𝜙 (𝑡; x
0
) = 0; (3)

(iv) globally asymptotically stable if it is stable, and for all
x
0
∈ R𝑛,

lim
𝑡→∞

𝜙 (𝑡; x
0
) = 0. (4)

Intuitively, the equilibrium point 0 is stable if all solutions
starting near the origin (meaning that the initial conditions
are in a neighborhood of the origin) remain near the
origin for all time. The equilibrium point 0 is asymptotically
stable if all solutions starting at nearby points not only stay
nearby but also converge to the equilibrium point as time
approaches infinity. And the equilibrium point 0 is globally
asymptotically stable if it is asymptotically stable for all initial
conditions x

0
∈ R𝑛. The stability is an important property

in practice, because it means arbitrarily small perturbations
of the initial state about the equilibrium point 0 result in
arbitrarily small perturbations in the corresponding solution
trajectories of (1).

A sufficient condition for stability of the zero equilibrium
is the existence of a Lyapunov function, as shown in the
following theorem.

Theorem 2 ([31, Theorem 4.1]). Let 𝐷 ⊂ R𝑛 be a domain
containing the equilibrium point 0 of (1). If there exists a
continuously differentiable function 𝑉 : 𝐷 → R such that

𝑉 (0) = 0, 𝑉 (x) > 0 in 𝐷 \ {0} , (5)

̇

𝑉 (x) := 𝜕𝑉

𝜕x
⋅ f (x) ≤ 0 in 𝐷,

(6)

then the origin is stable. Moreover, if
̇

𝑉 (x) < 0 in 𝐷 \ {0} , (7)
then the origin is asymptotically stable.

A function 𝑉(x) satisfying the conditions (5) and (6) in
Theorem 2 is commonly known as a Lyapunov function. And
we can verify globally asymptotic stability of system (1) by
using Lyapunov functions stated as follows.

Theorem 3 ([31, Theorem 4.2]). Let the origin be an equilib-
rium point for (1). If there exists a continuously differentiable
function 𝑉 : R𝑛 → R such that

𝑉 (0) = 0, 𝑉 (x) > 0 ∀x ̸= 0, (8)
‖x‖ → ∞ ⇒ 𝑉(x) → ∞, (9)

̇

𝑉 (x) < 0 ∀x ̸= 0, (10)
then the origin is globally asymptotically stable.
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Remark that a function satisfying condition (9) is said to
be radially unbounded.

It is known that globally asymptotic stability is very
desirable, but in many applications it is difficult to achieve.
When the equilibrium point is asymptotically stable, we are
interested in determining how far from the origin the trajec-
tory can be and still converge to the origin as 𝑡 approaches∞.
This gives rise to the following definition.

Definition 4 (region of attraction). The region of attraction
(ROA) Ω of the equilibrium point 0 is defined as Ω = {x ∈

R𝑛 | lim
𝑡→∞

𝜙(𝑡; x) = 0}.

The ROA of the equilibrium point 0 is a collection of
all points x such that any trajectory starting at initial state x
at time 0 will be attracted to the equilibrium point. In the
literature, the terms “domain of attraction” and “attraction
basin” are also used instead of “region of attraction”.

Definition 5 (positively invariant set). A set𝑀 ⊂ R𝑛 is called
a positively invariant set of the system (1), if x

0
∈ 𝑀 implies

𝜙(𝑡; x
0
) ∈ 𝑀 for all 𝑡 ≥ 0. Namely, if a solution belongs to a

positively invariant set𝑀 at some time instant, then it belongs
to𝑀 for all future time.

In general, finding the exact ROA analytically might be
difficult or even impossible. Usually, Lyapunov functions are
used to find underestimates of the ROA, that is, sets contained
in the region of attraction, as stated in the following theorem.

Theorem 6 ([20, Theorem 10]). Let 𝐷 ⊂ R𝑛 be a domain
containing the equilibrium point 0 of (1). If there exists a
continuously differentiable function 𝑉 : 𝐷 → R satisfying
(5) and (7), then any region Ω

𝑐
= {x ∈ R𝑛 | 𝑉(x) ≤ 𝑐} with

𝑐 ≥ 0 such that Ω
𝑐
⊆ 𝐷 is a positively invariant set contained

in the ROA of the equilibrium 0.

Theorem 6 describes an approach to compute estimates
of the ROA through Lyapunov functions.More specifically, in
the case of asymptotic stability, ifΩ

𝑐
= {x ∈ R𝑛 | 𝑉(x) ≤ 𝑐} is

bounded and contained in𝐷, then every trajectory starting in
Ω

𝑐
remains inΩ

𝑐
and approaches the origin as 𝑡 → ∞.Thus,

Ω

𝑐
is an estimate of the ROA. Remark that when the origin is

globally asymptotically stable, the region of attraction is the
whole space R𝑛.

3. Problem Reformulation

In this section, we will transform the problem of the asymp-
totic stability and ROA analysis of system (1) to a parametric
program with LMI or BMI constraints. In the sequel, we
suppose that system (1) is a polynomial dynamical system
with 𝑓

𝑖
(x) ∈ R[x] for 1 ≤ 𝑖 ≤ 𝑛, where R[x] denotes the

ring of real polynomials in the variables x.

