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This paper relies on the study of fixed points and best proximity points of a class of so-called generalized point-dependent (𝐾, 𝜆)-
hybrid p-cyclic self-mappings relative to a Bregman distance 𝐷𝑓, associated with a Gâteaux differentiable proper strictly convex
function f in a smooth Banach space, where the real functions 𝜆 and K quantify the point-to-point hybrid and nonexpansive (or
contractive) characteristics of the Bregman distance for points associated with the iterations through the cyclic self-mapping.Weak
convergence results to weak cluster points are obtained for certain average sequences constructed with the iterates of the cyclic
hybrid self-mappings.

1. Introduction and Preliminaries

The following objects are considered through the paper.
(1) The Hilbert space 𝐻 on the field 𝑋 (in particular,

R or C) is endowed with the inner product ⟨𝑥, 𝑦⟩
which maps 𝐻 × 𝐻 to 𝑋, for all 𝑥, 𝑦 ∈ 𝐻 which
maps 𝐻 × 𝐻 to 𝑋, where (X, ‖ ‖) is a Banach space
when endowed with a norm ‖ ‖ induced by the inner
product and defined by ‖𝑥‖ = ⟨𝑥, 𝑥⟩

1/2, for all 𝑥 ∈ 𝐻.
It is wellknown that all Hilbert spaces are uniformly
convex Banach spaces and that Banach spaces are
always reflexive.

(2) The 𝑝(≥2)-cyclic self-mapping 𝑇 : 𝐴 → 𝐴 with 𝐴 :=

⋃𝑖∈𝑝 𝐴 𝑖 is subject to𝐴𝑝+1 ≡ 𝐴𝑝, where𝐴 𝑖( ̸=⌀) ⊂ 𝐻

are 𝑝 subsets of𝐻, for all 𝑖 ∈ 𝑝 = {1, 2, . . . , 𝑝}, that is,
a self-mapping satisfying 𝑇(𝐴 𝑖) ⊆ 𝐴 𝑖+1, for all 𝑖 ∈ 𝑝

(3) The function 𝑓 : 𝐷 (≡ dom𝑓) ⊂ 𝑋 → (−∞,∞]

is a proper convex function which is Gâteaux differ-
entiable in the topological interior of the convex set
𝐷; int𝐷, that is, 𝐷 := {𝑥 ∈ 𝑋 : 𝑓(𝑥) < ∞} ̸=⌀ and
convex since 𝑓 is proper with

𝑓 (𝛼𝑥 + (1 − 𝛼) 𝑦) ≤ 𝛼𝑓 (𝑥) + (1 − 𝛼) 𝑓 (𝑦) ,

∀𝑥, 𝑦 ∈ 𝐷, ∀𝛼 ∈ [0, 1] ,
(1)

since𝑓 is convex, and for each𝑥 ∈ 𝐷, there is𝑥∗ = 𝑓(𝑥) ∈ 𝑋∗

(the topological dual of𝑋) such that

∃ lim
𝑡→0

𝑓 (𝑥 + 𝑡𝑦) − 𝑓 (𝑥)

𝑡
= ⟨𝑦, 𝑓

󸀠
(𝑥)⟩ , ∀𝑦 ∈ 𝐷, (2)

since𝑓 is Gâteaux differentiable in int𝐷where𝑓󸀠(𝑥) denotes
the Gâteaux derivative of 𝑓 at 𝑥 if 𝑥 ∈ int𝐷. On the other
hand, 𝑓 is said to be strictly convex if

𝑓 (𝛼𝑥 + (1 − 𝛼) 𝑦) < 𝛼𝑓 (𝑥) + (1 − 𝛼) 𝑓 (𝑦) ,

∀𝑥, 𝑦 ( ̸= 𝑥) ∈ 𝐷, ∀𝛼 ∈ (0, 1) .
(3)

(4) The Bregman distance (or Bregman divergence) 𝐷𝑓
associated with the proper convex function 𝑓 𝐷𝑓 :

𝐷 × 𝐷 → (−∞,∞], where R0+ := {𝑧 ∈ R : 𝑧 ≥ 0} =

R+ ∪ {0}, is defined by

𝐷𝑓 (𝑦 , 𝑥) = 𝑓 (𝑦) − 𝑓 (𝑥) − ⟨𝑦 − 𝑥, 𝑓
󸀠
(𝑥)⟩ , ∀𝑥, 𝑦 ∈ 𝐷,

(4)

provided that it is Gâteaux differentiable everywhere in int𝐷.
If 𝑓 is not Gâteaux differentiable at 𝑥 ∈ int𝐷, then (4) is
replaced by

𝐷𝑓 (𝑦 , 𝑥) = 𝑓 (𝑦) − 𝑓 (𝑥) + 𝑓
0
(𝑥, 𝑥 − 𝑦) , (5)
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where 𝑓0(𝑥, 𝑥 − 𝑦) := lim𝑡→0+((𝑓(𝑥 + 𝑡(𝑥 − 𝑦)) − 𝑓(𝑥))/𝑡)

and𝐷𝑓(𝑦, 𝑥) is finite if and only if 𝑥 ∈ 𝐷0 ⊂ 𝐷, the algebraic
interior of𝐷 defined by

𝐷
0
:= {𝑥 ∈ 𝐷 : ∃𝑧 ∈ (𝑥, 𝑦) , [𝑥, 𝑧] ⊆ 𝐷; ∀𝑦 ∈ 𝑋 \ {𝑥}} .

