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This paper deals with state estimation problem for a class of fractional-order complex dynamical networks with parametric
uncertainty. The parametric uncertainty is assumed to be of linear fractional form. Firstly, based on the properties of Kronecker
product and the stability of fractional-order system, a sufficient condition is derived for robust asymptotic stability of linear
fractional-order augmented system. Secondly, state estimation problem is then studied for the same fractional-order complex
networks, where the purpose is to design a state estimator to estimate the network state through available output measurement,
the existence conditions of designing state estimator are derived using matrix’s singular value decomposition and LMI techniques.
These conditions are in the form of linear matrix inequalities which can be readily solved by applying the LMI toolbox. Finally, two
numerical examples are provided to demonstrate the validity of our approach.

1. Introduction

Complex networks have become a focus of research and have
been paid much attention from various fields of the science
of engineering during the past few years, due to many real-
world systems can be described by complex networks, such
as the World Wide Web, neural networks, social networks,
cooperate networks, and foodwebs, electrical power grids [1–
12]. In particular, stability and synchronization of complex
dynamical networks have received great attention and many
profound results have been established [13–20].

Owing to the complexity of large-scale networks, state of
the node is not often fully available in the network outputs;
moreover, in many practical applications, one needs to know
the state’s information and then use it to achieve certain
objectives; therefore, it becomes necessary to estimate state
of the key node through available measurements; state esti-
mation problem of complex dynamical networks became an
important topic recently [21–28], which employ the stochastic
analysis techniques and the properties of Kronecker product
to establish delay-dependent criteria that ensure the existence
of desired estimator gains. Particularly, [21] investigates
state estimation problem for delayed neural networks and
derives some delay-independent sufficient conditions for the

existence of an estimator. It is noticed that discrete-time
networks have a better position to model digital transmitted
signals in a dynamical way than continuous-time networks.
Recently, state estimation problem for discrete-time networks
has received some research interests, such as synchronization
and state estimation being investigated in [22] for discrete-
time complex networks with distributed delays, and an LMI
approach is developed to design state estimator. In [25],
a novel synchronization problem has been discussed for a
class of discrete time-varying stochastic complex networks
over a finite horizon, and the bounded 𝐻

∞
synchronization

criteria have been established in terms of a set of recursive
linear matrix inequalities. Although, most of the studies
focus on synchronization and state estimation of integer-
order complex networks, many phenomena in nature cannot
be explained in the framework of integer-order dynamics,
for example, the synchronized motion of agents in fractional
circumstances, such as molecule fluids and porous media;
the stress-strain relationship demonstrates noninteger-order
dynamics rather than integer-order dynamics [29]. For the
fractional-order dynamical systems [30–32], it is very difficult
and inconvenient to construct Lyapunov functions because
there exist substantial differences between fractional-order
differential systems and integer-order differential ones. As a
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way of efficiently solving the robust stability and stabilization
problem, linear matrix inequality approach is presented
[33–36], which provides sufficient condition and designing
method of state feedback controllers for fractional-order
systems. As an extension of their application, recently, the
collective dynamics analysis of fractional-order complex net-
works has led to a host of interesting effects [37–39]. In [37],
the pinning control problem of fractional-order weighted
complex dynamical networks is considered for the first time;
some local stability properties of such pinned fractional-
order networks are derived and the valid stability regions
are estimated. Based on the stability theory of fractional-
order system, [38] derives the sufficient criteria for outer
synchronization by applying the nonlinear control and the
bidirectional coupling methods. It is noticed that uncertainty
is unavoidable because it is very difficult to obtain an exact
mathematical model due to environmental noise. Reference
[39] investigates robust synchronization of fractional-order
complex dynamical networks with parametric uncertainties,
some robust synchronization criteria are derived by applying
the nonlinear control, and the above uncertainty is described
by the norm bounded uncertainty. Recently, a new type of
uncertainty, namely, linear fractional form is considered in
[40–42], which can include the norm-bounded uncertainties
as a special case. Comparing with norm-bounded uncertain-
ties, the formulation of linear fractional uncertainties can
obtain less conservative results. To the best of our knowledge,
no result has been reported on state estimation for fractional-
order complex dynamical networks with linear fractional
parametric uncertainty, which is very important in both
theories and applications and is also a very challenging
problem. The main purpose of this paper is to address these
shortcomings.

Motivated by the above discussion, this paper focuses on
state estimation for fractional-order complex dynamical net-
works with linear fractional parametric uncertainty. Firstly,
based on the properties of Kronecker product and stability of
the fractional-order system, a sufficient condition is derived
for robust asymptotic stability of linear fractional-order aug-
mented system. Secondly, state estimation problem is then
studied for the same fractional-order complex networks; the
existence condition and method of designing state estimator
are derived by using matrix’s singular value decomposition
and LMI techniques. These conditions are in the form of
linear matrix inequalities, which can be readily solved by
applying the LMI toolbox.

The main novelty of this paper can be summarized as
follows: (1) state estimation problem for fractional-order
complex dynamical networks with parametric uncertainty is
considered in this paper, where the parametric uncertainty
is assumed to be of linear fractional form. (2) A novel state
estimator is constructed, in addition to estimatormatrix to be
designed; an unknown estimator statematrix is also involved.
(3) The existence condition and method of designing state
estimator are derived by usingmatrix’s singular value decom-
position and LMI techniques.

Notation. The notation used here is fairly standard. R𝑛

denotes the 𝑛-dimensional Euclidean space, and R𝑛×𝑚 is the

set of real 𝑛 × 𝑚 matrices. The superscript 𝑇 represents the
transpose of matrix (or vector). 𝐼 denotes the identity matrix
of compatible dimensions. In symmetric block matrices, ∗ is
used as an ellipsis for terms induced by symmetry. diag{⋅ ⋅ ⋅}
stands for a block-diagonal matrix. The notation𝑋 ⪰ 0 (𝑋 ≻
0) means that 𝑋 is positive semidefinite (positive definite).
Sym{𝑋} denotes the expression 𝑋 + 𝑋

𝑇. The Kronecker
product of an 𝑛 ×𝑚matrix𝑋 and a 𝑝 × 𝑞matrix 𝑌 is defined
by an 𝑛𝑝 × 𝑚𝑞 matrix 𝑋 ⊗ 𝑌 = (𝑥

𝑖𝑗
𝑌)
𝑛𝑝×𝑚𝑞

. If they are not
explicitly specified, arguments of a function or a matrix will
be omitted in the analysis when no confusion can arise.

