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A new splitting method designed for the numerical solutions of stochastic delay Hopfield neural networks is introduced and
analysed. Under Lipschitz and linear growth conditions, this split-step 𝜃-Milstein method is proved to have a strong convergence
of order 1 in mean-square sense, which is higher than that of existing split-step 𝜃-method. Further, mean-square stability of the
proposed method is investigated. Numerical experiments and comparisons with existing methods illustrate the computational
efficiency of our method.

1. Introduction

Hopfield neural networks, which originated with Hopfield in
the 1980s [1], have been successfully applied in many areas
such as combinatorial optimization [2, 3], signal processing
[4], and pattern recognition [5, 6]. In the last decade, neural
networks in the presence of signal transmission delay and
stochastic perturbations, also named as stochastic delayHop-
field neural networks (SDHNNs), have gained considerable
research interest (see, e.g., [7–9] and the references therein).
It is noticed that, so far,most works on SDHNNs focusmainly
on the stability analysis of the analytical solutions, including
mean-square exponential stability [7], global asymptotic
stability [9], and so forth. Not only simulation is an important
tool to explore interesting dynamics of kinds of Hopfield
neural networks (HNNs) (see, e.g., [10] and the references
therein), but also parameter estimation in dynamical sys-
tems based on HNNs (see, e.g., [11]) needs to solve HNNs
numerically. Moreover, because most of SDHNNs do not
have explicit solutions, the numerical analysis of SDHNNs
recently stirred some initial research attention. For example,
Li et al. [12] investigated the exponential stability of the Euler
method and the semi-implicit Euler method for SDHNNs.

Rathinasamy [13] introduced a split-step 𝜃-method (SST)
for SDHNNs and analysed the mean-square stability of this
method, and the SST is only given for the commensurable
delay case. To the best of our current knowledge, the authors
mainly discussed the stability of numerical solutions for
stochastic Hopfield neural networks with discrete time delays
but skipped the details of convergence analysis.

The split-step Euler method for stochastic differential
equations (SDEs) was proposed byHigham et al. [14], further,
the splitting Euler-type algorithms have been derived for
stochastic delay differential equations (SDDEs) [15, 16]. In
this paper, we will present a splitting method with higher
order convergence for SDHNNs. To be specific, we will go
into detail about the convergence analysis and comparing the
stability with split-step 𝜃-method given in [13].

The rest of this paper is organized as follows. In Section 2,
we recall the stochastic delay neural networks model and
present a split-step 𝜃-Milsteinmethod. In Section 3,we derive
the convergence results of the split-step 𝜃-Milstein method
for the model. In Section 4, the numerical stability analysis is
performed. In Section 5, some numerical examples are given
to confirm the theory. In the last Section, we draw some
conclusions.
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2. Model and the Split-Step 𝜃-Milstein Method

2.1. Model. Consider the stochastic delay Hopfield neural
networks of the form

dx (𝑡) = [−𝐶x (𝑡) + 𝐴f (x (𝑡)) + 𝐵g (z (𝑡))] dt

+ Φ (x (𝑡)) d𝑊(𝑡) ,

(1)

where x(𝑡) = [𝑥
1
(𝑡), . . . , 𝑥

𝑛
(𝑡)]

𝑇
∈ R𝑛 is the state vector asso-

ciated with the 𝑛 neurons, z(𝑡) = [𝑥
1
(𝑡 − 𝜏

1
), . . . , 𝑥

𝑛
(𝑡 − 𝜏

𝑛
)]
𝑇,

the diagonal matrix 𝐶 = diag(𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
) has positive

entries, and 𝑐
𝑖
represents the rate at which the 𝑖th unit

will reset its potential to the resting state in isolation when
discounted from the network and the external stochastic
perturbation. The matrices 𝐴 = (𝑎

𝑖𝑗
)
𝑛×𝑛

and 𝐵 = (𝑏
𝑖𝑗
)
𝑛×𝑛

are the connection weight matrix and the discretely delayed
connection weight matrix, respectively. Furthermore, the
vector functions f(x(𝑡)) = [𝑓

1
(𝑥

1
(𝑡)), . . . , 𝑓

𝑛
(𝑥

𝑛
(𝑡))]

𝑇 and
g(z(𝑡)) = [𝑔

1
(𝑥

1
(𝑡 − 𝜏

1
)), . . . , 𝑔

𝑛
(𝑥

𝑛
(𝑡 − 𝜏

𝑛
))]

𝑇 denote the
neuron activation functions with the conditions 𝑓

𝑖
(0) =

0, 𝑔
𝑖
(0) = 0 for all positive 𝜏

𝑗
.

On the initial segment [−𝜏, 0] the state vector satisfies
x(𝑡) = 𝜓(𝑡), where 𝜓(𝑡) = [𝜓

1
(𝑡), . . . , 𝜓

𝑛
(𝑡)]

𝑇 is a given
function in 𝐶([−𝜏, 0],R𝑛

) and 𝜏 stands for max
1≤𝑖≤𝑛

{𝜏
𝑖
}.

Moreover, Φ(x(𝑡)) = diag(𝜙
1
(𝑥

1
(𝑡)), . . . , 𝜙

𝑛
(𝑥

𝑛
(𝑡))) is a

diagonal matrix with 𝜙
𝑖
(0) = 0 and 𝑊(𝑡) = [𝑊

1
(𝑡), . . . ,

𝑊
𝑛
(𝑡)]

𝑇
∈ R𝑛 is an 𝑛-dimensional Wiener process defined

on the complete probability space (Ω,F, {F
𝑡
}
𝑡≥0

,P) with a
filtration {F

𝑡
}
𝑡≥0

satisfying the usual conditions (i.e., it is
increasing and right continuous whileF

0
contains all P-null

sets).
Let 𝑓

𝑖
and 𝑔

𝑖
be functions in 𝐶

2
(𝐷;R)⋂L2

([0, 𝑇];R)

and 𝜙
𝑖
be in𝐶1

(𝐷;R)∩L2
([0, 𝑇];R). Here𝐶𝑙

(𝐷;R) denotes
the family of continuously 𝑙-times differentiable real-valued
function defined on 𝐷, while L𝑙

([0, 𝑇];R) denotes the
family of all real-valued measurable {F

𝑡
}-adapted stochastic

processes {𝑓(𝑡)}
𝑡∈[0,𝑇]

such that ∫𝑇
0
|𝑓(𝑡)|

𝑙
𝑑𝑡 < +∞.