(6)

The topological interior of 𝐷 is int(𝐷) := {𝑥 ∈ 𝐷 :

𝑥 ∈ 𝑓𝑟(𝐷)} ⊂ 𝐷0, where 𝑓𝑟(𝐷) is the boundary of 𝐷. It
is well known that the Bregman distance does not satisfy
either the symmetry property or the triangle inequality which
are required for standard distances while they are always
nonnegative because of the convexity of the function 𝑓 :

𝐷 (≡ dom𝑓) ⊂ 𝑋 → (−∞,∞]. The Bregman distance
between sets 𝐵, 𝐶 ⊂ 𝐻 ⊂ 𝑋 is defined as 𝐷𝑓(𝐵, 𝐶) :=

inf𝑥∈𝐵,𝑦∈𝐶𝐷𝑓(𝑥, 𝑦). If 𝐴 𝑖 ∈ 𝐴 ⊂ 𝐻 for 𝑖 ∈ 𝑝, then 𝐷𝑓𝑖 :=

𝐷𝑓 (𝐴 i, 𝐴 i+1) = inf𝑥∈𝐴
𝑖
,𝑦∈𝐴
𝑖+1

𝐷𝑓(𝑥, 𝑦). Through the paper,
sequences {𝑥𝑛}𝑛∈N

0

≡ {𝑇𝑛𝑥}𝑛∈N
0

withN0 = N∪{0} are simply
denoted by {𝑇𝑛𝑥} for the sake of notation simplicity.

Fixed points and best proximity points of cyclic self-
mappings 𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 → ⋃𝑖∈𝑝 𝐴 𝑖 in uniformly convex
Banach spaces ( 𝑋, ‖ ‖) have been widely studied along the
last decades for the cases when the involved sets intersect or
not. See, for instance, [1–3] and references therein. In parallel,
interesting results have been obtained for both nonspreading,
nonexpansive, and hybrid maps in Hilbert spaces including
also to focus the related problems via iterative methods
supported by fixed point theory and the use of more gen-
eral mappings such as nonspreading and pseudocontractive
mappings. See, for instance, recent background [4–7] and
references therein. Let 𝐶 be a nonempty subset of a Hilbert
space𝐻. On the other hand, it has to be pointed out that the
characterization of several classes of iterative computations
by invoking results of fixed point theory has received much
attention in the background literature. See, for instance, [8–
11] and references therein. In [12–18], the existence of fixed
points of mappings 𝑇 : 𝐶 → 𝐻 is discussed when 𝑇 : 𝐶 →

𝐻 is:

(1.1) nonexpansive; that is, ‖𝑇𝑥 − 𝑇𝑦‖ ≤ ‖𝑥 − 𝑦‖, for all
𝑥, 𝑦 ∈ 𝐶

(1.2) nonspreading; that is, ‖𝑇𝑥 − 𝑇𝑦‖2 ≤ ‖𝑥 − 𝑦‖
2
+ 2⟨𝑥 −

𝑇𝑥, 𝑦 − 𝑇𝑦⟩, for all 𝑥, 𝑦 ∈ 𝐶,
(1.3) 𝜆-hybrid [17]; that is, ‖𝑇𝑥 − 𝑇𝑦‖2 ≤ ‖𝑥 − 𝑦‖

2
+ 𝜆⟨𝑥 −

𝑇𝑥, 𝑦−𝑇𝑦⟩, for all 𝑥, 𝑦 ∈ 𝐶. If 𝜆 = 1, then𝑇 : 𝐶 → 𝐻

is referred to as hybrid [14, 15], and if 𝜆 = 𝜆(𝑦) and
(1.3) is changed to

(1.4) 𝐷𝑓(𝑇𝑥, 𝑇𝑦) ≤ 𝐷𝑓(𝑥, 𝑦)+𝜆(𝑦)⟨𝑥−𝑇𝑥, 𝑓
󸀠(𝑦)−𝑓󸀠(𝑇𝑦)⟩,

for all 𝑥, 𝑦 ∈ 𝐶,

where 𝑓 : 𝐷 (≡ dom𝑓) ⊂ 𝑋 → (−∞,∞] is a Gâteaux
differentiable convex function, then 𝑇 : 𝐶 → 𝐻 is referred
to as being point-dependent 𝜆-hybrid relative to the Bregman
distance𝐷𝑓, [16]. A well-known result is that a nonspreading
mapping, and then a nonexpansive one, on a nonempty
closed convex subset𝐶 of aHilbert space𝐻has a fixed point if
and only it has a bounded sequence on such a subset [18].The
result has been later on extended to 𝜆-hybrid mappings, [17]

and to point-dependent 𝜆-hybrid ones [16]. As pointed out
in [16], what follows directly from the previous definitions,
𝑇 : 𝐶 → 𝐻 is nonexpansive if and only if it is 0-hybrid while
it is nonspreading if and only if it is 2-hybrid; 𝑇 is hybrid if
and only if it is 1-hybrid.