3.1. Asymptotic Stability. Firstly, we consider the asymptotic
stability of system (1). As shown in Theorem 2, the existence
of a Lyapunov function 𝑉(x) which satisfies the conditions
(5) and (7) is a certificate for asymptotical stability of the

equilibrium point 0, and the problem of computing such a
𝑉(x) can be transformed into the following problem:

find 𝑉 (x) ∈ R [x]

s.t. 𝑉 (0) = 0,

𝑉 (x) > 0 ∀x ∈ 𝐷 \ {0} ,

̇

𝑉 (x) = 𝜕𝑉

𝜕x
f (x) < 0 ∀x ∈ 𝐷 \ {0} .

(11)

In general, 𝐷 can be an arbitrary neighborhood of the
equilibrium point 0. However, to simplify calculation, in
practice, we can assume 𝐷 = {x ∈ R𝑛 : 𝑔(x) ≤ 0}, where
𝑔(x) ∈ R[x] is chosen to be 𝑔(x) = ∑

𝑛

𝑖=1
𝑥

2

𝑖
− 𝑟

2 for 1 ≤ 𝑖 ≤ 𝑛,
with a given constant 𝑟 ∈ R

+
, for instance, 𝑟 = 10

−2.
Let us first predetermine a template of Lyapunov func-

tions with the given degree 𝑑. We assume that

𝑉 (x) = ∑

𝛼

𝑐

𝛼
x𝛼, (12)

where x𝛼 = 𝑥

𝛼
1

1
, . . . , 𝑥

𝛼
𝑛

𝑛
, 𝛼 = (𝛼

1
, . . . , 𝛼

𝑛
) ∈ Z𝑛

≥0
with

∑

𝑛

𝑖=1
𝛼

𝑖
≤ 𝑑, and 𝑐

𝛼
∈ R are parameters. We can rewrite

𝑉(x) = c𝑇 ⋅ 𝑇(x), where 𝑇(x) is the (column) vector of all
terms in 𝑥

1
, . . . , 𝑥

𝑛
with total degree ≤ 𝑑, and c ∈ R], with

] = (

𝑛+𝑑

𝑛
), is the coefficient vector of 𝑉(x). In the sequel, we

write 𝑉(x) as 𝑉(x, c) for clarity.
For a polynomial 𝜑(x) ∈ R[x], we say that 𝜑(x) is positive

definite (resp., positive semidefinite), if 𝜑(x) > 0 for all x ∈

R𝑛 \ {0} (resp., 𝜑(x) ≥ 0 for all x ∈ R𝑛). Observe that, if 𝜑(x)
is a sum of squares (SOS), then 𝜑(x) is globally nonnegative.
And, to ensure positive definiteness of 𝜑(x), we can use a
polynomial 𝑙(x) of the form:

𝑙 (x) =
𝑛

∑

𝑖=1

𝜖

𝑖
𝑥

𝑘

𝑖
, (13)

where 𝜖

𝑖
∈ R
+
and 𝑘 is assumed to be even. Clearly, the

condition that 𝜑(x) − 𝑙(x) is an SOS polynomial guarantees
the positive definiteness of 𝜑(x). Therefore, to ensure positive
definiteness of the second and third constraints in (11),
we can use two polynomials 𝑙

1
(x), 𝑙
2
(x) of the form of

(13). It is notable that SOS programming can be applied to
determine the nonnegativity of a multivariate polynomial
over a semialgebraic set. Consider the problem of verifying
whether the implication

𝑚

⋀

𝑖=1

(𝑝

𝑖
(x) ≥ 0) ⇒ 𝑞 (x) ≥ 0 (14)

holds, where 𝑝

𝑖
(x) ∈ R[x] for 1 ≤ 𝑖 ≤ 𝑚 and 𝑞(x) ∈

R[x]. According to Stengle’s Positivstellensatz, Schmüdgen’s
Positivstellensatz, or Putinar’s Positivstellensatz [32], if there
exist SOS polynomials 𝜎

𝑖
∈ R[x] for 𝑖 = 0, . . . , 𝑚, such that

𝑞 (x) = 𝜎

0
(x) +

𝑚

∑

𝑖=1

𝜎

𝑖
(x) 𝑝
𝑖
(x) , (15)
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then the assertion (14) holds. Therefore, the existence of SOS
representations provides a sufficient condition for determin-
ing the nonnegativity of 𝑞(x) over {x ∈ R𝑛 : ∧𝑚

𝑖=1
𝑝

𝑖
(x) ≥ 0}.

Based on the above observation, the problem (11) can be
further transformed into the following SOS programming:

find c ∈ R
]

s.t. 𝑉 (0, c) = 0,

𝑉 (x, c) − 𝑙

1
(x) = 𝜌

1
(x) − 𝜎

1
(x) 𝑔 (x) ,

−

𝜕𝑉

𝜕x
f (x) − 𝑙

2
(x) = 𝜌

2
(x) − 𝜎

2
(x) 𝑔 (x) ,

(16)

where 𝜎
𝑗
(x) and 𝜌

𝑗
(x) are SOS inR[x] for 𝑗 = 1, 2. Moreover,

the degree bound of those unknown SOS polynomials 𝜎
𝑗
, 𝜌
𝑗

is exponential in 𝑛, deg(𝑉), deg(f), and deg(𝑔). In practice,
to avoid high computational complexity, we simply set up
a truncated SOS programming by fixing a priori (much
smaller) degree bound 2𝑒, with 𝑒 ∈ Z

+
, of the unknown

SOS polynomials. Consequently, the existence of a solution
c of (16) can guarantee the asymptotic stability of the given
system.