2.2. Numerical Scheme. We define the mesh with a uniform
step-size ℎ (0 < ℎ < 1) on the interval [0, 𝑇]; that is, 𝑡

𝑘
=

𝑘 ⋅ ℎ (𝑘 = 0, 1, . . . , 𝐾) and 𝑇 = 𝐾ℎ.
Let Δ𝑊𝑘

𝑖
= 𝑊

𝑖
(𝑡
𝑘+1

) −𝑊
𝑖
(𝑡
𝑘
) denote the increment of the

Wiener process.The split-step 𝜃-Milstein (SSTM) scheme for
the solution of SDEs (1) is given by

𝑌
𝑘
= 𝑋

𝑘
+ [− (1 − 𝜃) 𝐶𝑋

𝑘
− 𝜃𝐶𝑌

𝑘
+ 𝐴f (𝑋𝑘

) + 𝐵g (𝑍𝑘
)] ℎ,

𝑋
𝑘+1

= 𝑌
𝑘
+ Φ (𝑌

𝑘
) Δ𝑊

𝑘
+
1

2
Φ̂ (𝑌

𝑘
) [Δ𝑊

𝑘
∘ Δ𝑊

𝑘
− 1ℎ] ,

(2)

where the merging parameter 𝜃 satisfies 0 ≤ 𝜃 ≤ 1, 𝑋𝑘
=

[𝑋
k
1
, . . . , 𝑋

𝑘

𝑛
]
𝑇 is an approximation to x(𝑡

𝑘
), and for 1 ≤ 𝑞

𝑗
∈

Z+

𝑍
𝑘

𝑗
= {

𝜓
𝑗
(𝑡
𝑘
− 𝜏

𝑗
) , 𝑡

𝑘
− 𝜏

𝑗
≤ 0,

𝑋
𝑘−𝑞𝑗

𝑗
, 0 < 𝑡

𝑘
− 𝜏

𝑗
∈ [𝑡

𝑘−𝑞𝑗
, 𝑡
𝑘−𝑞𝑗+1

) .
(3)

Moreover, we adopt the symbols Φ̂(𝑌
𝑘
) =

diag(𝜙󸀠
1
(𝑌

𝑘

1
)𝜙

1
(𝑌

𝑘

1
), . . . , 𝜙

󸀠

𝑛
(𝑌

𝑘

𝑛
)𝜙

𝑛
(𝑌

𝑘

𝑛
)) and Δ𝑊

𝑘 = [Δ𝑊
𝑘

1
,

. . . ,Δ𝑊𝑘

𝑛
]
𝑇, the Hadamard product Δ𝑊

𝑘
∘ Δ𝑊

𝑘 means
[(Δ𝑊

𝑘

1
)
2, . . . ,(Δ𝑊𝑘

𝑛
)
2
]
𝑇, and 1 = [1, . . . , 1]

𝑇
∈ R𝑛. When

𝑡
𝑘
≤ 0, we define𝑋𝑘

= 𝜓(𝑡
𝑘
).

Then scheme (2) can be written in equivalent form as

𝑌
𝑘
= 𝑋

𝑘
− (𝐼 + 𝜃𝐶ℎ)

−1
𝐶ℎ𝑋

𝑘

+ (𝐼 + 𝜃𝐶ℎ)
−1
ℎ [𝐴f (𝑋𝑘

) + 𝐵g (𝑍𝑘
)] ,

(4a)

𝑋
𝑘+1

= 𝑌
𝑘
+ Φ (𝑌

𝑘
) Δ𝑊

𝑘
+
1

2
Φ̂ (𝑌

𝑘
) [Δ𝑊

𝑘
∘ Δ𝑊

𝑘
− 1ℎ] .

(4b)

Substituting (4a) into (4b), we have a stochastic explicit
single-step method with an increment function Λ(𝜉, 𝜂,
ℎ, Δ𝑊

𝑘
) ∈ R𝑛; that is,

𝑋
𝑘+1

= 𝑋
𝑘
+ Λ (𝑋

𝑘
, 𝑍

𝑘
, ℎ, Δ𝑊

𝑘
) . (5)

3. Order and Convergence Results for SSTM

In this section we consider the global error of SSTM (2) as
applied to SDHNNs (1)with initial condition. Inwhat follows,
‖ ⋅ ‖ denotes Euclidean norm in R𝑛.

For convergence purpose wemake the following standard
assumptions.

Assumption 1. Assume that f , g,Φ, and Φ̂ satisfy the Lipschitz
condition
󵄨󵄨󵄨󵄨𝑓𝑖 (𝑎)−𝑓𝑖 (𝑏)

󵄨󵄨󵄨󵄨 ≤ 𝛼
𝑖 |𝑎−𝑏| ,

󵄨󵄨󵄨󵄨𝑔𝑖 (𝑎)−𝑔𝑖 (𝑏)
󵄨󵄨󵄨󵄨 ≤ 𝛽

𝑖 |𝑎−𝑏| ,

󵄨󵄨󵄨󵄨𝜙i (𝑎)−𝜙𝑖 (𝑏)
󵄨󵄨󵄨󵄨 ≤ 𝛾

𝑖 |𝑎−𝑏| ,

󵄨󵄨󵄨󵄨󵄨
𝜙
𝑖
𝜙
󸀠

𝑖
(𝑎)−𝜙

𝑖
𝜙
󸀠

𝑖
(𝑏)

󵄨󵄨󵄨󵄨󵄨
≤ 𝜅

𝑖 |𝑎−𝑏| ,

(𝑎, 𝑏 ∈ R and 𝑡 ∈ [0, 𝑇])

(6)

for every 𝑖 and the linear growth condition

‖f(x)‖2 ∨ 󵄩󵄩󵄩󵄩g(x)
󵄩󵄩󵄩󵄩
2

∨ ‖Φ (x) ⋅ 1‖2 ∨ 󵄩󵄩󵄩󵄩󵄩
Φ̂ (x) ⋅ 1󵄩󵄩󵄩󵄩󵄩

2

≤ �̃� (1 + ‖x‖2) , ∀x ∈ R
𝑛
,

(7)

where �̃� is a positive constant and ∨ is the maximal operator.
We also define 𝐿

𝑖
as 𝐿

𝑖
= max{𝛼

𝑖
, 𝛽

𝑖
, 𝛾

𝑖
, 𝜅

𝑖
} (𝑖 = 1, 2, . . . , 𝑛).

We also need the following assumption on the initial
condition.

Assumption 2. Assume that the initial function 𝜓(𝑡) is Lips-
chitz continuous from [−𝜏, 0] toR𝑛, that is, there is a positive
constant 𝐿

𝜓
satisfying

󵄩󵄩󵄩󵄩𝜓 (𝑡) − 𝜓 (𝑠)
󵄩󵄩󵄩󵄩 ≤ 𝐿

𝜓
(𝑡 − 𝑠) if − 𝜏 ≤ 𝑠 < 𝑡 < 0. (8)



Abstract and Applied Analysis 3

Now we give the definition of local and global errors.

Definition 1. Let x(𝑡) denote the exact solution of (1). The
local approximate solution x̃(𝑡

𝑘+1
) starting from x(𝑡

𝑘
) by

SSTM (2) given by

x̃ (𝑡
𝑘+1

) := x (𝑡
𝑘
) + Λ (x (𝑡

𝑘
) , �̃� (𝑡

𝑘
) , ℎ, Δ𝑊

𝑘
) , (9)

where �̃�(𝑡
𝑘
) denotes the evaluation of (3) using the exact

solution, yields the difference

𝛿
𝑘+1

:= x (𝑡
𝑘+1

) − x̃ (𝑡
𝑘+1

) . (10)

Then the local error of SSTM is defined by ‖𝛿𝑘+1‖, whereas its
global error means ‖𝜖𝑘‖ where 𝜖𝑘 := x(𝑡

𝑘
) − 𝑋

𝑘.

Definition 2. If the global error satisfies

𝐸 (
󵄩󵄩󵄩󵄩󵄩
𝜖
𝑘󵄩󵄩󵄩󵄩󵄩
)
2

≤ Γℎ
2𝑝

∀ℎ ∈ (0, ℎ
0
) (11)

with positive constants ℎ
0
and Γ and a finite 𝑝, then we say

that the order of mean-square convergence accuracy of the
method is 𝑝. Here 𝐸 is the expectation with respect to P.