This paper is focused on the study of fixed points and best
proximity points of a class of generalized point-dependent
(𝐾, 𝜆)-hybrid 𝑝(≥2)-cyclic self-mappings 𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 →

⋃𝑖∈𝑝 𝐴 𝑖, relative to a Bregman distance 𝐷𝑓 in a smooth
Banach space, where 𝜆 : ⋃𝑖∈𝑝 𝐴 𝑖 → R is a point-dependent
real function in (1.4) quantifying the “hybrideness” of the
𝑝(≥2) cyclic self-mapping and𝐾 = 𝐾(𝑦) : ⋃𝑖∈𝑝 𝐴 𝑖 → [0, 1]

is added as aweighting factor in the first right-hand-side term
of (1.4). Such a function is defined through a point-dependent
product of the particular point 𝑝-functions while quantifies
either the “nonexpansiveness” or the “contractiveness” of the
Bregman distance for points associatedwith the iterates of the
cyclic self-mapping in each of the sets 𝐴 𝑖 ×𝐴 𝑖+1 ∪𝐴 𝑖+1 ×𝐴 𝑖
for 𝑖 ∈ 𝑝 = {1, 2, . . . , 𝑝}, where 𝐴 𝑖 (𝑖 ∈ 𝑝) are nonempty
closed and convex.Thus, the generalization of the hybridmap
studied in this paper has two main characteristics, namely,
(a) a weighting point-dependent term is introduced in the
contractive condition; (b) the hybrid self-mapping is a cyclic
self-mappings. Precise definitions and meaning of those
functions are given inDefinition 2 of Section 2which are then
used to get the main results obtained in the paper. In most
of the results obtained in this paper, the Bregman distance
𝐷𝑓 is defined associated with a Gâteaux differentiable proper
strictly convex function 𝑓 whose domain includes the union
of the 𝑝 subsets 𝐴 𝑖 (𝑖 ∈ 𝑝) of the (𝐾, 𝜆)-hybrid 𝑝(≥2)-
cyclic self-mapping which are not assumed, in general, to
intersect. Weak convergence results to weak cluster points
of certain average sequences built with the iterates of the
cyclic hybrid self-mappings are also obtained. In particular,
such weak cluster points are proven to be also fixed points
of the composite self-mappings on the sets 𝐴 𝑖 (𝑖 ∈ 𝑝), even
if such sets do not intersect, while they are simultaneously
best proximity points of the point-dependent (𝐾, 𝜆)-hybrid
𝑝(≥2)-cyclic self-mapping relative to𝐷𝑓.

2. Some Fixed Point Theorems for Cyclic
Hybrid Self-Mappings on the Union of
Intersecting Subsets

The Bregman distance is not properly a distance, since it
does not satisfy symmetry and the triangle inequality, but it
is always nonnegative and leads to the following interesting
result towards its use in applications of fixed point theory.

Lemma 1. If 𝑓 : 𝐷 × 𝐷 → (−∞ , ∞] is a proper strictly
convex function being Gâteaux differentiable in int𝐷, then

𝐷𝑓 (𝑥, 𝑥) = 0, ∀𝑥 ∈ int𝐷, (7)

𝐷𝑓 (𝑦, 𝑥) > 0, ∀𝑥, 𝑦 ( ̸= 𝑥) ∈ int𝐷, (8)

𝐷𝑓 (𝑦, 𝑥) + 𝐷𝑓 (𝑥, 𝑦) = ⟨𝑥 − 𝑦, 𝑓
󸀠
(𝑥) − 𝑓

󸀠
(𝑦)⟩

≥ 0, ∀𝑥, 𝑦 ∈ int𝐷,
(9)
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𝐷𝑓 (𝑦, 𝑥) − 𝐷𝑓 (𝑥, 𝑦) = 2 (𝑓 (𝑦) − 𝑓 (𝑥))

− ⟨𝑦 − 𝑥, 𝑓
󸀠
(𝑥) + 𝑓

󸀠
(𝑦)⟩ ,

∀𝑥, 𝑦 ∈ int𝐷.

(10)

Proof. By using (4) for 𝐷𝑓(𝑦, 𝑥) and defining 𝐷𝑓(𝑥, 𝑦) =

𝑓(𝑥) − 𝑓(𝑦) − ⟨𝑥 − 𝑦, 𝑓󸀠(𝑦)⟩, for all 𝑥, 𝑦 ∈ int𝐷 by
interchanging 𝑥 and 𝑦 in the definition of𝐷𝑓(𝑦, 𝑥) in (4),

𝐷𝑓 (𝑦, 𝑥) + 𝐷𝑓 (𝑥, 𝑦) = ⟨𝑥, 𝑓
󸀠
(𝑥)⟩ + ⟨𝑦, 𝑓

󸀠
(𝑦)⟩

− ⟨𝑥, 𝑓
󸀠
(𝑦)⟩ > −⟨𝑦, 𝑓

󸀠
(𝑥)⟩

= ⟨𝑥, 𝑓
󸀠
(𝑥) − 𝑓

󸀠
(𝑦)⟩

+ ⟨𝑦, 𝑓
󸀠
(𝑦) − 𝑓

󸀠
(𝑥)⟩ ,

(11)

which leads to (9) since 𝐷𝑓(𝑦, 𝑥) ≥ 0, for all 𝑥, 𝑦 ∈ int𝐷,
[16, 17], if 𝑓 : 𝐷 × 𝐷 → (−∞,∞] is proper strictly convex,
and the fact that𝐷𝑓(𝑥, 𝑦) ≥ 0, for all 𝑥, 𝑦 ∈ int𝐷.