2. Problem Formulation and Preliminaries

Consider the following fractional-order complex dynamical
networks consisting of𝑁 nodes:

𝐶
𝐷
𝛼

𝑡0 ,𝑡
𝑥
𝑖

(𝑡) = 𝐴𝑥
𝑖
(𝑡) +

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
Γ𝑥
𝑗
(𝑡) ,

𝑦
𝑖
(𝑡) = 𝐶𝑥

𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑁) ,

(1)

where 𝛼 ∈ [1, 2) is the fractional order. 𝑥
𝑖
(𝑡) ∈ R𝑛 is state

vector of the 𝑖th node, and 𝑦
𝑖
(𝑡) ∈ R𝑚 is the output vector,

𝐺 = (𝐺
𝑖𝑗
)
𝑁×𝑁

is coupled configurationmatrix of the networks
with 𝐺

𝑖𝑗
≥ 0 (𝑖 ̸= 𝑗), the diagonal elements of coupling

configuration matrix are defined as 𝐺
𝑖𝑖
= −∑

𝑗=1,𝑗 ̸= 𝑖
𝐺
𝑖𝑗
(𝑖 =

1, 2, . . . , 𝑁), and Γ ∈ R𝑛 is an inner-coupling matrix. 𝐴 and
𝐶 are system matrices with appropriate dimensions. Further,
𝐴 = 𝐴

0
+ Δ𝐴(𝑡), where Δ𝐴(𝑡) denotes the time-varying, and

linear fractional norm-bounded uncertainty is described by

Δ𝐴 (𝑡) = 𝐷
𝐴
Δ (𝑡) 𝐸

𝐴
, (2)

where 𝐷
𝐴
and 𝐸

𝐴
are two known constant matrices; the

parametric uncertainty satisfies

Δ (𝑡) = [𝐼 − 𝐹 (𝑡) 𝐽]
−1

𝐹 (𝑡) , (3)

where 𝐽 is a constant matrix satisfying 𝐼 − 𝐽𝐽𝑇 ≻ 0, and 𝐹(𝑡)
is an uncertain matrix satisfying 𝐹𝑇(𝑡)𝐹(𝑡) ⪯ 𝐼.

Remark 1. The linear fractional parametric uncertainty has
been studied in [40–42]; it can be verified that 𝐼 − 𝐽𝐽𝑇 ≻ 0
guarantees that 𝐼 − 𝐹(𝑡)𝐽 is invertible for all 𝐹(𝑡) satisfying
𝐹
𝑇

(𝑡)𝐹(𝑡) ⪯ 𝐼; the class of parametric uncertainty has been
selected because it is very general and includes other classes
of uncertainties studied in the literature. Such as when 𝐽 = 0,
the parametric uncertainty of linear fractional form reduces
to norm-bounded parametric uncertainty. So, the results can
be easily particularized for this kind of uncertainty.

In fractional differential systems, three kinds of fractional
derivatives (i.e., the Grünwald-Letnikov fractional deriva-
tive, Riemann-Liouville fractional derivative, and Caputo
fractional derivative) have been often used [43–45]; we briefly
introduce these three definitions of fractional derivatives as
follows.
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Definition 2. The Grünwald-Letnikov fractional derivative
with order 𝛼 of function 𝑥(𝑡) is defined below:

𝐺𝐿
𝐷
𝛼

𝑡,𝑎
𝑥 (𝑡) = lim

ℎ→0

1

ℎ𝛼

[(𝑡−𝑎)/ℎ]

∑

𝑗=0

(−1)
𝑗

(
𝛼

𝑗
)𝑥 (𝑡 − 𝑗ℎ) , (4)

where

(
𝛼

𝑗
) =

𝛼!

𝑗! (𝛼 − 𝑗)!
=

Γ (𝛼 + 1)

Γ (𝑗 + 1) Γ (𝛼 − 𝑗 + 1)
, (5)

and 𝑎 is a real constant, which expresses a limit value. [𝑥]
means the integer part of 𝑥. Γ(⋅) is a gamma function given
by Γ(𝑧) = ∫∞

0

𝑡
𝑧−1

𝑒
−𝑡

𝑑𝑡.

Definition 3. The Riemann-Liouville fractional derivative
with order 𝛼 of function 𝑥(𝑡) is defined below:

𝑅𝐿
𝐷
𝛼

𝑡0 ,𝑡
𝑥 (𝑡) =

1

Γ (𝑚 − 𝛼)

𝑑
𝑚

𝑑𝑡𝑚
∫

𝑡

𝑡0

(𝑡 − 𝜏)
𝑚−𝛼−1

𝑥 (𝜏) 𝑑𝜏, (6)

where 𝑡
0
is the initial time,𝑚 − 1 < 𝛼 < 𝑚 ∈ 𝑍

+
.

Definition 4. The Caputo derivative with order 𝛼 of function
𝑥(𝑡) is defined below:

𝐶
𝐷
𝛼

𝑡0 ,𝑡
𝑥 (𝑡) =

1

Γ (𝑚 − 𝛼)
∫

𝑡

𝑡0

(𝑡 − 𝜏)
𝑚−𝛼−1

𝑥
(𝑚)

(𝜏) 𝑑𝜏, (7)

where𝑚 − 1 < 𝛼 < 𝑚 ∈ 𝑍
+
.

Remark 5. The Riemann-Liouville derivative and Caputo
derivative have been often used in fractional differential
systems. But the Laplace transform of Caputo derivative
allows utilization of initial values of integer-order derivatives
with clear physical interpretations. Moreover, the Caputo
definition is more appropriate for describing the initial value
problem of fractional differential equations. Therefore, the
Caputo derivative definition is adopted in this paper.