We then give the following lemmas that are useful in
deriving the convergence results.

Lemma 3 (see also [17]). Let the linear growth condition
(7) hold, and the initial function 𝜓(𝑡) is assumed to be
F

0
-measurable and right continuous. And one puts 𝐸

𝜓
:=

𝐸(sup
−𝜏≤𝑡≤0

‖𝜓(𝑡)‖
2
) < ∞. For any given positive 𝑇, there exist

positive numbers Γ
𝜓
and Γ

2
such that the solution of (1) satisfies

𝐸( sup
−𝜏≤𝑠≤𝑇

‖x (𝑠)‖2) ≤ Γ
𝜓
, (12)

where the constant Γ
𝜓

is independent of step-size ℎ but
dependent on 𝑇. Moreover, for any 0 ≤ 𝑠 < 𝑡 ≤ 𝑇, 𝑡 − 𝑠 < 1,
the estimation

𝐸(‖x (𝑡) − x (𝑠)‖)2 ≤ Γ
2
(𝑡 − 𝑠) (13)

holds.

The Jensen inequality derives

𝐸( sup
−𝜏≤𝑠≤𝑇

‖x (𝑠)‖) ≤ √Γ
𝜓

(14)

from (12).

Lemma 4. For 𝑠 ∈ [𝑡
𝑘
, 𝑡
𝑘
+ ℎ], one has

𝐸(
󵄩󵄩󵄩󵄩󵄩
z (𝑠) − �̃� (𝑡

𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

) ≤ Γ
𝜏
ℎ. (15)

Here the constant Γ
𝜏
is independent of step-size ℎ.

Proof. If 𝑡
𝑘
− 𝜏

𝑗
≤ 0 and 𝑠 − 𝜏

𝑗
≤ 0, under Assumption 2 we

have

𝐸[𝑥
𝑗
(𝑠 − 𝜏

𝑗
) − �̃�

𝑗
(𝑡
𝑘
)]
2

= 𝐸[𝜓
𝑗
(𝑠 − 𝜏

𝑗
) − 𝜓

𝑗
(𝑡
𝑘
− 𝜏

𝑗
)]

2

≤ 𝐿
𝜓
(𝑠 − 𝑡

𝑘
)
2

≤ 𝐿
𝜓
ℎ
2
.

(16)

If 𝑡
𝑘
− 𝜏

𝑗
≤ 0 and 𝑠 − 𝜏

𝑗
> 0, with (13) we obtain

𝐸[𝑥
𝑗
(𝑠 − 𝜏

𝑗
) − �̃�

𝑗
(𝑡
𝑘
)]
2

= 𝐸[𝑥
𝑗
(𝑠 − 𝜏

𝑗
) − 𝜓

𝑗
(𝑡
𝑘
− 𝜏

𝑗
)]

2

≤ 2𝐸[𝑥
𝑗
(𝑠 − 𝜏

𝑗
) − 𝑥

𝑗
(0)]

2

+ 2𝐸[𝜓
𝑗
(0) − 𝜓

𝑗
(𝑡
𝑘
− 𝜏

𝑗
)]

2

≤ 2 (Γ
2
+ 𝐿

𝜓
ℎ) ℎ.

(17)

If 𝑡
𝑘
−𝜏

𝑗
> 0 and 𝑠−𝜏

𝑗
> 0, we assume 𝑡

𝑘
−𝜏

𝑗
∈ [𝑡

𝑘−𝑞𝑗
, 𝑡
𝑘−𝑞𝑗+1

)

without loss of generality. Hence,

𝐸[𝑥
𝑗
(𝑠 − 𝜏

𝑗
) − �̃�

𝑗
(𝑡
𝑘
)]
2

= 𝐸[𝑥
𝑗
(𝑠 − 𝜏

𝑗
) − 𝑥

𝑗
(𝑡

𝑘−𝑞𝑗
)]

2

≤ 2𝐸[𝑥
𝑗
(𝑠 − 𝜏

𝑗
) − 𝑥

𝑗
(𝑡
𝑘
− 𝜏

𝑗
)]

2

+ 2𝐸[𝑥
𝑗
(𝑡

𝑘−𝑞𝑗
) − 𝑥

𝑗
(𝑡
𝑘
− 𝜏

𝑗
)]

2

≤ 4Γ
2
ℎ

(18)

by using inequality (13).

Lemma 5. Let x(𝑡) denote the exact solution of (1). One
assumes conditions (6) and (7). Then for the local interme-
diate value y(𝑡

𝑘
) := x(𝑡

𝑘
) − (𝐼 + 𝜃𝐶ℎ)

−1
𝐶ℎx(𝑡

𝑘
) + (𝐼 +

𝜃𝐶ℎ)
−1
ℎ[𝐴f(x(𝑡

𝑘
)) + 𝐵g(�̃�(𝑡

𝑘
))], one has the estimation

𝐸 (
󵄩󵄩󵄩󵄩x(𝑡𝑘) − y(𝑡

𝑘
)
󵄩󵄩󵄩󵄩
2

) ≤ Γ
3
ℎ
2
. (19)

Proof. The difference between the 𝑖th components of x(𝑡
𝑘
)

and y(𝑡
𝑘
) leads to

󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡𝑘) − 𝑦
𝑖
(𝑡
𝑘
)
󵄨󵄨󵄨󵄨
2

=
ℎ
2

(1 + 𝑐
𝑖
𝜃ℎ)

2

[

[

𝑐
𝑖
𝑥
𝑖
(𝑡
𝑘
) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑥

𝑗
(𝑡
𝑘
))

−

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(�̃�

𝑗
(𝑡
𝑘
))]

]

2

,

(20)
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whose expectation, together with 𝑐
𝑖
> 0, 𝑓

𝑖
(0) = 𝑔

𝑖
(0) = 0,

the Lipschitz condition (6), and the estimation (12), gives

𝐸 (
󵄩󵄩󵄩󵄩x(𝑡𝑘) − y(𝑡

𝑘
)
󵄩󵄩󵄩󵄩
2

)

≤

𝑛

∑

𝑖=1

3ℎ
2

(1 + 𝑐
𝑖
𝜃ℎ)

2

× [

[

𝑐
2

𝑖
𝐸
󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡𝑘)

󵄨󵄨󵄨󵄨
2

+ 𝑛

𝑛

∑

𝑗=1

𝑎
2

𝑖𝑗
𝛼
2

𝑗
𝐸
󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑡
𝑘
)
󵄨󵄨󵄨󵄨󵄨

2

+ 𝑛

𝑛

∑

𝑗=1

𝑏
2

𝑖𝑗
𝛽
2

𝑗
𝐸
󵄨󵄨󵄨󵄨󵄨
�̃�
𝑗
(𝑡
𝑘
)
󵄨󵄨󵄨󵄨󵄨

2
]

]

≤ 3Γ
𝜓

𝑛

∑

𝑖=1

(𝑐
2

𝑖
+ 𝑛

𝑛

∑

𝑗=1

𝑎
2

𝑖𝑗
𝛼
2

𝑗
+ 𝑛

𝑛

∑

𝑗=1

𝑏
2

𝑖𝑗
𝛽
2

𝑗
)ℎ

2
.

(21)

Now we discuss local error estimates.