Similarly, the problem of computing the Lyapunov func-
tion 𝑉(x) for globally asymptotic stability of system (1), that
satisfies the conditions in Theorem 3 can be rewritten as the
following problem:

find 𝑉 (x) ∈ R [x]

s.t. 𝑉 (0) = 0,

𝑉 (x) > 0 ∀x ̸= 0,

‖x‖ → ∞ ⇒ 𝑉(x) → ∞,

̇

𝑉 (x) < 0 ∀x ̸= 0.

(17)

By introducing two polynomials 𝑙
𝑖
(x), 𝑖 = 1, 2 of the form

(13), the condition, that 𝑉(x, c) − 𝑙

1
(x) is SOS, guarantees

the radially unboundedness of 𝑉(x, c). Consequently, the
problem (17) can be further transformed into the following
SOS programming:

find c ∈ R
]

s.t. 𝑉 (0, c) = 0,

𝑉 (x, c) − 𝑙

1
(x) = 𝜌

1
(x) ,

−

𝜕𝑉

𝜕x
f (x) − 𝑙

2
(x) = 𝜌

2
(x) ,

(18)

where 𝜌
𝑗
(x) are SOS polynomials in R[x] for 𝑗 = 1, 2. The

decision variables are the coefficients of all the polynomials
appearing in (18), such as 𝑉(x, c), 𝑙

𝑖
(x), and 𝜌

𝑗
(x).

3.2. Region of Attraction. Suppose that the equilibrium point
0 is asymptotically stable. In this section, we will consider
how to find a large enough underestimate of the ROA. In the
case where the equilibrium point 0 is globally asymptotically
stable, the ROA becomes the whole space R𝑛.

Our idea of computing the estimate of ROA is similar to
that of the algorithm in [20, Section 4.2.2]. Suppose that𝐷 is
a semialgebraic set

{x ∈ R
𝑛

| 𝑉 (x) ≤ 1} (19)

given by a Lyapunov function 𝑉(x). In order to enlarge the
computed positively invariant set contained in the ROA, we
define a variable sized region

𝑃

𝛽
= {x ∈ R

𝑛

| 𝑝 (x) ≤ 𝛽} , (20)

where𝑝(x) ∈ R[x] is a fixed and positive definite polynomial,
and maximize 𝛽 subject to the constraint 𝑃

𝛽
⊆ 𝐷.

Fix a template of 𝑉 of the form (12). The problem of
finding an estimate 𝑃

𝛽
of the ROA can be transformed into

the following polynomial optimization problem:

max
c∈R]

𝛽

s.t. 𝑉 (0, c) = 0,

𝑉 (x, c) > 0 ∀x ∈ 𝐷 \ {0} ,

̇

𝑉 (x, c) = 𝜕𝑉

𝜕x
f (x) < 0 ∀x ∈ 𝐷 \ {0} ,

𝑝 (x) ≤ 𝛽 ⊨ 𝑉 (x, c) ≤ 1.

(21)

By introducing two polynomials 𝑙
𝑖
(x), 𝑖 = 1, 2 of the form (13)

and based on SOS relaxation, the problem (21) can be further
transformed into the following SOS programming:

max
c∈R]

𝛽

s.t. 𝑉 (0, c) = 0,

𝑉 (x, c) − 𝑙

1
(x) = 𝜌

1
(x) − 𝜎

1
(x) (𝑉 (x, c) − 1) ,

−

𝜕𝑉

𝜕x
f (x) − 𝑙

2
(x) = 𝜌

2
(x) − 𝜎

2
(x) (𝑉 (x, c) − 1) ,

1 − 𝑉 (x, c) = 𝜌

3
(x) − 𝜎

3
(x) (𝑝 (x) − 𝛽) ,

(22)

where 𝜎

𝑖
(x) and 𝜌

𝑖
(x) are SOS in R[x] for 1 ≤ 𝑖 ≤ 3.

In (22), the decision variables are 𝛽 and the coefficients of
all the polynomials appearing in (22), such as 𝑉(x, c), 𝜎

𝑖
(x),

and 𝜌

𝑖
(x). Since 𝛽 and the coefficients of 𝑉(x, c) and 𝜎

𝑖
(x)

are unknown, some nonlinear terms that are products of
these coefficients, will occur in the second, third, and fourth
constraints of (22), which yields a nonconvex bilinear matrix
inequalities (BMI) problem.We will discuss in Section 4 how
to handle the SOS programming (22) directly using the BMI
solver or iterative method.

4. Exact Certificate of Sum of
Squares Decomposition

According to Theorems 2, 3, and 6, the key of asymptotic
stability analysis and ROA estimation lies in finding a real
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function 𝑉(x) and a constant 𝛽 satisfying the desired con-
ditions. We will present a symbolic-numeric hybrid method,
based on SOS relaxation and rational vector recovery, to
compute the exact polynomial 𝑉(x) and constant 𝛽.

4.1. Approximate Solution from LMI or BMI Solver. In this
section, wewill discuss how to handle the SOS programmings
(16), (18), and (22) directly using the LMI and BMI solver or
iterative method.