Based on output measurement 𝑦
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑁), the

following state estimator is constructed as

𝐶
𝐷
𝛼

𝑡0 ,𝑡
�̂�
𝑖

(𝑡) = �̂��̂�
𝑖
(𝑡) +

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
Γ�̂�
𝑗
(𝑡) + 𝐾 (𝑦

𝑖
(𝑡) − �̂�

𝑖
(𝑡)) ,

�̂�
𝑖
(𝑡) = 𝐶�̂�

𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑁) ,

(8)

where �̂�
𝑖
(𝑡) ∈ R𝑛 is an estimate vector of the network state

𝑥
𝑖
(𝑡), and �̂�

𝑖
(𝑡) ∈ R𝑚 is an estimate vector of the output 𝑦

𝑖
(𝑡),

𝐾 ∈ 𝑅
𝑛×𝑚 is the estimator matrix to be designed, and �̂� is a

unknown system matrix.

Remark 6. As discussed in [36], in addition to estimator
matrix𝐾, an unknownmatrix �̂� is involved in the dynamic of
state estimator, which may give a opportunity to better adjust
the dynamic characteristics of state estimator.

By using Kronecker product, (1) and (8) can be rewritten
in the following compact form:

𝐶
𝐷
𝛼

𝑡0 ,𝑡
𝑥 (𝑡) = (𝐼

𝑁
⊗ 𝐴 + 𝐺 ⊗ Γ) 𝑥 (𝑡) ,

𝑦 (𝑡) = (𝐼
𝑁
⊗ 𝐶) 𝑥 (𝑡) ,

(9)

𝐶
𝐷
𝛼

𝑡0 ,𝑡
�̂� (𝑡) = (𝐼

𝑁
⊗ �̂� + 𝐺 ⊗ Γ) �̂� (𝑡)

+ (𝐼
𝑁
⊗ 𝐾𝐶) (𝑥 (𝑡) − �̂� (𝑡)) ,

�̂� (𝑡) = (𝐼
𝑁
⊗ 𝐶) �̂� (𝑡) ,

(10)

where

𝑥 (𝑡) = [𝑥
𝑇

1
(𝑡) , 𝑥
𝑇

2
(𝑡) , . . . , 𝑥

𝑇

𝑁
(𝑡)]
𝑇

,

𝑦 (𝑡) = [𝑦
𝑇

1
(𝑡) , 𝑦
𝑇

2
(𝑡) , . . . , 𝑦

𝑇

𝑁
(𝑡)]
𝑇

,

�̂� (𝑡) = [�̂�
𝑇

1
(𝑡) , �̂�
𝑇

2
(𝑡) , . . . , �̂�

𝑇

𝑁
(𝑡)]
𝑇

,

�̂� (𝑡) = [�̂�
𝑇

1
(𝑡) , �̂�
𝑇

2
(𝑡) , . . . , �̂�

𝑇

𝑁
(𝑡)]
𝑇

.

(11)

Setting 𝑒(𝑡) = 𝑥(𝑡) − �̂�(𝑡), where 𝑒(𝑡) = [𝑒
𝑇

1
(𝑡),

𝑒
𝑇

2
(𝑡), . . . , 𝑒

𝑇

𝑁
(𝑡)]
𝑇, the error dynamics can be obtained from

(9) and (10), it follows that

𝐶
𝐷
𝛼

𝑡0 ,𝑡
𝑒 (𝑡) = (𝐼

𝑁
⊗ 𝐴 − 𝐼

𝑁
⊗ �̂�) �̂� (𝑡)

+ (𝐼
𝑁
⊗ �̂� + 𝐺 ⊗ Γ − 𝐼

𝑁
⊗ 𝐾𝐶) 𝑒 (𝑡) .

(12)

Let 𝑋(𝑡) = [�̂�𝑇(𝑡), 𝑒𝑇(𝑡)]𝑇, and the following augmented
system can be obtained as follows from (10) and (12):

𝐶
𝐷
𝛼

𝑡0 ,𝑡
𝑋(𝑡) = A𝑋 (𝑡) , (13)

where

A = [
𝐼
𝑁
⊗ �̂� + 𝐺 ⊗ Γ 𝐼

𝑁
⊗ 𝐾𝐶

𝐼
𝑁
⊗ 𝐴 − 𝐼

𝑁
⊗ �̂� 𝐼

𝑁
⊗ �̂� + 𝐺 ⊗ Γ − 𝐼

𝑁
⊗ 𝐾𝐶

] . (14)

The estimation problem can be transformed to the robust
stabilization problem of linear fractional-order system with
parametric uncertainty.

Remark 7. As we know, the existing result [46] cannot be
applied directly to fractional-order uncertain system (13), as
it is hard to compute all eigenvalues of A in (13); the paper
can effectively avoid this difficulty: two unknown matrices
�̂� and 𝐾 can be obtained by using linear matrix inequality
technique.

Before giving the main results, the following Lemmas are
important and will be used later.
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Lemma 8 (see [47]). Let 𝑎 ∈ R, and let 𝐴, 𝐵, 𝐶, and 𝐷
be matrices with appropriate dimensions. By the definition of
Kronecker product, the following properties can be proved:

(1) 𝑎 (𝐴 ⊗ 𝐵) = (𝑎𝐴) ⊗ 𝐵 = 𝐴 ⊗ (𝑎𝐵) ,

(2) (𝐴 ⊗ 𝐵)
𝑇

= 𝐴
𝑇

⊗ 𝐵
𝑇

,

(3) (𝐴 ⊗ 𝐵) (𝐶 ⊗ 𝐷) = (𝐴𝐶) ⊗ (𝐵𝐷) ,

(4) 𝐴 ⊗ 𝐵 ⊗ 𝐶 = (𝐴 ⊗ 𝐵) ⊗ 𝐶 = 𝐴 ⊗ (𝐵 ⊗ 𝐶) .