Theorem 6. When one assumes Assumptions 1 and 2 and the
conditions of Lemma 3, there exist positive constants Γ

0
and Γ

1
,

such that

max
0≤𝑘≤𝐾−1

󵄩󵄩󵄩󵄩󵄩
𝐸 (𝛿

𝑘+1
)
󵄩󵄩󵄩󵄩󵄩
≤ Γ

0
ℎ
2
, (22)

max
0≤𝑘≤𝐾−1

𝐸(
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑘+1󵄩󵄩󵄩󵄩󵄩

2

) ≤ Γ
1
ℎ
3 (23)

as ℎ ↓ 0.

Proof. The Itô integral form of the 𝑖th component of (1) on
[𝑡
𝑘
, 𝑡] implies

𝑥
𝑖
(𝑡) − 𝑥

𝑖
(𝑡
𝑘
)

= ∫

𝑡

𝑡𝑘

[

[

−𝑐
𝑖
𝑥
𝑖
(𝑠) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑥

𝑗
(𝑠))

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(𝑥

𝑗
(𝑠 − 𝜏

𝑗
))]

]

d𝑠

+ ∫

𝑡

𝑡𝑘

𝜙
𝑖
(𝑥

𝑖
(𝑠)) d𝑊

𝑖
(𝑠) .

(24)

By utilizing the previous identity, the 𝑖th component of the
difference 𝛿𝑘+1 introduced in Definition 1 can be calculated
as

𝛿
𝑘+1

𝑖
= 𝑥

𝑖
(𝑡
𝑘+1

) − 𝑥
𝑖
(𝑡
𝑘
) +

𝑐
𝑖
ℎ

1 + 𝑐
𝑖
𝜃ℎ

𝑥
𝑖
(𝑡
𝑘
)

−
ℎ

1 + 𝑐
𝑖
𝜃ℎ

[

[

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑥

𝑗
(𝑡
𝑘
)) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(�̃�

𝑗
(𝑡
𝑘
))]

]

− 𝜙
𝑖
(𝑦

𝑖
(𝑡
𝑘
)) Δ𝑊

𝑘

𝑖
− 𝜙

󸀠

𝑖
(𝑦

𝑖
(𝑡
𝑘
))

× 𝜙
𝑖
(𝑦

𝑖
(𝑡
𝑘
))

(Δ𝑊
𝑘

𝑖
)
2

− ℎ

2

= ∫

𝑡𝑘+1

𝑡𝑘

𝑐
𝑖
[𝑥

𝑖
(𝑡
𝑘
) − 𝑥

𝑖
(𝑠)] d𝑠 −

𝑐
2

𝑖
ℎ
2
𝜃

1 + 𝑐
𝑖
𝜃ℎ

𝑥
𝑖
(𝑡
𝑘
)

+ ∫

𝑡𝑘+1

𝑡𝑘

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
[𝑓

𝑗
(𝑥

𝑗
(𝑠)) − 𝑓

𝑗
(𝑥

𝑗
(𝑡
𝑘
))]

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
[𝑔

𝑗
(𝑥

𝑗
(𝑠 − 𝜏

𝑗
)) − 𝑔

𝑗
(�̃�

𝑗
(𝑡
𝑘
))] d𝑠

+
𝑐
𝑖
𝜃ℎ

2

1 + 𝑐
𝑖
𝜃ℎ

[

[

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑥

𝑗
(𝑡
𝑘
)) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(�̃�

𝑗
(𝑡
𝑘
))]

]

+ ∫

𝑡𝑘+1

𝑡𝑘

𝜙
𝑖
(𝑥

𝑖
(𝑠)) d𝑊

𝑖
(𝑠) − ∫

𝑡𝑘+1

𝑡𝑘

𝜙
𝑖
(𝑦

𝑖
(𝑡
𝑘
)) d𝑊

𝑖
(𝑠)

− ∫

𝑡𝑘+1

𝑡𝑘

∫

𝑠

𝑡𝑘

𝜙
󸀠

𝑖
(𝑦

𝑖
(𝑡
𝑘
)) 𝜙

𝑖
(𝑦

𝑖
(𝑡
𝑘
)) d𝑊

𝑖
(𝑟) d𝑊

𝑖
(𝑠) ,

(25)

where Δ𝑊
𝑘

𝑖
= ∫

𝑡𝑘+1

𝑡𝑘

d𝑊
𝑖
(𝑠) and ((Δ𝑊

𝑘

i )
2

− ℎ)/2 =

∫
𝑡𝑘+1

𝑡𝑘

∫
𝑠

𝑡𝑘

d𝑊
𝑖
(𝑟)d𝑊

𝑖
(𝑠).

Taking expectations of both sides of (25),

𝐸 (𝛿
𝑘+1

𝑖
)

= 𝐸(∫

𝑡𝑘+1

𝑡𝑘

𝑐
𝑖
∫

𝑠

𝑡𝑘

−𝜇
𝑖
(𝑥

𝑖
(𝑟)) d𝑟d𝑠)

−
𝑐
2

𝑖
ℎ
2
𝜃

1 + 𝑐
𝑖
𝜃ℎ

𝐸 (𝑥
𝑖
(𝑡
𝑘
))

+ 𝐸(∫

𝑡𝑘+1

𝑡𝑘

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
∫

𝑠

𝑡𝑘

𝑓
󸀠

𝑗
(𝑥

𝑗
(𝑟)) 𝜇

𝑗
(𝑥

𝑗
(𝑟))

+
1

2
𝑓
󸀠󸀠

𝑗
(𝑥

𝑗
(𝑟)) 𝜙

2

𝑗
(𝑥

𝑗
(𝑟)) d𝑟d𝑠)

+ 𝐸(∫

𝑡𝑘+1

𝑡𝑘

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
∫

𝑠−𝜏𝑗

𝑡𝑘−𝑞𝑗

𝑔
󸀠

𝑗
(𝑥

𝑗
(𝑟)) 𝜇

𝑗
(𝑥

𝑗
(𝑟))

+
1

2
𝑔
󸀠󸀠

𝑗
(𝑥

𝑗
(𝑟)) 𝜙

2

𝑗
(𝑥

𝑗
(𝑟)) d𝑟d𝑠)

+
𝑐
𝑖
𝜃ℎ

2

1 + 𝑐
𝑖
𝜃ℎ

[

[

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝐸 (𝑓

𝑗
(𝑥

𝑗
(𝑡
𝑘
)))

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝐸 (𝑔

𝑗
(�̃�

𝑗
(𝑡
𝑘
)))]

]

(26)

by (24) and Itô formula, where 𝜇
𝑖
(𝑥

𝑖
(𝑟)) := −𝑐

𝑖
𝑥
𝑖
(𝑟) +

∑
𝑛

𝑗=1
𝑎
𝑖𝑗
𝑓
𝑗
(𝑥

𝑗
(𝑟)) + ∑

𝑛

𝑗=1
𝑏
𝑖𝑗
𝑔
𝑗
(𝑥

𝑗
(𝑟 − 𝜏

𝑗
)). Under conditions

of this theorem, we have |𝐸(𝛿
𝑘+1

𝑖
)| ≤ Γ̃

0
ℎ
2 by (14), Jensen
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inequality |𝐸(𝑋)| ≤ 𝐸(|𝑋|), triangle inequality, and proper-
ties of definite integral.Then we have max

0≤𝑘≤𝐾−1
‖𝐸(𝛿

𝑘+1
)‖ ≤

Γ
0
ℎ
2 from the relation between |𝐸(𝛿

𝑘+1

𝑖
)| and ‖𝐸(𝛿𝑘+1)‖.