Using Gram matrix representation method [23] (also
known as square matrix representation (SMR) [33]), a poly-
nomial 𝜓(x) of degree 2𝑚 is SOS if and only if there exists a
positive semidefinite matrix 𝑄 such that

𝜓 (x) = 𝑍(x)𝑇𝑄𝑍 (x) , (23)

where 𝑍(x) is a monomial vector in x of degree 𝑚. Thus,
the SOS programming (16) is equivalent to the following
semidefinite program (SDP) problem:

inf
𝑊
[𝑗]
,𝑄
[𝑗]

2

∑

𝑗=1

Trace (𝑊[𝑗] + 𝑄

[𝑗]

)

s.t. 𝑉 (0) = 0,

𝑉 (x, c) − 𝑙

1
(x) = 𝑚

1
(x)𝑇 ⋅ 𝑊[1] ⋅ 𝑚

1
(x)

− 𝑝

1
(x)𝑇 ⋅ 𝑄[1] ⋅ 𝑝

1
(x) 𝑔 (x) ,

−

𝜕𝑉

𝜕x
f (x) − 𝑙

2
(x) = 𝑚

2
(x)𝑇 ⋅ 𝑊[2] ⋅ 𝑚

2
(x)

− 𝑝

2
(x)𝑇 ⋅ 𝑄[2] ⋅ 𝑝

2
(x) 𝑔 (x) ,

(24)

where all the matrices 𝑊[𝑗], 𝑄[𝑗] are symmetric and positive
semidefinite, and∑2

𝑗=1
Trace(𝑊[𝑗] + 𝑄

[𝑗]

) denotes the sum of
traces of all these matrices, which acts as a dummy objective
function commonly used in SDP for optimization problem
with no objective function.

Similarly, the SOS programming (18) can be rewritten as
the following SDP problem:

inf
𝑊
[1]
,𝑊
[2]

Trace (𝑊[1]) + Trace (𝑊[2])

s.t. 𝑉 (0) = 0,

𝑉 (x, c) − 𝑙

1
(x) = 𝑚

1
(x)𝑇 ⋅ 𝑊[1] ⋅ 𝑚

1
(x) ,

−

𝜕𝑉

𝜕x
f (x) − 𝑙

2
(x) = 𝑚

2
(x)𝑇 ⋅ 𝑊[2] ⋅ 𝑚

2
(x) ,

(25)

where matrices 𝑊

[1], 𝑊

[2] are symmetric and positive
semidefinite.

Many Matlab packages of SDP solvers, such as SOS-
TOOLS [24], YALMIP [25], and SeDuMi [26], are available
to solve the problem (24) and (25) efficiently.

Now, let us consider the problem (22). The following
example shows how to transform nonlinear parametric poly-
nomial constraints into a BMI problem.

Example 7. To find a polynomial 𝜑(𝑥) satisfying 𝜑(𝑥) ≥ 0 ∧

−𝑥

2

+ 1 ≥ 0 ⊨ 2𝑥(𝑑𝜑/𝑑𝑥) ≥ 0, it suffices to find 𝜑(𝑥) such
that

2𝑥

𝑑𝜑

𝑑𝑥

= 𝜙

0
(𝑥) + 𝜙

1
(𝑥) (1 − 𝑥

2

) + 𝜙

2
(𝑥) 𝜑 (𝑥) ,

(26)

where𝜙
0
(𝑥),𝜙
1
(𝑥),𝜙
2
(𝑥) are SOSes. Suppose that deg(𝜑) = 1,

deg(𝜙
0
) = 2 and deg(𝜙

1
) = deg(𝜙

2
) = 0 and that 𝜑(𝑥) = 𝑢

0
+

𝑢

1
𝑥, 𝜙
1
= 𝑢

2
and 𝜙
2
= V
1
, with 𝑢

0
, 𝑢

1
, 𝑢

2
, V
1
∈ R parameters.

From (1) we have

𝜙

0
(𝑥) = 𝑢

2
𝑥

2

+ (2𝑢

1
− 𝑢

1
V
1
) 𝑥 − 𝑢

2
− 𝑢

0
V
1
, (27)

whose square matrix representation (SMR) [33] is 𝜙
0
(𝑥) =

𝑍

𝑇

𝑄𝑍, where

𝑄 =

[

[

[

−𝑢

2
− 𝑢

0
V
1

𝑢

1
−

1

2

𝑢

1
V
1

𝑢

1
−

1

2

𝑢

1
V
1

𝑢

2

]

]

]

, 𝑍 = [

1

𝑥

] . (28)

Since all the 𝜙
𝑖
(𝑥) are SOSes, we have 𝑢

2
≥ 0, V

1
≥ 0 and

𝑄 ⪰ 0. Therefore, the original constraint is translated into a
BMI constraint:

B (𝑢

0
, 𝑢

1
, 𝑢

2
, V
1
) = 𝑢

1

[

[

[

[

0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

]

]

]

]

+ 𝑢

2

[

[

[

[

1 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 1

]

]

]

]

+ V
1

[

[

[

[

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

]

]

]

]

+ 𝑢

0
V
1

[

[

[

[

0 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 0

]

]

]

]

+ 𝑢

1
V
1

[

[

[

[

[

[

[

0 0 0 0

0 0 0 0

0 0 0 −

1

2

0 0 −

1

2

0

]

]

]

]

]

]

]

⪰ 0.