(15)

Lemma 9 (see [48]). Let 𝐴 ∈ R𝑛×𝑛 be a deterministic real
matrix, and then | arg(spec (𝐴))| > 𝛼𝜋/2, where 1 ≤ 𝛼 < 2, if
and only if there exists 𝑃 ≻ 0 such that

[
(𝐴𝑃 + 𝑃𝐴

𝑇

) sin 𝜃 (𝐴𝑃 − 𝑃𝐴
𝑇

) cos 𝜃
(𝑃𝐴
𝑇

− 𝐴𝑃) cos 𝜃 (𝐴𝑃 + 𝑃𝐴
𝑇

) sin 𝜃
] ≺ 0, (16)

where 𝜃 = 𝜋 − (𝛼𝜋/2).

Lemma 10 (see [49]). Suppose that Δ(𝑡) is given in (2)-(3),
with matrices𝑀 = 𝑀

𝑇, 𝑆, and 𝑁 of appropriate dimensions,
the inequality

𝑀+ 𝑆Δ (𝑡)𝑁 + 𝑁
𝑇

Δ
𝑇

(𝑡) 𝑆
𝑇

≺ 0 (17)

holds if and only if for some 𝛿 > 0

[

[

𝛿𝑀 𝑆 𝛿𝑁
𝑇

𝑆
𝑇

−𝐼 𝐽
𝑇

𝛿𝑁 𝐽 −𝐼

]

]

≺ 0. (18)

Similar to [35], for any matrix Π ∈ R𝑚×𝑛 with full row
rank, there exists a singular value decomposition of Π as
follows:

Π = 𝑈 [𝑇 0]𝑉
𝑇

, (19)

where 𝑇 ∈ R𝑚×𝑝 is a diagonal matrix with positive elements
in decreasing order; 𝑝 = min{𝑚, 𝑛},𝑈 ∈ R𝑝×𝑝, and 𝑉 ∈ R𝑛×𝑛
are unitary matrices, then the following lemma holds.

Lemma 11 (see [35]). GivenmatrixΠ ∈ R𝑚×𝑛 with rank(Π) =
𝑝, assume that 𝑋 ∈ R𝑛×𝑛 is a symmetric matrix, there exists a
matrix 𝑋 ∈ R𝑚×𝑛 satisfying Π𝑋 = 𝑋Π if and only if 𝑋 can be
expressed as

𝑋 = 𝑉[
𝑋
11

0

0 𝑋
22

]𝑉
𝑇

, (20)

where𝑋
11
∈ R𝑚×𝑚 and 𝑋

22
∈ R(𝑛−𝑚)×(𝑛−𝑚).

3. Main Results

In this section, firstly, we focus on robust asymptotic stability
of uncertain augmented system (13). Secondly, the obtained
results will further be extended to design the desired state
estimator.

Theorem 12. For given matrices �̂� and 𝐾, the uncertain
fractional-order augmented system (13) with 1 ≤ 𝛼 < 2 is
asymptotically stable if there exist positive symmetrical matri-
ces 𝑃
1
≻ 0, 𝑃

2
≻ 0 and a positive scalar 𝜀 > 0 such that the

following linear matrix inequality holds:

[

[

sym (Π) ∗ ∗

𝜀𝑆
𝑇

−𝜀𝐼 ∗

𝑁 𝜀𝐽 −𝜀𝐼

]

]

≺ 0, (21)

where

sym (Π) = [[

[

𝜋
11

∗ ∗ ∗

𝜋
21
𝜋
22

∗ ∗

𝜋
31
𝜋
32
𝜋
33

∗

𝜋
41
𝜋
42
𝜋
43
𝜋
44

]
]

]

,

𝑆 =
[
[

[

0 0 0 0

(𝐼
𝑁
⊗ 𝐷
𝐴
) sin 𝜃 0 (𝐼

𝑁
⊗ 𝐷
𝐴
) cos 𝜃 0

0 0 0 0

− (𝐼
𝑁
⊗ 𝐷
𝐴
) cos 𝜃 0 (𝐼

𝑁
⊗ 𝐷
𝐴
) sin 𝜃 0

]
]

]

,

𝑁 =
[
[

[

𝐼
𝑁
⊗ 𝐸
𝐴
𝑃
1
𝐼
𝑁
⊗ 𝐸
𝐴
𝑃
2

0 0

0 0 0 0

0 0 𝐼
𝑁
⊗ 𝐸
𝐴
𝑃
1
𝐼
𝑁
⊗ 𝐸
𝐴
𝑃
2

0 0 0 0

]
]

]

,

𝜋
11
= 𝜋
33

= (𝐼
𝑁
⊗ �̂�𝑃
1
+ 𝐼
𝑁
⊗ 𝑃
1
�̂�
𝑇

+ 𝐺 ⊗ Γ𝑃
1
+ 𝐺
𝑇

⊗ 𝑃
1
Γ
𝑇

)