Now we prove (23). By Itô formula,

∫

𝑡𝑘+1

𝑡𝑘

𝜙
𝑖
(𝑥

𝑖
(𝑠)) d𝑊

𝑖
(𝑠) − ∫

𝑡𝑘+1

𝑡𝑘

𝜙
𝑖
(𝑦

𝑖
(𝑡
𝑘
)) d𝑊

𝑖
(𝑠)

− ∫

𝑡𝑘+1

𝑡𝑘

∫

𝑠

𝑡𝑘

𝜙
󸀠

𝑖
(𝑦

𝑖
(𝑡
𝑘
)) 𝜙

𝑖
(𝑦

𝑖
(𝑡
𝑘
)) d𝑊

𝑖
(𝑟) d𝑊

𝑖
(𝑠)

= ∫

𝑡𝑘+1

𝑡𝑘

[𝜙
𝑖
(𝑥

𝑖
(𝑡
𝑘
)) − 𝜙

𝑖
(𝑦

𝑖
(𝑡
𝑘
))] d𝑊

𝑖
(𝑠)

+ ∫

𝑡𝑘+1

𝑡𝑘

∫

𝑠

𝑡𝑘

𝜙
󸀠

𝑖
(𝑥

𝑖
(𝑟)) 𝜇

𝑖
(𝑥

𝑖
(𝑟))

+
1

2
𝜙
󸀠󸀠

𝑖
(𝑥

𝑖
(𝑟)) 𝜙

𝑖
(𝑥

𝑖
(𝑟))

2d𝑟d𝑊
𝑖
(𝑠)

+ ∫

𝑡𝑘+1

𝑡𝑘

∫

𝑠

𝑡𝑘

[𝜙
󸀠

𝑖
(𝑥

𝑖
(𝑟)) 𝜙

𝑖
(𝑥

𝑖
(𝑟)) − 𝜙

󸀠

𝑖
(𝑦

𝑖
(𝑡
𝑘
))

× 𝜙
𝑖
(𝑦

𝑖
(𝑡
𝑘
)) ] d𝑊

𝑖
(𝑟) d𝑊

𝑖
(𝑠) .

(27)

From (25) and (27), we have

𝐸(
󵄨󵄨󵄨󵄨󵄨
𝛿
𝑘+1
𝑖

󵄨󵄨󵄨󵄨󵄨

2
)

≤ 9

{{{{

{{{{

{

𝑐𝑖ℎ∫

𝑡𝑘+1

𝑡𝑘

𝐸[𝑥𝑖 (𝑡𝑘) − 𝑥𝑖 (𝑠)]
2d𝑠

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Cauchy−Schwartz inequality

+ 𝑛

𝑛

∑

𝑗=1

𝑎
2
𝑖𝑗𝛼
2
𝑗ℎ∫

𝑡𝑘+1

𝑡𝑘

𝐸[𝑥𝑗 (𝑠) − 𝑥𝑗 (𝑡𝑘)]
2
d𝑠

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Cauchy−Schwartz and Hölder inequality

+ 𝑛

𝑛

∑

𝑗=1

𝑏
2
𝑖𝑗𝛽
2
𝑗ℎ∫

𝑡𝑘+1

𝑡𝑘

𝐸[𝑥𝑗 (𝑠 − 𝜏𝑗) − �̃�𝑗 (𝑡𝑘)]
2
d𝑠

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Cauchy−Schwartz and Hölder inequality

+
𝑐
4
𝑖 ℎ
4
𝜃
2

(1 + 𝑐𝑖𝜃ℎ)
2
𝐸
󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡𝑘)

󵄨󵄨󵄨󵄨

2

+
𝑛𝑐
2
𝑖 ℎ
4
𝜃
2

(1 + 𝑐𝑖𝜃ℎ)
2
[

[

𝑛

∑

𝑗=1

𝑎
2
𝑖𝑗𝐸

󵄨󵄨󵄨󵄨󵄨
𝑓𝑗 (𝑥𝑗 (𝑡𝑘))

󵄨󵄨󵄨󵄨󵄨

2
+

𝑛

∑

𝑗=1

𝑏
2
𝑖𝑗𝐸

󵄨󵄨󵄨󵄨󵄨
𝑔𝑗 (�̃�𝑗 (𝑡𝑘))

󵄨󵄨󵄨󵄨󵄨

2
]

]

+ ∫

𝑡𝑘+1

𝑡𝑘

𝛾
2
𝑗𝐸[𝑥𝑖 (𝑡𝑘) − 𝑦𝑖 (𝑡𝑘)]

2d𝑠
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Itô Isometry

+ ∫

𝑡𝑘+1

𝑡𝑘

(𝑠−𝑡𝑘) ∫

𝑠

𝑡𝑘

𝐸
󵄨󵄨󵄨󵄨󵄨
𝜙
󸀠
𝑖 (𝑥𝑖 (𝑟)) 𝜇𝑖 (𝑥𝑖 (𝑟))+(1/2) 𝜙

󸀠󸀠
𝑖 (𝑥𝑖 (𝑟)) 𝜙𝑖(𝑥𝑖 (𝑟))

2󵄨󵄨󵄨󵄨󵄨

2
d𝑟d𝑠

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Cauchy−Schwartz inequality and Itô Isometry

+∫

𝑡𝑘+1

𝑡𝑘

∫

𝑠

𝑡𝑘

𝐸[𝜙
󸀠
𝑖 (𝑥𝑖 (𝑟)) 𝜙i (𝑥𝑖 (𝑟)) − 𝜙

󸀠
𝑖 (𝑦𝑖 (𝑡𝑘)) 𝜙𝑖 (𝑦𝑖 (𝑡𝑘))]

2
d𝑟d𝑠

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Itô Isometry

}}}}

}}}}

}

≤ 9

{{{{

{{{{

{

ℎ(𝑐𝑖 + 𝑛

𝑛

∑

𝑗=1

𝑎
2
𝑖𝑗𝛼
2
𝑗)∫

𝑡𝑘+1

𝑡𝑘

Γ2ℎ⏟⏟⏟⏟⏟⏟⏟

(13)

d𝑠

+ ℎ(𝑛

𝑛

∑

𝑗=1

𝑏
2
𝑖𝑗𝛽
2
𝑗)∫

𝑡𝑘+1

𝑡𝑘

Γ𝜏ℎ⏟⏟⏟⏟⏟⏟⏟

(15)

d𝑠

+
ℎ
4
𝑐
2
𝑖 𝜃
2

(1 + 𝑐𝑖𝜃ℎ)
2
Γ𝜓

[

[

𝑐
2
𝑖 + 𝑛

𝑛

∑

𝑗=1

𝑎
2
𝑖𝑗𝛼
2
j + 𝑛

𝑛

∑

𝑗=1

𝑏
2
𝑖𝑗𝛽
2
𝑗
]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(6) and (12)

+ ∫

𝑡𝑘+1

𝑡𝑘

𝛾
2
𝑗 Γ3ℎ
2

⏟⏟⏟⏟⏟⏟⏟

(19)

d𝑠 + ∫
𝑡𝑘+1

𝑡𝑘

Γ4(𝑠 − 𝑡𝑘)
2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

moment bounded

d𝑠

+ ∫

𝑡𝑘+1

𝑡𝑘

∫

𝑠

𝑡𝑘

Γ5ℎd𝑟d𝑠
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Triangle Inequality, (6), (13), (19)

}}}}

}}}}

}

≤ Γ̃1ℎ
3
.