(29)

Similar to Example 7, the SOS programming (22) can be
transformed into a BMI problem of the form

inf −𝛽

s.t. B (u, k) = 𝐴

0
+

𝑚

∑

𝑖=1

𝑢

𝑖
𝐴

𝑖
+

𝑘

∑

𝑗=1

V
𝑗
𝐴

𝑚+𝑗

+ ∑

1≤𝑖≤𝑚

∑

1≤𝑗≤𝑘

𝑢

𝑖
V
𝑗
𝐵

𝑖𝑗
⪰ 0,

(30)

where 𝐴

𝑖
, 𝐵

𝑖𝑗
are constant symmetric matrices, u =

(𝑢

1
, . . . , 𝑢

𝑚
), k = (V

1
, . . . , V

𝑘
) are parameter coefficients of the

SOSpolynomials occurring in the original SOSprogramming
(22).

Manymethods can be used to solve the BMI problem (30)
directly, such as interior-point constrained trust regionmeth-
ods [34] an augmented Lagrangian strategy [35]. PENBMI
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solver [27] is a Matlab package to solve the general BMI
problem, whose idea is based on a choice of penalty/barrier
function Φ

𝑝
that penalizes the inequality constraints. This

function satisfies a number of properties [35] such that, for
any 𝑝 > 0, we have

B (u, k) ⪰ 0 ⇐⇒ Φ

𝑝
(B (u, k)) ⪰ 0. (31)

This means that, for any 𝑝 > 0, the problem (30) is equivalent
to the following augmented problem:

inf −𝛽

s.t. Φ

𝑝
(B (u, k)) ⪰ 0.

(32)

The associated Lagrangian of (32) can be viewed as a
(generalized) augmented Lagrangian of (30):

𝐹 (u, k, 𝑈, 𝑝) = −𝛽 + 𝑇𝑟 (𝑈Φ

𝑝
(B (u, k))) , (33)

where 𝑈 is the Lagrangian multiplier associated with the
inequality constraint. Remark that 𝑈 is a real symmetric
matrix of the same order as the matrix operatorB. For more
details please refer to [35].

Alternatively, observing (30), B(u, k) involves no cross-
ing products like 𝑢

𝑖
𝑢

𝑗
and V

𝑖
V
𝑗
. Taking this special form

into account, an iterative method can be applied by fixing u
and k alternatively, which leads to a sequential convex LMI
problem [20]. Remark that although the convergence of the
iterative method cannot be guaranteed, this method is easier
to implement than PENBMI solver and can yield a feasible
solution (u, k) efficiently in practice.

4.2. Exact SOS Recovery. Since the SDP (LMI) or BMI
solvers in Matlab are running in fixed precision, applying
the techniques in Section 4.1 only yields numerical solutions
of (16), (18), and (22). In the sequel, we will propose an
improved algorithm based on a modified Newton refinement
and rational vector recovery technique, to compute exact
solutions of polynomial optimization problems with LMI or
BMI constraints.

Without loss of generality, we can reduce the problems
(16), (18), and (22) to the following problem:

find c ∈ R
]

s.t. 𝑉

1
(x, c) = m

1
(x)𝑇 ⋅ 𝑊[1] ⋅m

1
(x) ,

𝑉

2
(x, c) = m

2
(x)𝑇 ⋅ 𝑊[2] ⋅m

2
(x)

+ (m
3
(x)𝑇 ⋅ 𝑊[3] ⋅m

3
(x)) ⋅ 𝑉

3
(x, c) ,

𝑊

[𝑖]

⪰ 0, 𝑖 = 1, 2, 3,

(34)

where the coefficients of the polynomials 𝑉
𝑖
(x, c), 1 ≤ 𝑖 ≤ 3

are affine in c. Note that (34) involves both LMI and BMI
constraints. After solving the SDP system (34) by applying
the techniques in Section 4.1, the numerical vector c and the

numerical positive semidefinite matrices𝑊[𝑖], 𝑖 = 1, 2, 3may
not satisfy the conditions in (34) exactly, that is,

𝑉

1
(x, c) ≈ m

1
(x)𝑇 ⋅ 𝑊[1] ⋅m

1
(x) ,

𝑉

2
(x, c) ≈ m

2
(x)𝑇 ⋅ 𝑊[2] ⋅m

2
(x)

+ (m
3
(x)𝑇 ⋅ 𝑊[3] ⋅m

3
(x)) ⋅ 𝑉

3
(x, c) ,

(35)

as illustrated by the following example.

Example 8. Consider the following nonlinear system:

[

�̇�

1

�̇�

2

] =

[

[

[

[

[

[

[

[

[

−0.5𝑥

1
+ 𝑥

2
+ 0.24999𝑥

2

1

+ 0.083125𝑥

3

1
+ 0.0205295𝑥

4

1

+ 0.0046875𝑥

5

1
+ 0.0015191𝑥

6

1

−𝑥

2
+ 𝑥

1
𝑥

2
− 0.49991𝑥

3

1
+ 0.040947𝑥

5

1

]

]

]

]

]

]

]

]

]

. (36)

We want to find a certified estimate of the ROA. In the
associated SOS programming (22) with BMI constraints, we
suppose 𝑝(𝑥

1
, 𝑥

2
) = 𝑥

2

1
+ 𝑥

2

2
. When 𝑑 = 2, we obtain

𝑉 (𝑥

1
, 𝑥

2
) = 3.112937368𝑥

2

1
+ 3.112937368𝑥

2

2
,

𝛽 = 0.32124.