× sin 𝜃,

𝜋
21
= 𝜋
43

= (𝐼
𝑁
⊗ 𝑃
2
𝐶
𝑇

𝐾
𝑇

+ 𝐼
𝑁
⊗ 𝐴
0
𝑃
1
− 𝐼
𝑁
⊗ �̂�𝑃
1
) sin 𝜃,

𝜋
22
= 𝜋
44

= (𝐼
𝑁
⊗ 𝐴
0
𝑃
2
+ 𝐼
𝑁
⊗ 𝑃
2
𝐴
𝑇

0
+ 𝐺 ⊗ Γ𝑃

2
+ 𝐺
𝑇

⊗ 𝑃
2
Γ
𝑇

−𝐼
𝑁
⊗ 𝐾𝐶𝑃

2
− 𝐼
𝑁
⊗ 𝑃
2
𝐶
𝑇

𝐾
𝑇

) sin 𝜃,

𝜋
31
= (−𝐼

𝑁
⊗ �̂�𝑃
1
+ 𝐼
𝑁
⊗ 𝑃
1
�̂�
𝑇

− 𝐺 ⊗ Γ𝑃
1

+𝐺
𝑇

⊗ 𝑃
1
Γ
𝑇

) cos 𝜃,

𝜋
32
= (−𝐼

𝑁
⊗ 𝐾𝐶𝑃

2
+ 𝐼
𝑁
⊗ 𝑃
1
𝐴
𝑇

0
− 𝐼
𝑁
⊗ 𝑃
1
�̂�
𝑇

) cos 𝜃,

𝜋
41
= (𝐼
𝑁
⊗ 𝑃
2
𝐶
𝑇

𝐾
𝑇

− 𝐼
𝑁
⊗ 𝐴
0
𝑃
1
+ 𝐼
𝑁
⊗ �̂�𝑃
1
) cos 𝜃,

𝜋
42
= (−𝐼

𝑁
⊗ 𝐴
0
𝑃
2
+ 𝐼
𝑁
⊗ 𝑃
2
𝐴
𝑇

0
− 𝐺 ⊗ Γ𝑃

2
+ 𝐺
𝑇

⊗ 𝑃
2
Γ
𝑇

+𝐼
𝑁
⊗ 𝐾𝐶𝑃

2
− 𝐼
𝑁
⊗ 𝑃
2
𝐶
𝑇

𝐾
𝑇

) cos 𝜃,

𝜃 = 𝜋 −
𝜋𝛼

2
.

(22)

Proof. If there exist two positive symmetrical matrices𝑃
1
and

𝑃
2
, such that the following matrix inequality holds:

Φ = [
(A𝑃 + 𝑃A𝑇) sin 𝜃 (A𝑃 − 𝑃A𝑇) cos 𝜃
(−A𝑃 + 𝑃A𝑇) cos 𝜃 (A𝑃 + 𝑃A𝑇) sin 𝜃

] ≺ 0, (23)
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where 𝑃 = diag{𝐼
𝑁
⊗𝑃
1
, 𝐼
𝑁
⊗𝑃
2
}, then it can be derived from

Lemma 9 that uncertain fractional-order augmented system
(13) is asymptotically stable.

By some simple computation, we can obtain

A𝑃

= [
𝐼
𝑁
⊗ �̂� + 𝐺 ⊗ Γ 𝐼

𝑁
⊗ 𝐾𝐶

𝐼
𝑁
⊗ 𝐴 − 𝐼

𝑁
⊗ �̂� 𝐼

𝑁
⊗ �̂� + 𝐺 ⊗ Γ − 𝐼

𝑁
⊗ 𝐾𝐶

]

× [
𝐼
𝑁
⊗ 𝑃
1

0

0 𝐼
𝑁
⊗ 𝑃
2

]

= [
𝐼
𝑁
⊗ �̂�𝑃
1
+ 𝐺 ⊗ Γ𝑃

1
𝐼
𝑁
⊗ 𝐾𝐶𝑃

2

𝐼
𝑁
⊗ 𝐴𝑃
1
− 𝐼
𝑁
⊗ �̂�𝑃
1
𝐼
𝑁
⊗ �̂�𝑃
2
+ 𝐺 ⊗ Γ𝑃

2
− 𝐼
𝑁
⊗ 𝐾𝐶𝑃

2

] .

(24)

Substituting (24) into (23), it yields

Φ = sym(Π) + sym(Δ) , (25)

where

Π =

[
[
[

[

𝜋
1
sin 𝜃 𝜋

2
sin 𝜃 𝜋

1
cos 𝜃 𝜋

2
cos 𝜃

𝜋
3
sin 𝜃 𝜋

4
sin 𝜃 𝜋

3
cos 𝜃 𝜋

4
cos 𝜃

−𝜋
1
cos 𝜃 −𝜋

2
cos 𝜃 𝜋

1
sin 𝜃 𝜋

2
sin 𝜃

−𝜋
3
cos 𝜃 −𝜋

4
cos 𝜃 𝜋

3
sin 𝜃 𝜋

4
sin 𝜃

]
]
]

]

,

Δ =

[
[
[

[

0 0 0 0

Δ
1
sin 𝜃 Δ

2
sin 𝜃 Δ

1
cos 𝜃 Δ

2
cos 𝜃

0 0 0 0

−Δ
1
cos 𝜃 −Δ

2
cos 𝜃 Δ

1
sin 𝜃 Δ

2
sin 𝜃

]
]
]

]

,

𝜋
1
= 𝐼
𝑁
⊗ �̂�𝑃
1
+ 𝐺 ⊗ Γ𝑃

1
,

𝜋
2
= 𝐼
𝑁
⊗ 𝐾𝐶𝑃

2
,

𝜋
3
= 𝐼
𝑁
⊗ 𝐴
0
𝑃
1
− 𝐼
𝑁
⊗ �̂�𝑃
1
,

𝜋
4
= 𝐼
𝑁
⊗ 𝐴
0
𝑃
2
+ 𝐺 ⊗ Γ𝑃

2
− 𝐼
𝑁
⊗ 𝐾𝐶𝑃

2
,

Δ
1
= 𝐼
𝑁
⊗ 𝐷
𝐴
Δ (𝑡) 𝐸

𝐴
𝑃
1
,

Δ
2
= 𝐼
𝑁
⊗ 𝐷
𝐴
Δ (𝑡) 𝐸

𝐴
𝑃
2
.

(26)

According to (25), one has

sym(Δ) = sym{𝑆Δ (𝑡)𝑁} = 𝑆Δ (𝑡)𝑁 + 𝑁𝑇 Δ𝑇 (𝑡) 𝑆𝑇, (27)

where

𝑆 =

[
[
[

[

0 0 0 0

(𝐼
𝑁
⊗ 𝐷
𝐴
) sin 𝜃 0 (𝐼

𝑁
⊗ 𝐷
𝐴
) cos 𝜃 0

0 0 0 0

− (𝐼
𝑁
⊗ 𝐷
𝐴
) cos 𝜃 0 (𝐼

𝑁
⊗ 𝐷
𝐴
) sin 𝜃 0

]
]
]

]

,

𝑁 =

[
[
[

[

𝐼
𝑁
⊗ 𝐸
𝐴
𝑃
1
𝐼
𝑁
⊗ 𝐸
𝐴
𝑃
2

0 0

0 0 0 0

0 0 𝐼
𝑁
⊗ 𝐸
𝐴
𝑃
1
𝐼
𝑁
⊗ 𝐸
𝐴
𝑃
2

0 0 0 0

]
]
]

]

,

Δ (𝑡) = diag {𝐼
𝑁
⊗ Δ (𝑡) , 𝐼

𝑁
⊗ Δ (𝑡) , 𝐼

𝑁
⊗ Δ (𝑡) , 𝐼

𝑁
⊗ Δ (𝑡)} .