Equation (7) follows from (9) for 𝑥 = 𝑦 leading to
2𝐷𝑓(𝑥, 𝑥) = 0. To prove (8), take 𝑥 , 𝑦( ̸= 𝑥) ∈ int𝐷
and proceed by contradiction using (4) by assuming that
𝐷𝑓 (𝑦, 𝑥) = 0 for such 𝑥, 𝑦( ̸= 𝑥) ∈ int𝐷 so that

0 = 𝐷𝑓 (𝑦, 𝑥) = 𝑓 (𝑦) − 𝑓 (𝑥) − ⟨𝑦 − 𝑥, 𝑓
󸀠
(𝑥)⟩

= 𝑓 (𝑦) − 𝑓 (𝑥) + ⟨𝑥 − 𝑦, 𝑓
󸀠
(𝑥) − 𝑓

󸀠
(𝑦)⟩

+ ⟨𝑥 − 𝑦, 𝑓
󸀠
(𝑦)⟩

> 𝑓 (𝑦) − 𝑓 (𝑥) − ⟨𝑦 − 𝑥, 𝑓
󸀠
(𝑦)⟩ = 𝐷𝑓 (𝑦, 𝑥) ,

(12)

which contradicts 𝐷𝑓(𝑦, 𝑥) = 0. Then, 𝐷𝑓(𝑦, 𝑥) > 0, and,
hence, (8) follows

𝐷𝑓 (𝑦, 𝑥) − 𝐷𝑓 (𝑥, 𝑦)

= 𝑓 (𝑦) − 𝑓 (𝑥) − ⟨𝑦 − 𝑥, 𝑓
󸀠
(𝑥)⟩ − 𝑓 (𝑥)

+ 𝑓 (𝑦) + ⟨𝑥 − 𝑦, 𝑓
󸀠
(𝑦)⟩

= 2 (𝑓 (𝑦) − 𝑓 (𝑥)) + ⟨𝑥 − 𝑦, 𝑓
󸀠
(𝑦) + 𝑓

󸀠
(𝑥)⟩ ,

∀𝑥, 𝑦 ∈ int𝐷,

(13)

And, hence, (10) via (7) and (9).

The following definition is then used.

Definition 2. If 𝐷 ∩ 𝐴 𝑖 ̸= ⌀, for all 𝑖 ∈ 𝑝, and 𝑓 : 𝐷 (≡

dom𝑓) ⊂ 𝑋 → (−∞,∞] is a proper convex function
which isGâteaux differentiable in int𝐷, then the𝑝-cyclic self-
mapping 𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 → ⋃𝑖∈𝑝 𝐴 𝑖, where 𝐴 := ⋃𝑖∈𝑝 𝐴 𝑖 ⊆

int𝐷 ⊂ 𝐻 and𝐴 𝑖 ̸= ⌀, for all 𝑖 ∈ 𝑝, is said to be a generalized

contractive point-dependent (𝐾, 𝜆)-hybrid 𝑝(≥2)-cyclic self-
mapping relative to𝐷𝑓 if

𝐷𝑓 (𝑇𝑥, 𝑇𝑦) ≤ 𝐾𝑖 (𝑦)𝐷𝑓 (𝑥, 𝑦)

+ 𝜆 (𝑦) ⟨𝑥 − 𝑇𝑥, 𝑓
󸀠
(𝑦) − 𝑓

󸀠
(𝑇𝑦)⟩ ,

∀𝑥 ∈ 𝐴 𝑖, ∀𝑦 ∈ 𝐴 𝑖+1, ∀𝑖 ∈ 𝑝,

(14)

for some given functions 𝜆 : ⋃𝑖∈𝑝 𝐴 𝑖 → R and 𝐾𝑖 : 𝐴 𝑖+1 →
(0, 𝑎𝑖] with 𝑎𝑖 ∈ R+, for all 𝑖 ∈ 𝑝, where 𝐾 : ⋃𝑖∈𝑝 𝐴 𝑖+1 →

(0, 1] defined by𝐾(𝑦) = ∏
𝑖+𝑝−1
𝑗=𝑖 [𝐾𝑗(𝑇

𝑗−𝑖𝑦)] for any 𝑦 ∈ 𝐴 𝑖+1,
for all 𝑖 ∈ 𝑝.

If, furthermore, 𝐾 : ⋃𝑖∈𝑝 𝐴 𝑖 → (0, 1), for all 𝑖 ∈ 𝑝, then
𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 → ⋃𝑖∈𝑝 𝐴 𝑖 is said to be a generalized point-
dependent (𝐾, 𝜆)-hybrid 𝑝(≥2)-cyclic self-mapping relative
to𝐷𝑓.