(37)

However,𝑉(𝑥
1
, 𝑥

2
) and𝛽 cannot satisfy the conditions in (21)

exactly, because there exists a sample point (15/32, 85/256)
such that the third condition in (21) cannot be satisfied.
Therefore,

Ω

𝑉
= {(𝑥

1
, 𝑥

2
) ∈ R
2

| 𝑉 (𝑥

1
, 𝑥

2
) ≤ 1} (38)

is not an estimate of the ROA of this system.

In our former papers [36, 37], we applied Gauss-Newton
iteration and rational vector recovery to obtain exact solu-
tions that satisfy the constraints in (34), exactly. However,
these techniques may fail in some cases, as shown in [38,
Example 2]. The reason may lie in that we recover the
vector c and the associated positive semidefinite matrices
separately. Here, we will compute exact solutions of (34)
by using a modified Newton refinement and rational vector
recovery technique [38], which applies on the vector c and
the associated positive semidefinite matrices simultaneously.
The main ideal is as follows.

We first convert 𝑊[3] to a nearby rational positive semi-
definite matrix ̃

𝑊

[3] by nonnegative truncated PLDLTPT-
decomposition. In practice, 𝑊

[3] is numerical diagonal
matrix; in other words, the off-diagonal entries are very
tiny and the diagonal entries are nonnegative. Therefore, by
setting the small entries of 𝑊[3] to zeros, we easily get the
nearby rational positive semidefinite matrix ̃

𝑊

[3]. We then
apply Gauss-Newton iteration to refine c, 𝑊[1], and 𝑊

[2]

simultaneously with respect to a given tolerance 𝜏.
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Now, we will discuss how to recover from the refined
c, 𝑊[1], 𝑊[2], the rational vector c̃, and rational positive
semidefinite matrices ̃𝑊[1] and ̃

𝑊

[2] that satisfy exactly

𝑉

1
(x, c̃) −m

1
(x)𝑇 ⋅ ̃𝑊[1] ⋅m

1
(x) = 0,

𝑉

2
(x, c̃) −m

2
(x)𝑇 ⋅ ̃𝑊[2] ⋅m

2
(x) − 𝑉

3
(x, c̃)m

3
(x)𝑇

⋅

̃

𝑊

[3]

⋅m
3
(x) = 0.

(39)

Since the equations in (39) are affine in entries of c̃ and ̃

𝑊

1
,

̃

𝑊

2
, one can define an affine linear hyperplane

L = {c,𝑊[1],𝑊[2] | 𝑉
1
(x, c) −m

1
(x)𝑇 ⋅ 𝑊[1] ⋅m

1
(x) = 0,

𝑉

2
(x, c) −m

2
(x)𝑇 ⋅ 𝑊[2] ⋅m

2
(x) − 𝑉

3
(x, c)m

3
(x)𝑇

⋅

̃

𝑊

[3]

⋅m
3
(x) = 0} .

(40)

Note that the hyperplane (40) can be constructed from a
linear system 𝐴y = b, where y consists of the entries of c,
𝑊

[1] and,𝑊[2]. If 𝐴 has full row rank, such a hyperplane is
guaranteed to exist.Then, for a given bound𝐷 of the common
denominator, the rationalized SOS solutions of (34) can be
computed by orthogonal projection if thematrices𝑊[1], 𝑊[2]
have full ranks with respect to 𝜏, or by the rational vector
recovery otherwise. Finally, we check whether the matrices
̃

𝑊

[𝑖] are positive semidefinite for 𝑖 = 1, 2. If so, the rational
vector c̃ and rational positive semidefinite matrices ̃𝑊[𝑖] 1 ≤

𝑖 ≤ 3 can satisfy the conditions of problem (34) exactly. For
more details the reader can refer to [38].

4.3. Algorithm. The results in Sections 4.1 and 4.2 yield an
algorithm to find exact solutions to the problem (34).

Algorithm 9. Verified Parametric Optimization Solver.
Input

(i) A polynomial optimization problem of the form (34).
(ii) 𝐷 ∈ Z

>0
: the bound of the common denominator.

(iii) 𝑒 ∈ Z
≥0
: the degree bound 2𝑒 of the SOSes used to

construct the SOS programming.
(iv) 𝜏 ∈ R

>0
: the given tolerance.

Output

(i) The verified solution c̃ of (34) with the ̃𝑊[𝑖], 1 ≤ 𝑖 ≤ 3

positive semidefinite.

(1) (Compute the numerical solutions) Apply LMI
or BMI solver to compute numerical solutions
of the associated polynomial optimization prob-
lem (34). If this problem has no feasible solu-
tions, return “we can’t find solutions of (34)with
the given degree bound 2𝑒.” Otherwise, obtain c
and𝑊

[𝑖]

⪸ 0, 1 ≤ 𝑖 ≤ 3.

(2) (Compute the verified solution c̃)

(2.1) Convert 𝑊[3] to a nearby rational positive
semidefinite matrix ̃

𝑊

[3] by non-negative
truncated PLDLTPT-decomposition.

(2.2) For the tolerance 𝜏, apply the modified
Newton iteration to refine c and𝑊[1],𝑊[2].