(28)

Combining (25) with (27), one has

Φ = sym (Π) + 𝑆Δ (𝑡)𝑁 + 𝑁𝑇 Δ𝑇 (𝑡) 𝑆𝑇 ≺ 0. (29)

By applying Lemma 10, we can obtain that (29) holds, if
and only if the following matrix inequality holds

[

[

𝛿sym (Π) ∗ ∗

𝑆
𝑇

−𝐼 ∗

𝛿𝑁 𝐽 −𝐼

]

]

≺ 0, (30)

that is,

[

[

sym (Π) ∗ ∗

𝜀𝑆
𝑇

−𝜀𝐼 ∗

𝑁 𝜀𝐽 −𝜀𝐼

]

]

≺ 0, (31)

where 𝜀 = 1/𝛿.
The above LMI (31) is just as LMI (21), that is, if (21)

holds, it follows from Lemma 9 that uncertain fractional-
order system (13) is asymptotically stable. This completes the
proof.

Remark 13. Theorem 12 presents a sufficient condition
for asymptotically stable of uncertain fractional-order-
augmented system, which is an LMI condition when
matrices �̂� and 𝐾 are given. If �̂� and 𝐾 are variables to be
determined, owing to the existence of nonlinear terms such
as �̂�𝑃

1
and 𝐾𝐶𝑃

2
, the matrix inequality (21) in Theorem 12

is not an LMI, and thus Theorem 12 cannot be used for
the estimator’s design directly. Our objective hereafter is to
provide a design method.

Theorem 14. For the fractional-order complex dynamical
networks with linear fractional parametric uncertainty (1),
assume that the singular value decomposition of output matrix
𝐶 with full row rank is

𝐶 = 𝑈 [𝑇 0]𝑉
𝑇

, (32)

then uncertain fractional-order augmented system (13) with
1 ≤ 𝛼 < 2 is asymptotically stable if there exist symmetrical
matrices 𝑃

1
≻ 0, 𝑃

11
≻ 0, 𝑃

22
≻ 0 and𝑋

1
,𝑋
2
with appropriate

dimensions and a scalar 𝜀 > 0, such that the following linear
matrix inequality holds:

[
[
[

[

sym (Π) ∗ ∗

𝜀𝑆
𝑇

−𝜀𝐼 ∗

𝑁 𝜀𝐽 −𝜀𝐼

]
]
]

]

≺ 0, (33)
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where

sym (Π) =
[
[
[

[

𝜋
11

∗ ∗ ∗

𝜋
21
𝜋
22

∗ ∗

𝜋
31
𝜋
32
𝜋
33

∗

𝜋
41
𝜋
42
𝜋
43
𝜋
44

]
]
]

]

,

𝜋
11
= 𝜋
33

= (𝐼
𝑁
⊗ 𝑋
1
+ 𝐼
𝑁
⊗ 𝑋
𝑇

1
+ 𝐺 ⊗ Γ𝑃

1
+ 𝐺
𝑇

⊗ 𝑃
1
Γ
𝑇

)

× sin 𝜃,

𝜋
21
= 𝜋
43

= (𝐼
𝑁
⊗ 𝐶
𝑇

𝑋
𝑇

2
+ 𝐼
𝑁
⊗ 𝐴
0
𝑃
1
− 𝐼
𝑁
⊗ 𝑋
1
) sin 𝜃,

𝜋
22
= 𝜋
44

= (𝐼
𝑁
⊗ 𝐴
0
𝑃
2
+ 𝐼
𝑁
⊗ 𝑃
2
𝐴
𝑇

0
+ 𝐺 ⊗ Γ𝑃

2

+𝐺
𝑇

⊗ 𝑃
2
Γ
𝑇

− 𝐼
𝑁
⊗ 𝑋
2
𝐶 − 𝐼
𝑁
⊗ 𝐶
𝑇

𝑋
𝑇

2
)

× sin 𝜃,

𝜋
31
= (−𝐼

𝑁
⊗ 𝑋
1
+ 𝐼
𝑁
⊗ 𝑋
𝑇

1
− 𝐺 ⊗ Γ𝑃

1
+ 𝐺
𝑇

⊗ 𝑃
1
Γ
𝑇

)

× cos 𝜃,

𝜋
32
= (−𝐼

𝑁
⊗ 𝑋
2
𝐶 + 𝐼
𝑁
⊗ 𝑃
1
𝐴
𝑇

0
− 𝐼
𝑁
⊗ 𝑋
𝑇

1
) cos 𝜃,

𝜋
41
= (𝐼
𝑁
⊗ 𝐶
𝑇

𝑋
𝑇

2
− 𝐼
𝑁
⊗ 𝐴
0
𝑃
1
+ 𝐼
𝑁
⊗ 𝑋
1
) cos 𝜃,

𝜋
42
= (−𝐼

𝑁
⊗ 𝐴
0
𝑃
2
+ 𝐼
𝑁
⊗ 𝑃
2
𝐴
𝑇

0
− 𝐺 ⊗ Γ𝑃

2

+𝐺
𝑇

⊗ 𝑃
2
Γ
𝑇

+ 𝐼
𝑁
⊗ 𝑋
2
𝐶 − 𝐼
𝑁
⊗ 𝐶
𝑇

𝑋
𝑇

2
) cos 𝜃,

𝜃 = 𝜋 −
𝜋𝛼

2
,

𝑃
2
= 𝑉[

𝑃
11

0

0 𝑃
22

]𝑉
𝑇

.