If 𝑝 = 1, it is possible to characterize 𝑇 : 𝐴1 → 𝐴1 as
a trivial 1-cyclic self-mapping with 𝐴1 = 𝐴2 which does not
need to be specifically referred to as 1-cyclic.

Although 𝐾𝑖 : 𝐴 𝑖+1 → (0, 𝑎𝑖] depends on 𝑖 ∈ 𝑝, the
whole 𝐾 : ⋃𝑖∈𝑝 𝐴 𝑖 → (0, 1) does not depend on 𝑖 ∈ 𝑝 so
that the cyclic self-mapping is referred to as generalized point-
dependent (𝐾, 𝜆)-hybrid in the definition.

The following concepts are useful.
𝑓 : 𝐷 (≡ dom𝑓) ⊂ 𝑋 → (−∞,∞] is said to
be totally convex if the modulus of total convexity
V𝑓 : 𝐷0 × [0,∞) → [0,∞]; that is, V𝑓(𝑥, 𝑡) =

inf {𝐷𝑓(𝑥, 𝑦) : 𝑦 ∈ 𝐷, ‖𝑦 − 𝑥‖ = 𝑡} is positive for
𝑡 > 0.
𝑓 : 𝐷 (≡ dom𝑓) ⊂ 𝑋 → (−∞,∞] is said
to be uniformly convex if the modulus of uniform
convexity 𝛿𝑓 : [0,∞) → [0,∞]; that is, 𝛿𝑓(𝑡) =

inf{𝑓(𝑥)+𝑓(𝑦)−2𝑓((𝑥+𝑦)/2) : 𝑥, 𝑦 ∈ 𝐷, ‖𝑦−𝑥‖ ≥ 𝑡}

is positive for 𝑡 > 0. It holds that V𝑓(𝑥, 𝑡) ≥ 𝛿𝑓(𝑡), for
all 𝑥 ∈ 𝐷 [16]. The following result holds.

Theorem 3. Assume that
(1) 𝑓 : 𝐷 (≡ dom𝑓) ⊂ 𝑋 → (−∞,∞] is a lower-

semicontinuous proper strictly totally convex function
which is Gâteaux differentiable in int𝐷;

(2) 𝐴 𝑖( ̸=⌀) ⊆ int𝐷 ⊂ 𝐻, for all 𝑖 ∈ 𝑝, are bounded,
closed, and convex subsets of𝐻 which intersect and 𝑇 :

⋃𝑖∈𝑝 𝐴 𝑖 → ⋃𝑖∈𝑝 𝐴 𝑖 is a generalized point-dependent
(𝐾, 𝜆)-hybrid 𝑝(≥2)-cyclic self-mapping relative to 𝐷𝑓
for some given functions 𝜆 : ⋃𝑖∈𝑝 𝐴 𝑖 → Λ ⊂ R
and 𝐾 : ⋃𝑖∈𝑝 𝐴 𝑖 → (0, 1), defined by 𝐾(𝑦) =

∏
𝑖+𝑝−1
𝑗=𝑖 [𝐾𝑗(𝑇

𝑗−𝑖𝑦)] for any 𝑦 ∈ 𝐴 𝑖+1, for all 𝑖 ∈ 𝑝, and
some functions 𝐾𝑖 : 𝐴 𝑖+1 → (0, 𝑎𝑖], for all 𝑖 ∈ 𝑝, with
Λ being bounded;

(3) there is a convergent sequence {𝑇𝑛𝑥} to some 𝑧 ∈

⋂𝑖∈𝑝 𝐴 𝑖 for some 𝑥 ∈ ⋃𝑖∈𝑝 𝐴 𝑖.

Then, 𝑧 = 𝑇𝑧 is the unique fixed point of 𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 →

⋃𝑖∈𝑝 𝐴 𝑖 to which all sequences {𝑇𝑛𝑥} converge for any 𝑥 ∈

⋃𝑖∈𝑝 𝐴 𝑖, for all 𝑖 ∈ 𝑝.
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Proof. The recursive use of (14) yields

𝐷𝑓 (𝑇
2
𝑥, 𝑇
2
𝑦)

≤ 𝐾𝑖+1 (𝑇𝑦)𝐷𝑓 (𝑇𝑥, 𝑇𝑦) + 𝜆 (𝑇𝑦)

× ⟨𝑇𝑥 − 𝑇
2
𝑥, 𝑓
󸀠
(𝑇𝑦) − 𝑓

󸀠
(𝑇
2
𝑦)⟩

≤ 𝐾𝑖+1 (𝑇𝑦) [𝐾𝑖 (𝑦)𝐷𝑓 (𝑥, 𝑦) + 𝜆 (𝑦)

× ⟨𝑥 − 𝑇𝑥, 𝑓
󸀠
(𝑦) − 𝑓

󸀠
(𝑇𝑦)⟩]

+ 𝜆 (𝑇𝑦) ⟨𝑇𝑥 − 𝑇
2
𝑥, 𝑓
󸀠
(𝑇𝑦) − 𝑓

󸀠
(𝑇
2
𝑦)⟩ ,

∀𝑥 ∈ 𝐴 𝑖, ∀𝑦 ∈ 𝐴 𝑖+1, ∀𝑖 ∈ 𝑝,

(15)

𝐷𝑓 (𝑇
𝑝
𝑥, 𝑇
𝑝
𝑦)