(2.3) Determine the singularity of𝑊[1] and𝑊[2]
with respect to 𝜏. Then, for a given com-
mon denominator, the rational vector c̃,
and rational matrices ̃

𝑊

[1], ̃

𝑊

[2] can be
obtained by orthogonal projection if 𝑊[1],
𝑊

[2] are of full rank, or by rational vector
recovery method otherwise.

(2.4) Check whether the matrices ̃𝑊[1], ̃𝑊[2] are
positive semidefinite. If so, return c̃, and
̃

𝑊

[𝑖], 1 ≤ 𝑖 ≤ 3. Otherwise, return “we can’t
find the solutions of (34) with the given
degree bound”.

5. Experiments

Let us present some examples of asymptotic stability and
ROAs analysis of nonlinear systems.

Example 10 ([8, Example 1]). Consider a nonlinear continu-
ous system

ẋ = f (x) =

[

[

[

[

[

[

[

[

�̇�

1

�̇�

2

�̇�

3

�̇�

4

�̇�

5

�̇�

6

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

[

[

[

[

−𝑥

3

1
+ 4𝑥

3

2
− 6𝑥

3
𝑥

4

−𝑥

1
− 𝑥

2
+ 𝑥

3

5

𝑥

1
𝑥

4
− 𝑥

3
+ 𝑥

4
𝑥

6

𝑥

1
𝑥

3
+ 𝑥

3
𝑥

6
− 𝑥

3

4

−2𝑥

3

2
− 𝑥

5
+ 𝑥

6

−3𝑥

3
𝑥

4
− 𝑥

3

5
− 𝑥

6

]

]

]

]

]

]

]

]

]

]

]

]

]

. (41)

Firstly, we will certify the locally asymptotic stability of this
system. According toTheorem 2, we need to find a Lyapunov
function𝑉(x), which satisfies all the conditions inTheorem 2.
We can set up an associated SOS programming (16) with
𝑔(x) = 𝑥

2

1
+𝑥

2

2
+𝑥

2

3
−0.0001. When 𝑑 = 4, we obtain a feasible

solution of the associated SDP system. Here we just list one
approximate polynomial

𝑉 (x) = 0.81569𝑥

2

1
+ 0.18066𝑥

2

2
+ 1.6479𝑥

2

3
+ 2.1429𝑥

2

4

+ 1.2996𝑥

2

6
+ ⋅ ⋅ ⋅ + 0.67105𝑥

4

4
+ 0.52855𝑥

4

5
.

(42)

Let the tolerance 𝜏 = 10

−2, and let the bound of the common
denominator of the polynomial coefficients vector be 100.
By use of the rational SOS recovery technique described in
Section 4.2, we can obtain an exact Lyapunov function and
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the corresponding SOS polynomials. Here we only list the
Lyapunov function:

̃

𝑉 (x) = 41

50

𝑥

2

1
+

9

50

𝑥

2

2
+

33

20

𝑥

2

3
+

107

50

𝑥

2

4

+

69

100

𝑥

2

5
+

13

10

𝑥

2

6
+ ⋅ ⋅ ⋅ +

67

100

𝑥

4

4
+

53

100

𝑥

4

5
.

(43)

Therefore, the locally asymptotic stability is certified.
Furthermore, we will consider the globally asymptotic

stability. It suffices to find a Lyapunov function 𝑉(x) with
rational coefficients, which satisfies all the conditions in
Theorem 3. By solving the associated SOS programming (18),
we obtain

𝑉 (x) = 0.78997𝑥

2

1
+ 0.19𝑥

2

2
+ 2.2721𝑥

2

3

+ 1.4213𝑥

2

6
+ ⋅ ⋅ ⋅ + 1.4213𝑥

4

2
+ 0.71066𝑥

4

5
.

(44)

By use of the rational SOS recovery technique described in
Section 4.2, we then obtain

̃

𝑉 (x) = 79

100

𝑥

2

1
+

19

50

𝑥

1
𝑥

2
+

9

100

𝑥

1
𝑥

5
+

19

100

𝑥

2

2
+

227

100

𝑥

2

3

+

199

100

𝑥

2

4
+

9

100

𝑥

2
𝑥

5
+

71

100

𝑥

2

5

+

71

50

𝑥

2

6
+

71

50

𝑥

4

2
+

71

100

𝑥

4

5
,

(45)

which exactly satisfies the conditions in Theorem 3. There-
fore, the globally asymptotic stability of this system is certi-
fied.

Table 1 shows the performance of Algorithm 9 on another
six examples, for globally asymptotic stability analysis of
dynamical systems in the literature. All the computations
have been performed on an Intel Core 2 Duo 2.0GHz
processor with 2GB of memory. In Table 1 Examples 1–
3 correspond to [9, Examples 2, 3, 9] and Examples 4–6
correspond to [39, Example 7], [6, Example 22], and [40,
page 1341]. For all these examples, let the degree bound of the
SOSes be 4, and set 𝜏 = 10

−2, 𝐷 = 100. Here 𝑛 and Num
denote the number of system variables and the number of
decision variables in the LMI problem, respectively; deg(̃𝑉)
denotes the degree of ̃𝑉(x) obtained fromAlgorithm 9; Time
is that for the entire computation runAlgorithm 9 in seconds.