(28)

Finally, it is easy to prove 𝐸(‖𝛿𝑘+1‖
2

) ≤ Γ
1
ℎ
3.

Thanks toTheorem 1 in [18], we can conclude that

𝐸(
󵄩󵄩󵄩󵄩󵄩
𝜖
𝑘󵄩󵄩󵄩󵄩󵄩

2

) ≤ Γℎ
2

∀ℎ ∈ (0, 1) , (29)

that is, the mean-square order of global error of the SSTM is
1.

4. Stability of SSTM

We are concerned with the stability of SSTM solution. Since
(1) has an equilibrium solution x(𝑡) ≡ 0, we will discuss
whether the SSTM solution 𝑋

𝑘
with a positive step-size can

attain a similar stability when 𝑘 goes to infinity. First we give
a sufficient condition for the exponential stability in mean-
square sense of the equilibrium solution. The references [13,
19] give the condition as

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝛼
𝑗
+

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗
≤ 𝛼

𝑖

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑗𝑖

󵄨󵄨󵄨󵄨󵄨
+ 𝛽

𝑖

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑗𝑖

󵄨󵄨󵄨󵄨󵄨
,

−2𝑐
𝑖
+

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝛼
𝑗
+

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗
+ 𝛼

𝑖

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑗𝑖

󵄨󵄨󵄨󵄨󵄨
+ 𝛽

𝑖

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑗𝑖

󵄨󵄨󵄨󵄨󵄨
+ 𝛾

2

𝑖
< 0

(30)

for every 𝑖 (𝑖 = 1, . . . , 𝑛).

Definition 7. A numerical method is said to be mean-square
stable (MS-stable) if there exists an ℎ

0
> 0 such that any

application of themethod to problem (1) generates numerical
approximations𝑋𝑘

𝑖
, which satisfies

lim
𝑘→∞

𝐸(
󵄨󵄨󵄨󵄨󵄨
𝑋
𝑘

𝑖

󵄨󵄨󵄨󵄨󵄨

2

) = 0, 𝑖 = 1, 2, . . . , 𝑛, (31)

for all ℎ ∈ (0, ℎ
0
).

Theorem 8. Assume (6), (30), and (1 − 𝜃)𝑐
𝑖
ℎ ≤ 1 are satisfied;

then the SSTM (2) are mean-square stable if ℎ ∈ (0, ℎ
0
), where

ℎ
0
=

{{

{{

{

min
1≤𝑖≤𝑛

{1, ℎ
𝑖
} for 𝜃 = 1,

min
1≤𝑖≤𝑛

{1,
1

(1 − 𝜃) 𝑐
𝑖

, ℎ
𝑖
} for 𝜃 ∈ [0, 1) .

(32)
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Here ℎ
𝑖
is the smallest positive root of the cubic equation with

respect to 𝑧 given by

A
𝑖
𝑧
3
+B

𝑖
𝑧
2
+C

𝑖
𝑧 +D

𝑖
= 0, (33)

where the coefficients mean

A
𝑖
=
𝜅
2

𝑖

2
(−(1 − 𝜃)𝑐

𝑖
+

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝛼
𝑗
+

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗
)

2

,

B
𝑖
= 𝛾

2

𝑖
(−(1 − 𝜃)𝑐

𝑖
+

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝛼
𝑗
+

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗
)

2

+ 𝜅
2

𝑖
(

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝛼
𝑗
+

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗
) − 𝜅

2

𝑖
(1 − 𝜃) 𝑐

𝑖
,

C
𝑖
= (−(1 − 𝜃)𝑐

𝑖
+

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝛼
𝑗
+

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗
)

2

+ 2𝛾
2

𝑖
(− (1 − 𝜃) 𝑐

𝑖
+

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝛼
𝑗
+

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗
)

− 𝑐
2

𝑖
𝜃
2
+
𝜅
2

𝑖

2
,

D
𝑖
= 2(−𝑐

𝑖
+

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝛼
𝑗
+

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗
) + 𝛾

2

𝑖
.

(34)

for 𝑖 = 1, 2, . . . , 𝑛.
Squaring on both sides of (4b) and (4a), we have

󵄨󵄨󵄨󵄨󵄨
𝑋
𝑘+1

𝑖

󵄨󵄨󵄨󵄨󵄨

2

= (𝑌
𝑘

𝑖
)
2

+ [𝜙
𝑖
(𝑌

𝑘

𝑖
) Δ𝑊

𝑘

𝑖
]
2

+ [𝜙
󸀠

𝑖
(𝑌

𝑘

𝑖
) 𝜙

𝑖
(𝑌

𝑘

𝑖
)]

2
[

[

(Δ𝑊
𝑘

𝑖
)
2

− ℎ

2

]

]

2

+ [(𝜙
𝑖
(𝑌

𝑘

𝑖
)) Δ𝑊

𝑘

𝑖
+ 𝑌

𝑘

𝑖
]

× 𝜙
󸀠

𝑖
(𝑌

𝑘

𝑖
) 𝜙

𝑖
(𝑌

𝑘

𝑖
) [(Δ𝑊

𝑘

𝑖
)
2

− ℎ]

+ 2𝑌
𝑘

𝑖
𝜙
𝑖
(𝑌

𝑘

𝑖
) Δ𝑊

𝑘

𝑖
,

(35)

(1 + 𝜃𝑐
𝑖
ℎ)

2󵄨󵄨󵄨󵄨󵄨
𝑌
𝑘

𝑖

󵄨󵄨󵄨󵄨󵄨

2

= [(1 − (1 − 𝜃) 𝑐
𝑖
ℎ)𝑋

𝑘

𝑖
]
2

+ ℎ
2[

[

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑋

𝑘

𝑗
)]

]

2

+ ℎ
2[

[

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(𝑍

𝑘

𝑗
)]

]

2

+

𝑛

∑

𝑗=1

{2ℎ (1 − (1 − 𝜃) 𝑐
𝑖
ℎ)𝑋

𝑘

𝑖

× [𝑎
𝑖𝑗
𝑓
𝑗
(𝑋

𝑘

𝑗
) + 𝑏

𝑖𝑗
𝑔
𝑗
(𝑍

𝑘

𝑗
)]}

+ 2ℎ
2 [

[

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑋

𝑘

𝑗
)]

]

[

[

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(𝑍

𝑘

𝑗
)]

]

.

(36)

Taking expectations of both sides of (35), we can get

𝐸(
󵄨󵄨󵄨󵄨󵄨
𝑋
𝑘+1

𝑖

󵄨󵄨󵄨󵄨󵄨

2

)

= 𝐸 (
󵄨󵄨󵄨󵄨󵄨
𝑌
𝑘

𝑖

󵄨󵄨󵄨󵄨󵄨

2

) + ℎ𝐸 (
󵄨󵄨󵄨󵄨󵄨
𝜙
𝑖
(𝑌

𝑘

𝑖
)
󵄨󵄨󵄨󵄨󵄨

2

)

+
ℎ
2

2
𝐸 (

󵄨󵄨󵄨󵄨󵄨
𝜙
󸀠

𝑖
(𝑌

𝑘

𝑖
) 𝜙

𝑖
(𝑌

𝑘

𝑖
)
󵄨󵄨󵄨󵄨󵄨

2

)

≤ (1 + 𝛾
2

𝑖
ℎ +

ℎ
2

2
𝜅
2

𝑖
)𝐸(

󵄨󵄨󵄨󵄨󵄨
𝑌
𝑘

𝑖

󵄨󵄨󵄨󵄨󵄨

2

) .