≤ 𝐾𝑖+𝑝−1 (𝑇
𝑝−1

𝑦)𝐷𝑓 (𝑇
𝑝−1

𝑥, 𝑇
𝑝−1

𝑦)

+ 𝜆 (𝑇
𝑝−1

𝑦) ⟨𝑇
𝑝−1

𝑥 − 𝑇
𝑝
𝑥, 𝑓
󸀠
(𝑇
𝑝−1

𝑦) − 𝑓
󸀠
(𝑇
𝑝
𝑦)⟩

≤ [

[

𝑝

∏
𝑗=1

𝐾𝑝−𝑗+1 (𝑇
𝑝−𝑗+1−𝑖

𝑦)]

]

𝐷𝑓 (𝑥, 𝑦)

+

𝑝

∑
𝑘=1

(

𝑝

∏
𝑗=𝑘+1

[𝐾𝑝−𝑗+𝑖 (𝑇
𝑝−𝑗+1

) 𝑦])𝜆 (𝑇
𝑘−1

𝑦)

× ⟨𝑇
𝑘−1

𝑥 − 𝑇
𝑘
𝑥, 𝑓
󸀠
(𝑇
𝑘−1

𝑦) − 𝑓
󸀠
(𝑇
𝑘
𝑦)⟩ ,

∀𝑥 ∈ 𝐴 𝑖 , ∀𝑦 ∈ 𝐴 𝑖+1, ∀𝑖 ∈ 𝑝,

(16)

with 𝑇𝑝𝑥 ∈ 𝐴 𝑖+𝑝, 𝑇
𝑝𝑦 ∈ 𝐴 𝑖+1+𝑝 with 𝐴 𝑖+𝑝 = 𝐴 𝑖, 𝐾𝑖+𝑝 = 𝐾𝑖,

for all 𝑖 ∈ 𝑝, where 𝑇0 is the identity mapping on ⋃ 𝑖∈𝑝 𝐴 𝑖.
Now, define �̂� (𝑦) := [∏

𝑝
𝑗=1𝐾𝑝−𝑗+1(𝑇

𝑝−𝑗+1−𝑖𝑦)] so that one
gets

𝐷𝑓 (𝑇
𝑛𝑝
𝑥, 𝑇
𝑛𝑝
𝑦)

≤ �̂�
𝑛
(𝑦)𝐷𝑓 (𝑥, 𝑦)

+

𝑛𝑝

∑
𝑘=1

(

𝑛𝑝

∏
𝑗=𝑘+1

[𝐾𝑛𝑝−𝑗+𝑖 (𝑇
𝑛𝑝−𝑗+1

) 𝑦])𝜆 (𝑇
𝑘−1

𝑦)

× ⟨𝑇
𝑘−1

𝑥 − 𝑇
𝑘
𝑥, 𝑓
󸀠
(𝑇
𝑘−1

𝑦) − 𝑓
󸀠
(𝑇
𝑘
𝑦)⟩

≤ �̂�
𝑛
(𝑦)𝐷𝑓 (𝑥, 𝑦)

+

(𝑛−1)𝑝

∑
𝑘=1

(

𝑛𝑝

∏
𝑗=𝑘+1

[𝐾𝑛𝑝−𝑗+𝑖 (𝑇
𝑛𝑝−𝑗+1

) 𝑦])𝜆 (𝑇
𝑘−1

𝑦)

× ⟨𝑇
𝑘−1

𝑥 − 𝑇
𝑘
𝑥, 𝑓
󸀠
(𝑇
𝑘−1

𝑦) − 𝑓
󸀠
(𝑇
𝑘
𝑦)⟩

+

𝑛𝑝

∑
𝑘=(𝑛−1)𝑝

(

𝑛𝑝

∏
𝑗=𝑘+1

[𝐾𝑛𝑝−𝑗+𝑖 (𝑇
𝑛𝑝−𝑗+1

) 𝑦])𝜆 (𝑇
𝑘−1

𝑦)

× ⟨𝑇
𝑘−1

𝑥 − 𝑇
𝑘
𝑥, 𝑓
󸀠
(𝑇
𝑘−1

𝑦) − 𝑓
󸀠
(𝑇
𝑘
𝑦)⟩

≤ �̂�
𝑛
(𝑦)𝐷𝑓 (𝑥, 𝑦)

+ (
1 − �̂�(𝑛−1)𝑝+1 (𝑦)

1 − �̂� (𝑦)
+𝑀𝑛𝑝)

× ( max
1≤𝑗≤𝑛𝑝

[𝜆 (𝑇
𝑗−1
𝑦)

× ⟨𝑇
𝑗−1
𝑥−𝑇
𝑗
𝑥, 𝑓
󸀠
(𝑇
𝑗−1
𝑦)−𝑓

󸀠
( 𝑇
𝑗
𝑦)⟩] ) ,

(17)

since 𝐾 (𝑦) = [𝐾𝑗(𝑇
𝑗−𝑖𝑦)] < 1, for all 𝑦 ∈ 𝐴 𝑖+1, since

𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 → ⋃𝑖∈𝑝 𝐴 𝑖 is a generalized contractive point-
dependent (𝐾, 𝜆)-hybrid 𝑝(≥2)-cyclic self-mapping relative
to 𝐷𝑓, implies that �̂� (𝑦) < 1, for all 𝑦 ∈ ⋃𝑖∈𝑝 𝐴 𝑖, since
𝐾(𝑦) = ∏