Example 11 ([41, Example A]). Consider a nonlinear contin-
uous system

ẋ = f (x) = [

�̇�

1

�̇�

2

] = [

−𝑥

2

𝑥

1
+ (𝑥

2

1
− 1) 𝑥

2

] . (46)

Firstly, we will certify the locally asymptotic stability of this
system. It suffices to find a Lyapunov function 𝑉(𝑥

1
, 𝑥

2
)

with rational coefficients, which satisfies all the conditions in
Theorem 2. We can set up an associated SOS programming
(16) with 𝑔(x) = 𝑥

2

1
+ 𝑥

2

2
− 0.0001. When 𝑑 = 2, we obtain

𝑉 (x) = 1.4957𝑥

2

1
− 0.7279𝑥

1
𝑥

2
+ 1.1418𝑥

2

2
. (47)

Table 1: Algorithm performance on benchmarks (globally asymp-
totic stability).

Example 𝑛 Num deg(̃𝑉) Time
(s)

1 2 11 2 1.391
2 2 11 2 1.418
3 3 18 2 1.674
4 4 81 4 2.951
5 2 24 4 1.832
6 2 24 4 1.830

Table 2: Algorithm performance on benchmarks (ROA).

Example
𝑛 Num deg(̃𝑉) ̃

𝛽 𝛽

Time
(s)

1 2 28 2 5415/9277 0.593 19.417
2 3 46 2 2650/9902 2.76 26.635
3 2 28 2 99/41 2.05 9.915

Let the tolerance 𝜏 = 10

−2, and, the bound of the common
denominator of the polynomial coefficients vector be 100.
By use of the rational SOS recovery technique described in
Section 4.2, we then obtain a Lyapunov function:

̃

𝑉 (x) = −

62

85

𝑥

1
𝑥

2
+

127

85

𝑥

2

1
+

97

85

𝑥

2

2
. (48)

Therefore, the locally asymptotic stability is certified.
We now construct Lyapunov functions to find certified

estimates of the ROA. In the associated SOS programming
(22) with BMI constraints, we suppose 𝑝(𝑥

1
, 𝑥

2
) = 𝑥

2

1
+ 𝑥

2

2
.

When 𝑑 = 2, we obtain

𝑉 (𝑥

1
, 𝑥

2
) = 0.6174455𝑥

2

1
− 0.40292𝑥

1
𝑥

2
+ 0.43078𝑥

2

2
,

𝛽 = 1.3402225.

(49)

Let the tolerance 𝜏 = 10

−5, and the bound of the common
denominator of the polynomial coefficients vector be 10

5.
By use of the rational SOS recovery technique described in
Section 4.2, we obtain

̃

𝑉 (𝑥

1
, 𝑥

2
) =

6732

10903

𝑥

2

1
−

4393

10903

𝑥

1
𝑥

2
+

42271

10903

𝑥

2

2
,

̃

𝛽 =

6701

5000

,

(50)

which exactly satisfy the conditions inTheorem 6.Therefore,

Ω

�̃�
= {(𝑥

1
, 𝑥

2
) ∈ R
2

|

̃

𝑉 (𝑥

1
, 𝑥

2
) ≤ 1} (51)

is a certified estimate of the ROA of the given system.

Table 2 shows the performance ofAlgorithm 9on another
three examples, for computing verified estimates of ROAs
of dynamical systems with the same fixed positive definite
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polynomial 𝑝(x) given in the literature. All the computations
have been performed on an Intel Core 2 Duo 2.0GHz
processor with 2GB of memory. In Table 2, Examples 1–3
correspond to [22, Examples 1, 2] and [20, page 75]. For all
these examples, let the degree bound of the SOSes be 4, 𝜏 =

10

−4 and 𝐷 = 10000. Here 𝑛 and Num denote the number
of system variables and the number of decision variables
in the BMI problem, respectively; deg(̃𝑉) and ̃

𝛽 denote,
respectively, the degree of ̃𝑉(x) and value of 𝛽 obtained from
Algorithm 9, whereas 𝛽 is reported in the literature; time is
that for the entire computation run Algorithm 9 in seconds.

6. Conclusion

In this paper, we present a symbolic-numeric method on
asymptotic stability andROAanalysis of nonlinear dynamical
systems. A numerical Lyapunov function and an estimate
of ROA can be obtained by solving an (bilinear) SOS pro-
gramming via BMI solver.Then a method based on modified
Newton iteration and rational vector recovery techniques
is deployed to obtain exact polynomial Lyapunov functions
and verified estimates of ROAs with rational coefficients.
Some experimental results are given to show the efficiency
of our algorithm. For future work, we will consider the
problemof stability region analysis of nonpolynomial systems
by applying a rigorous polynomial approximate technique
to compute an uncertain polynomial system, whose set of
trajectories contains that of the given nonpolynomial system.

Acknowledgments

This material is supported in part by the National Natural
Science Foundation of China under Grants 91118007 and
61021004 (Wu Yang), the Fundamental Research Funds for
the Central Universities under Grant 78210043 (Wu Yang),
and the Education Department of Zhejiang Province Project
under Grant Y201120383 (Lin).

References
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[40] J. Löfberg, “Modeling and solving uncertain optimization prob-
lems in YALMIP,” in Proceedings of the 17th World Congress,
International Federation of Automatic Control (IFAC ’08), pp.
1337–1341, July 2008.

[41] U. Topcu, A. Packard, and P. Seiler, “Local stability analysis
using simulations and sum-of-squares programming,” Auto-
matica, vol. 44, no. 10, pp. 2669–2675, 2008.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