(34)

Moreover, two unknown estimator gain matrices are given as

�̂� = 𝑋
1
𝑃
−1

1
, 𝐾 = 𝑋

2
𝑈𝑇𝑃
−1

11
𝑇
−1

𝑈
−1

. (35)

Proof. Since

𝐶 = 𝑈[𝑇 0]𝑉
𝑇

, 𝑃
2
= 𝑉[

𝑃
11

0

0 𝑃
22

]𝑉
𝑇

. (36)

From Lemma 11, there exists 𝑃
2
= 𝑈𝑇𝑃

11
𝑇
−1

𝑈
−1, such that

𝐶𝑃
2
= 𝑃
2
𝐶; it is easily obtained that 𝑃−1

2
= 𝑈𝑇𝑃

−1

11
𝑇
−1

𝑈
−1.

Setting𝑋
1
= �̂�𝑃
1
and𝑋

2
= 𝐾𝑃

2
, then matrix inequality (21)

is equivalent to (33). Moreover, estimator gain matrices can
be obtained as follows:

�̂� = 𝑋
1
𝑃
−1

1
,

𝐾 = 𝑋
2
𝑃
−1

2
= 𝑋
2
𝑈𝑇𝑃
−1

11
𝑇
−1

𝑈
−1

.

(37)
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Figure 1: The curve of error 𝑒(𝑡) between the state 𝑥(𝑡) and its
estimate �̂�(𝑡).
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Figure 2: The curve of error 𝑒(𝑡) between the state 𝑥(𝑡) and its
estimate �̂�(𝑡).

In particular, setting �̂� = 𝐴
0
in (8), then the state estima-

tor will reduce to

𝐶
𝐷
𝛼

𝑡0 ,𝑡
�̂�
𝑖

(𝑡) = 𝐴
0
�̂�
𝑖
(𝑡) +

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
Γ�̂�
𝑗
(𝑡) + 𝐾 (𝑦

𝑖
(𝑡) − �̂�

𝑖
(𝑡)) ,

�̂�
𝑖
(𝑡) = 𝐶�̂�

𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑁) .

(38)

The corresponding augmented system is described as

𝐶
𝐷
𝛼

𝑡0 ,𝑡
𝑋(𝑡) = A𝑋 (𝑡) , (39)

where

A = [
𝐼
𝑁
⊗ 𝐴
0
+ 𝐺 ⊗ Γ 𝐼

𝑁
⊗ 𝐾𝐶

𝐼
𝑁
⊗ 𝐴 − 𝐼

𝑁
⊗ 𝐴
0
𝐼
𝑁
⊗ �̂� + 𝐺 ⊗ Γ − 𝐼

𝑁
⊗ 𝐾𝐶

] .

(40)



Abstract and Applied Analysis 7

Table 1: Estimator matrices �̂� and 𝐾 for different fractional orders 𝛼.

𝛼 �̂� 𝐾

𝛼 = 1
[
[

[

−2.3857 −0.4224 0.7654

−0.6933 −4.6677 1.1265

−0.5649 −1.9719 −3.1472

]
]

]

[
[

[

0.1648

−0.3139

0.0097

]
]

]

𝛼 = 1.2
[
[

[

−2.3494 0.0532 0.4851

−0.6438 −3.9966 0.6418

−0.4221 −1.3903 −3.3348

]
]

]

[
[

[

0.1931

−0.1509

−0.1166

]
]

]

𝛼 = 1.5
[
[

[

−2.7004 −0.4705 −0.0414

−1.8688 −3.9325 0.1199

−1.0067 −1.3522 −3.2910

]
]

]

[
[

[

0.7498

0.2116

−0.1907

]
]

]

Table 2: Estimator matrix 𝐾 for different fractional orders 𝛼.

𝛼 1 1.2 1.5
𝐾 [0.1349, −0.0787, 0.0484]

𝑇

[0.1858, −0.0462, −0.0023]
𝑇

[0.4464, −0.0117, −0.2841]
𝑇

The unknown estimator matrix𝐾 can be solved from the
following corollary.

Corollary 15. For the fractional-order complex dynamical
networks with linear fractional parametric uncertainty (1),
assume that the singular value decomposition of output matrix
𝐶 with full row rank is

𝐶 = 𝑈 [𝑇 0]𝑉
𝑇

, (41)

then uncertain fractional-order augmented system (39) with
1 ≤ 𝛼 < 2 is asymptotically stable if there exist symmetrical
matrices 𝑃

1
≻ 0, 𝑃

11
≻ 0, 𝑃

22
≻ 0 and 𝑋

1
with appropriate

dimensions and a scalar 𝜀 > 0, such that the following linear
matrix inequality holds:

[
[
[

[

sym(Π̃) ∗ ∗

𝜀𝑆
𝑇

−𝜀𝐼 ∗

𝑁 𝜀𝐽 −𝜀𝐼

]
]
]

]

≺ 0, (42)

where

sym (Π̃) =
[
[
[

[

�̃�
11

∗ ∗ ∗

�̃�
21
𝜋
22

∗ ∗

�̃�
31
�̃�
32
�̃�
33

∗

�̃�
41
𝜋
42
�̃�
43
𝜋
44

]
]
]

]

,

�̃�
11
= �̃�
33
= (𝐼
𝑁
⊗ 𝐴
0
𝑃
1
+ 𝐼
𝑁
⊗ 𝑃
1
𝐴
𝑇

0
+ 𝐺 ⊗ Γ𝑃

1

+𝐺
𝑇

⊗ 𝑃
1
Γ
𝑇

) sin 𝜃,

�̃�
21
= �̃�
43
= (𝐼
𝑁
⊗ 𝐶
𝑇

𝑋
𝑇

1
) sin 𝜃,

�̃�
31
= (−𝐼

𝑁
⊗ 𝐴
0
𝑃
1
+ 𝐼
𝑁
⊗ 𝑃
1
𝐴
𝑇

0
− 𝐺 ⊗ Γ𝑃

1

+𝐺
𝑇

⊗ 𝑃
1
Γ
𝑇

) cos 𝜃,

�̃�
32
= (−𝐼

𝑁
⊗ 𝑋
1
𝐶) cos 𝜃,

�̃�
41
= (𝐼
𝑁
⊗ 𝐶
𝑇

𝑋
𝑇

1
) cos 𝜃,

𝑃
2
= 𝑉[

𝑃
11

0

0 𝑃
22

]𝑉
𝑇

.