(37)

Together with (36), we have

𝐸(
󵄨󵄨󵄨󵄨󵄨
𝑋
𝑘+1

𝑖

󵄨󵄨󵄨󵄨󵄨

2

)

≤ (1 + 𝛾
2

𝑖
ℎ +

ℎ
2

2
𝜅
2

𝑖
)𝐸(

󵄨󵄨󵄨󵄨󵄨
𝑌
𝑘

𝑖

󵄨󵄨󵄨󵄨󵄨

2

)

≤
1 + 𝛾

2

𝑖
ℎ + (ℎ

2
/2) 𝜅

2

𝑖

(1 + 𝜃𝑐
𝑖
ℎ)

2

×
{

{

{

[1 − (1 − 𝜃) 𝑐
𝑖
ℎ]

2

𝐸(
󵄨󵄨󵄨󵄨󵄨
𝑋
𝑘

𝑖

󵄨󵄨󵄨󵄨󵄨

2

)

+ ℎ
2
(

𝑛

∑

𝑟=1

󵄨󵄨󵄨󵄨𝑎𝑖𝑟
󵄨󵄨󵄨󵄨 𝛼𝑟)(

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝛼
𝑗
𝐸(

󵄨󵄨󵄨󵄨󵄨
𝑋
𝑘

𝑗

󵄨󵄨󵄨󵄨󵄨

2

))

+ ℎ
2
(

𝑛

∑

𝑟=1

󵄨󵄨󵄨󵄨𝑏𝑖𝑟
󵄨󵄨󵄨󵄨 𝛽𝑟)(

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗
𝐸(

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑘

𝑗

󵄨󵄨󵄨󵄨󵄨

2

))

+

𝑛

∑

𝑗=1

ℎ
󵄨󵄨󵄨󵄨1 − (1 − 𝜃) 𝑐

𝑖
ℎ
󵄨󵄨󵄨󵄨

× [
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝛼
𝑗
[𝐸 (

󵄨󵄨󵄨󵄨󵄨
𝑋
𝑘

𝑖

󵄨󵄨󵄨󵄨󵄨

2

) + 𝐸 (
󵄨󵄨󵄨󵄨󵄨
𝑋
𝑘

𝑗

󵄨󵄨󵄨󵄨󵄨

2

)]

+
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗
[𝐸 (

󵄨󵄨󵄨󵄨󵄨
𝑋
𝑘

𝑖

󵄨󵄨󵄨󵄨󵄨

2

) + 𝐸 (
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑘

𝑗

󵄨󵄨󵄨󵄨󵄨

2

)]]

+ 2ℎ
2
(

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝛼
𝑗
)

× (

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗
)[𝐸(

󵄨󵄨󵄨󵄨󵄨
𝑋
𝑘

𝑗

󵄨󵄨󵄨󵄨󵄨

2

) + 𝐸 (
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑘

𝑗

󵄨󵄨󵄨󵄨󵄨

2

)]
}

}

}

.

(38)
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Thus, we attain

𝐸(
󵄨󵄨󵄨󵄨󵄨
𝑋
𝑘+1

𝑖

󵄨󵄨󵄨󵄨󵄨

2

) ≤ [

[

𝑃 (ℎ) +

𝑛

∑

𝑗=1

𝑄
𝑗
(ℎ) +

𝑛

∑

𝑗=1

𝑅
𝑗
(ℎ)]

]

× max
1≤𝑗≤𝑛

{𝐸 (
󵄨󵄨󵄨󵄨󵄨
𝑋
𝑘

𝑖

󵄨󵄨󵄨󵄨󵄨

2

) , 𝐸 (
󵄨󵄨󵄨󵄨󵄨
𝑋
𝑘

𝑗

󵄨󵄨󵄨󵄨󵄨

2

) , 𝐸 (
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑘

𝑗

󵄨󵄨󵄨󵄨󵄨

2

)} ,

(39)

where

𝑃 (ℎ) =
1 + 𝛾

2

𝑖
ℎ + (ℎ

2
𝜅
2

𝑖
/2)

(1 + 𝜃𝑐
𝑖
ℎ)

2

×
{

{

{

[1 − (1 − 𝜃) 𝑐
𝑖
ℎ]

2

+ ℎ

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨1 − (1 − 𝜃) 𝑐
𝑖
ℎ
󵄨󵄨󵄨󵄨

× (
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝛼
𝑗
+
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗
)
}

}

}

,

(40)

𝑄
𝑗
(ℎ) =

1 + 𝛾
2

𝑖
ℎ + (ℎ

2
𝜅
2

𝑖
/2)

(1 + 𝜃𝑐
𝑖
ℎ)

2

×
{

{

{

ℎ
2 󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝛼
𝑗

𝑛

∑

𝑗=1

(
󵄨󵄨󵄨󵄨𝑎𝑖𝑟

󵄨󵄨󵄨󵄨 𝛼𝑟 +
󵄨󵄨󵄨󵄨𝑏𝑖𝑟

󵄨󵄨󵄨󵄨 𝛽𝑟)

+ ℎ
󵄨󵄨󵄨󵄨1 − (1 − 𝜃) 𝑐

𝑖
ℎ
󵄨󵄨󵄨󵄨 (
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝛼
𝑗
)
}

}

}

,

(41)

𝑅
𝑗
(ℎ) =

1 + 𝛾
2

𝑖
ℎ + (ℎ

2
𝜅
2

𝑖
/2)

(1 + 𝜃𝑐
𝑖
ℎ)

2

× {ℎ
2
(
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝛼
𝑗
+
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗
)(

𝑛

∑

𝑟=1

󵄨󵄨󵄨󵄨𝑏𝑖𝑟
󵄨󵄨󵄨󵄨 𝛽𝑟)

+ℎ
󵄨󵄨󵄨󵄨1 − (1 − 𝜃) 𝑐

𝑖
ℎ
󵄨󵄨󵄨󵄨 (
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗
) } .

(42)

Note that the assumption of Theorem implies the nonnega-
tivity of 1 − (1 − 𝜃)𝑐

𝑖
ℎ.

Proof. Obviously, when 𝑘 → +∞, 𝐸(|𝑋𝑘

𝑖
|
2
) → 0 if the

inequality 𝑃(ℎ) +∑𝑛

𝑗=1
𝑄
𝑗
(ℎ) +∑

𝑛

𝑗=1
𝑅
𝑗
(ℎ) < 1 holds, which is

equivalent to the inequalityA
𝑖
ℎ
3
+B

𝑖
ℎ
2
+C

𝑖
ℎ +D

𝑖
< 0.

Furthermore, it is easy to prove A
𝑖
> 0 and D

𝑖
< 0

by virtue of (30). By Vieta’s formulas, the product of three
roots of (33) satisfies 𝑧

1
𝑧
2
𝑧
3
= −(D

𝑖
/A

𝑖
) > 0. This means

that (33) has at least one positive root.Therefore, let ℎ
𝑖
denote

the smallest positive root of the equation. Moreover, we note
that at the origin the right-hand side polynomial of (33) is
negative. This completes the proof.

5. Numerical Results

Now, we apply the introduced SSTMmethod to two test cases
of SDHNNs in order to compare their performance with the

split-step 𝜃-method in [13], which has strong convergence
order 0.5.