𝑖+𝑝−1
𝑗=𝑖 [𝐾𝑗(𝑇

𝑗−𝑖𝑦)] < 1 for any 𝑦 ∈ 𝐴 𝑖+1, for all 𝑖 ∈ 𝑝
(then for any 𝑦 ∈ ⋃ 𝑖∈𝑝 𝐴 𝑖), where

𝑀𝑛𝑝 ≥ 𝑀
0
𝑛𝑝

:=

𝑛𝑝

∑
𝑘=(𝑛−1)𝑝

(

𝑛𝑝

∏
𝑗=𝑘+1

[𝐾𝑛𝑝−𝑗+𝑖 (𝑇
𝑛𝑝−𝑗+1

) 𝑦])

× 𝜆 (𝑇
𝑘−1

𝑦)

× ⟨𝑇
𝑘−1

𝑥 − 𝑇
𝑘
𝑥, 𝑓
󸀠
(𝑇
𝑘−1

𝑦) − 𝑓
󸀠
(𝑇
𝑘
𝑦)⟩ ,

𝐷𝑓 (𝑇
𝑚𝑛𝑝

𝑥, 𝑇
𝑚𝑛𝑝

𝑦)

≤ �̂�
𝑚
(𝑦)𝐷𝑓 (𝑇

𝑛𝑝
𝑥, 𝑇
𝑛𝑝
𝑦)

+ (
1 − �̂�(𝑚−1)𝑝+1 (𝑦)

1 − �̂� (𝑦)
+𝑀𝑛𝑚𝑝)

× ( max
𝑛𝑝+1≤𝑗≤𝑛𝑚𝑝

[𝜆 (𝑇
𝑗−1
𝑦) ⟨𝑇

𝑗−1
𝑥 − 𝑇
𝑗
𝑥, 𝑓
󸀠
(𝑇
𝑗−1
𝑦)

−𝑓
󸀠
(𝑇
𝑗
𝑦)⟩] ) ,

(18)

where �̂�𝑛(𝑦) := �̂�(𝑦) ⋅ �̂�(𝑇𝑝𝑦) ⋅ ⋅ ⋅ �̂�(𝑇𝑛𝑝𝑦) < 1, since𝐾(𝑦) =
∏
𝑖+𝑝−1
𝑗=𝑖 [𝐾𝑗(𝑇

𝑗−𝑖
𝑦)] < 1, for all 𝑦 ∈ ⋃ 𝑖∈𝑝 𝐴 𝑖, so that

0 ≤ lim sup
𝑛,𝑚→∞

𝐷𝑓 (𝑇
𝑚𝑛𝑝

𝑥, 𝑇
𝑚𝑛𝑝

𝑦)

≤ (
1

1 − �̂� (𝑦)
+ lim sup
𝑛,𝑚→∞

𝑀𝑛𝑚𝑝)

× lim sup
𝑛,𝑚→∞

( max
𝑛𝑝+1≤𝑗≤𝑛𝑚𝑝

× [𝜆 (𝑇
𝑗−1
𝑦) ⟨𝑇

𝑗−1
𝑥 − 𝑇
𝑗
𝑥, 𝑓
󸀠
(𝑇
𝑗−1
𝑦)

−𝑓
󸀠
(𝑇
𝑗
𝑦)⟩] ) = 0,

(19)
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since 𝜆 : ⋃𝑖∈𝑝 𝐴 𝑖 → Λ ⊂ R is bounded, 𝑓 : 𝐷 ⊂

𝑋 → (−∞ ,∞] is lower-semicontinuous then with all
subgradients in any bounded subsets of int𝐷 being bounded,
and {𝑇𝑗𝑥} and {𝑇𝑗−1𝑥 − 𝑇𝑗𝑥}, for all 𝑥 ∈ ⋃𝑖∈𝑝 𝐴 𝑖, for all
𝑖 ∈ 𝑝, converge so that they are Cauchy sequences being
then bounded, for all 𝑥 ∈ ⋃𝑖∈𝑝 𝐴 𝑖, for all 𝑖 ∈ 𝑝, where
𝑧 ∈ ⋂ 𝑖∈𝑝 𝐴 𝑖, since ⋂𝑖∈𝑝 𝐴 𝑖 is nonempty and closed, is
some fixed point of 𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 → ⋃𝑖∈𝑝 𝐴 𝑖. As a result,
∃lim𝑛→∞𝐷𝑓(𝑇