(43)

The desired estimator gain matrix is given as

𝐾 = 𝑋
1
𝑈𝑇𝑃
−1

11
𝑇
−1

𝑈
−1

. (44)

Remark 16. The state estimation discussed in this paper is
fairly comprehensive; our results can readily specialize to
many special cases, such as, when 𝐽 = 0, it implies that Δ(𝑡) =
𝐹(𝑡)with 𝐹𝑇(𝑡)𝐹(𝑡) ⪯ 𝐼; that is, the parametric uncertainty of
linear fractional form reduces to norm-bounded parametric
uncertainty; the corresponding result can be easily derived
from Theorem 14. Let �̂� = 𝐴

0
and 𝐽 = 0 in (2) and (8),

respectively, the problem will reduce state estimation for a
class of fractional-order complex dynamical networks with
norm-bounded parametric uncertainty; the corresponding
result can be obtained from Corollary 15. The specialized
results are still believed to be new and have not been fully
researched yet. For presentation, we omit the corresponding
corollaries here.

4. Numerical Examples

In this section, two different fractional-order systems are
given as examples to verify the effectiveness of the control
scheme described in the preceding section.
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Example 17. Consider the fractional-order complex dynam-
ical networks (1) and the state estimator (8), the relevant
parameters are given as follows:

𝐴
0
= [

[

−1.5 0.5 1

−1 −3 1

−0.5 −1.5 −2.5

]

]

, 𝐶 = [

[

1.5

2

1

]

]

𝑇

,

𝐺 =

[
[
[

[

−1 0 1 0

1 −1 0 0

0 1 −1 0

1 0 0 −1

]
]
]

]

, Γ = [

[

1 0 0

0 1 0

0 0 1

]

]

,

𝐷
𝐴
= [

[

−0.1 0.05 0.1

−0.1 −0.23 0.1

−0.15 −0.2 −0.14

]

]

, 𝐸
𝐴
= [

[

1 0 0

0 1 0

0 0 1

]

]

,

𝐹 (𝑡) = [

[

sin(0.1𝜋𝑡) 0 0

0 cos(0.1𝜋𝑡) 0

0 0 sin(0.1𝜋𝑡)
]

]

,

𝐽 = [

[

0.5 0 0

0 0.5 0

0 0 0.5

]

]

.

(45)

It is easy to verify that 𝐶 = [1.5, 2, 1] is full row rank; by
using matrix’s singular value decomposition, we can obtain

𝑈 = 1, 𝑇 = 1.5, 𝑉 =

[
[
[
[
[
[

[

1 0 0

4

3
1 0

2

3
0 1

]
]
]
]
]
]

]

. (46)

In Theorem 14, setting fractional-order 𝛼 = 1, a set of
feasible solutions can be obtained using the Matlab Control
Toolbox as follows:

𝑋
1
= [

[

−2.9462 0.0227 0.7604

−0.1659 −3.4440 1.2318

−0.4875 −1.3645 −3.2833

]

]

,

𝑋
2
= [

[

0.2473

−0.4712

0.0146

]

]

,

𝑃
1
= [

[

1.2675 −0.1479 0.0201

−0.1479 0.7565 −0.0139

0.0201 −0.0139 1.0483

]

]

,

𝑃
11
= 1.5008, 𝑃

22
= [

1.3876 −0.0264

−0.0264 1.2900
] ;

(47)

then two unknown estimator gain matrices are given as

�̂� = 𝑋
1
𝑃
−1

1
= [

[

−2.3875 −0.4224 0.7654

−0.6933 −4.6677 1.1265

−0.5649 −1.9719 −3.1472

]

]

,

𝐾 = 𝑋
2
𝑈𝑇𝑃
−1

11
𝑇
−1

𝑈
−1

= [

[

0.1648

−0.3139

0.0097

]

]

.

(48)

Therefore, it follows from Theorem 14 that uncertain
fractional-order augmented system (13) is asymptotically
stable. The response of error dynamics converges to zero
asymptotically, which is given in Figure 1; it can be seen that
the simulation has confirmed that the designed estimators
perform very well. Two unknown estimator gain matrices are
listed in Table 1 for different fractional orders.

Example 18. If �̂� = 𝐴
0
in estimator (8), the relevant

parameters are given in Example 17. Setting fractional-order
𝛼 = 1, using the Matlab LMI toolbox to solve the LMI in
Corollary 15, we can obtain the following matrices:

𝑋
1
= [

[

0.1920

−0.1120

0.0689

]

]

,

𝑃
1
= [

[

1.6859 −0.1948 0.0626

−0.1948 1.1260 −0.0432

0.0626 −0.0432 1.2487

]

]

,

𝑃
11
= 1.4233, 𝑃

22
= [

1.1486 −0.0333

−0.0333 1.2540
] ;

(49)

then the estimator gain matrix is given as

𝐾 = 𝑋
1
𝑈𝑇𝑃
−1

11
𝑇
−1

𝑈
−1

= [0.1349 −0.0787 0.0484]
𝑇

.

(50)

It is not difficult to verify that, with the obtained estimator
gain 𝐾, the response of error dynamics converges to zero
asymptotically; the corresponding simulation result is shown
in Figure 2. The estimator gain matrix is given in Table 2 for
different fractional orders.

5. Conclusions

State estimation problem is investigated for a class of
fractional-order complex dynamical networks with paramet-
ric uncertainty. By using matrix’s singular value decom-
position and LMI techniques, the existence conditions of
designing state estimator derived are in the form of linear
matrix inequalities which can be readily solved using the
LMI toolbox. Finally, two numerical examples are provided
to demonstrate the validity of this approach.
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