The mean-square error 𝜀 of numerical approximations at
time 𝑇 versus the step-size is depicted in log-log diagrams,
where 𝜀 := √(1/2000)∑

2000

𝑟=1
‖𝑋𝐾

𝜔𝑟
− x(𝑇)‖2. Here x(𝑇) stands

for the value of explicit solution of (1) at time𝑇 = 3 and𝑋𝐾

𝜔𝑟
is

its numerical approximation along the rth sample path {𝜔
𝑟
:

𝑟 = 1, 2, . . . , 2000}. We compute the numerical solution using
the split-step 𝜃-Milstein method (2) with step-size ℎ = 2

−12,
and we will call this the “exact solution.”

Example 9. Consider the following two-dimensional sto-
chastic delay Hopfield neural networks of the form

𝑑(
𝑥
1
(𝑡)

𝑥
2
(𝑡)

) = − 𝐶(
𝑥
1
(𝑡)

𝑥
2
(𝑡)

) d𝑡 + 𝐴(
𝑓 (𝑥

1
(𝑡))

𝑓 (𝑥
2
(𝑡))

) d𝑡

+ 𝐵(
𝑔 (𝑥

1
(𝑡 − 𝜏

1
))

𝑔 (𝑥
2
(𝑡 − 𝜏

2
))
) d𝑡 + Φd𝑊(𝑡)

(43)

on 𝑡 ⩾ 0 with the initial condition 𝑥
1
(𝑡) = 𝑡 + 1, 𝑡 ∈ [−1, 0]

and 𝑥
2
(𝑡) = 𝑡 + 1, 𝑡 ∈ [−2, 0].

Case 1. Let 𝑓(𝑥) = sin(𝑥), 𝑔(𝑥) = arctan(𝑥),

𝐶 = (
20 0

0 20
) , 𝐴 = (

4 −5

6 3
) ,

𝐵 = (
−6 4

3 1
) , Φ = (

𝑥
1
(𝑡) 0

0 −√5𝑥
2
(𝑡)

) .

(44)

Case 2. Let 𝑓(𝑥) = 𝑥, 𝑔(𝑥) = tanh(𝑥),

𝐶 = (
10 0

0 10
) , 𝐴 = (

0 0

0 0
) ,

𝐵 = (
5 −1

1 5
) , Φ = (

1.5𝑥
1
(𝑡) 0

0 −1.5𝑥
2
(𝑡)

) .

(45)

In Figure 1, SSTM is applied with 7 different step-sizes:
ℎ
𝑚

= 2
𝑚−12 for 𝑚 = 1, 2, . . . , 7. Two pairs of time

delays (𝜏
1
, 𝜏

2
) are set to (1, 2) and (1.13, 2.31). The first

pair has common factor ℎ
𝑚
; however, the second pair is

incommensurable by ℎ
𝑚
. The computation errors 𝜀 versus

step-sizes ℎ are plotted on a log-log scale and the reference
lines of slope 1 are added. It illustrates that SSTM has raised
the strong order of the split-step 𝜃-method at least to 1 for
SDHNNs [13].

Next, Table 1 shows a comparison of stability intervals
between the SST and the SSTM for (43). Two sets of the
interval in the Table are calculated throughTheorem 8 in this
paper andTheorem 5.1 in [13]. It is easy to see that the stability
intervals of the two methods are similar.

We know that Theorem 5.1 in [13] and Theorem 8 in this
paper only give sufficient conditions of mean-square stability.
Therefore the stability intervals given by these theorems
are only subsets of real ones. To confirm the situation, we
calculated the sample moments of the approximate solution
andplotted themalong the time 𝑡. Here the samplemoment 𝜂𝑖

means (1/2000)∑2000

𝑟=1
‖𝑋

𝑖

𝜔𝑟
‖
2 for the numerical solution 𝑋

𝑖

𝜔𝑟
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Figure 1: Errors versus step-sizes for the SDHNNs (43).

Table 1: Calculated intervals of step-size for mean-square stability of the numerical schemes.

Numerical scheme Case 1 Case 2
Split-step 𝜃-Milstein method (𝜃 = 0.0) (0.0000, 0.0500] (0.0000, 0.1000]
Split-step 𝜃-Milstein method (𝜃 = 0.2) (0.0000, 0.0625] (0.0000, 0.1250]
Split-step 𝜃-Milstein method (𝜃 = 0.5) (0.0000, 0.1000] (0.0000, 0.2000]
Split-step 𝜃-Milstein method (𝜃 = 0.8) (0.0000, 0.0650) (0.0000, 0.5000]
Split-step 𝜃-Milstein method (𝜃 = 1.0) (0.0000, 0.0500) (0.0000, 0.3534)
Split-step 𝜃-method (𝜃 = 0.0) (0.0000, 0.0500] (0.0000, 0.1000]
Split-step 𝜃-method (𝜃 = 0.2) (0.0000, 0.0625] (0.0000, 0.1250]
Split-step 𝜃-method (𝜃 = 0.5) (0.0000, 0.1000] (0.0000, 0.2000]
Split-step 𝜃-method (𝜃 = 0.8) (0.0000, 0.0689) (0.0000, 0.5000]
Split-step 𝜃-method (𝜃 = 1.0) (0.0000, 0.0540) (0.0000, 0.5792)
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Figure 2: Mean-square stability comparison of SST and SSTM for the SDHNNs (43), Case 1, 𝜃 = 0.
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Figure 3: Mean-square stability comparison of SST and SSTM for the SDHNNs (43), Case 2, 𝜃 = 0.

approximating x(𝑡
𝑖
) along the 𝑟th sample path. Figures 2, 3, 4,

5, and 6 depict the results by SST and SSTM in the log-scaled
vertical axis. All the figures can give a rough estimate of the
stability interval in each case.

6. Concluding Remarks

We introduce the split-step 𝜃-Milstein method (SSTM),
which exhibits higher strong convergence rate than the
split-step 𝜃-method (SST, see [13]) for a stochastic delay

Hopfield neural networks, and the scheme proposed in this
paper can deal with incommensurable time delays which
were not considered in [13].We give the proof of convergence
results, which has generally been omitted in the previous
works on the same subject. By comparing the stability
intervals of step size for the SST and SSTM for a test example,
we find they exhibit similar mean-square stability.

In this paper, we have found a delay-independent
sufficient condition for mean-square stability of split-step
𝜃-Milstein method applied to nonlinear stochastic delay
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Figure 4: Mean-square stability comparison of SST and SSTM for the SDHNNs (43), Case 1, 𝜃 = 0.2.
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Figure 5: Mean-square stability comparison of SST and SSTM for the SDHNNs (43), Case 2, 𝜃 = 0.2.

Hopfield neural networks. Further, Figure 6 suggests that
the value of ℎ

0
, the right end-point of the stability interval,

given by Theorem 5.1 in [13] and Theorem 8 in this paper
is much smaller than the true value when 𝜃 is close to
unity. In this case, we need other techniques for stability
analysis in this kind of stochastic delay differential system.
To the best of our knowledge, the works in [20, 21] put
forward good attempts. On the other hand, with respect to
stochastic delay differential equations, some other types of
stability have been successfully discussed for the Euler-type
scheme, for example, mean-square exponential stability [12],

delay-dependent stability [22], delay-dependent exponential
stability [23], and almost sure exponential stability [24].
To Milstein-type scheme, in view of more sophisticated
derivations, these issues would be challenging for future
research.
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