𝑛𝑝𝑥, 𝑇𝑛𝑝𝑦) = lim𝑛→∞𝐷𝑓(𝑇
𝑛𝑥, 𝑇𝑛𝑦) = 0, for

all 𝑥 ∈ 𝐴 𝑖, for all 𝑦 ∈ 𝐴 𝑖+1, for all 𝑖 ∈ 𝑝. From a basic
property of Bregman distance, 𝑇𝑛𝑦 → 𝑧, 𝑇𝑛𝑥 → 𝑧 as
𝑛 → ∞, for all 𝑥 ∈ 𝐴 𝑖, for all 𝑦 ∈ 𝐴 𝑖+1, for all 𝑖 ∈ 𝑝,
if 𝑓 : 𝐷 (≡ dom𝑓) ⊂ 𝑋 → (−∞,∞] is sequentially
consistent. But, since⋃ 𝑖∈𝑝 𝐴 𝑖 is closed, 𝑓 : 𝐷 | ⋃ 𝑖∈𝑝 𝐴 𝑖 →

⋃𝑖∈𝑝 𝐴 𝑖 is sequentially consistent if and only if it is totally
convex [19]. Thus, {𝑇𝑛𝑦} converges also to 𝑧 for any 𝑥 ∈ 𝐴 𝑖
and 𝑦 ∈ 𝐴 𝑖+1, for all 𝑖 ∈ 𝑝, so that 𝑧 = 𝑇𝑧 is a fixed
point of 𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 → ⋃𝑖∈𝑝 𝐴 𝑖. Assume not and proceed
by contradiction so as then obtaining 𝐷𝑓(𝑇

𝑛𝑥, 𝑇𝑛𝑧) → 0;
𝐷𝑓(𝑧, 𝑇

𝑛𝑧) → 0 as 𝑛 → ∞ from a basic property of
Bregman distance. Thus, [𝐷𝑓(𝑧, 𝑇

𝑛𝑧) − 𝑓(𝑧) + 𝑓(𝑇𝑛𝑧)] → 0

as 𝑛 → ∞ since ⟨𝑧 − 𝑇𝑛𝑧, 𝑓󸀠(𝑇𝑛𝑧)⟩ → 0 as 𝑛 → ∞.
As a result, 𝑓(𝑇𝑛𝑧) → 𝑓(𝑧), 𝑇𝑛𝑧 → 𝑧 = 𝑇𝑧 as 𝑛 → ∞

from the continuity of 𝑓 : 𝐷 (≡ dom𝑓) ⊂ 𝑋 → (−∞,∞],
and 𝑧 is a fixed point of 𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 → ⋃𝑖∈𝑝 𝐴 𝑖. Now,
take any 𝑦1 ∈ 𝐴𝑗 so that 𝑦 = 𝑇𝑖+1−𝑗𝑦1 ∈ 𝐴 𝑖+1, then,
𝐷𝑓(𝑇

𝑛𝑥, 𝑇𝑛+𝑖+1−𝑗𝑦) → 𝐷𝑓 (𝑧, 𝑇
𝑖+1−𝑗𝑧) = 𝐷𝑓 (𝑧, 𝑧) = 0

since 𝑧 is a fixed point of 𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 → ⋃𝑖∈𝑝 𝐴 𝑖 and
𝑓 : 𝐷 (≡ dom𝑓) ⊂ 𝑋 → (−∞,∞] is a proper strictly totally
convex function. As a result, {𝑇𝑛𝑦} converges to 𝑧, for all
𝑦 ∈ 𝐴 𝑖+1.

It is now proven that 𝑧 ∈ ⋂𝑖∈𝑝 𝐴 𝑖 is the unique fixed
point of 𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 → ⋃𝑖∈𝑝 𝐴 𝑖. Assume not so that there
is 𝑧1( ̸= 𝑧) = 𝑇𝑧1 ∈ ⋂𝑖∈𝑝 𝐴 𝑖. Then, 𝐷𝑓(𝑇

𝑛𝑥, 𝑇𝑛𝑧1) → 0 as
𝑛 → ∞ from (17) for 𝑦 = 𝑧1 since 𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 → ⋃𝑖∈𝑝 𝐴 𝑖
is a generalized point-dependent (𝐾, 𝜆)-hybrid 𝑝(≥2)-cyclic
self-mapping relative to 𝐷𝑓 with 𝜆 : ⋃𝑖∈𝑝 𝐴 𝑖 → Λ ⊂ R and
𝐾 : ⋃𝑖∈𝑝 𝐴 𝑖 → (0, 1) so that {𝑇𝑛𝑥} → 𝑧1 = 𝑇𝑛𝑧1, since
𝐷𝑓(𝑥, 𝑦) > 0 if 𝑥, 𝑦( ̸= 𝑥) ∈ ⋂ 𝑖∈𝑝 𝐴 𝑖 = int(⋂ 𝑖∈𝑝 𝐴 𝑖) since
𝑓 : 𝐷(≡ dom𝑓) ⊂ 𝑋 → (−∞,∞] is proper and totally
strictly convex, and since 𝑇𝑛𝑥 → 𝑧, and 𝑧 ∈ ⋂𝑖∈𝑝 𝐴 𝑖. Since
⋂𝑖∈𝑝 𝐴 𝑖 is closed and convex, it turns out that 𝑧 is the unique
fixed point of 𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 → ⋃𝑖∈𝑝 𝐴 𝑖.

Note that the result also holds for any for all 𝑦1 ∈ ⋃𝑖∈𝑝 𝐴 𝑖
since 𝑦 ∈ ⋃𝑗( ̸= 𝑖)∈𝑝 𝐴𝑗 maps to 𝑦1 = 𝑇𝑘𝑖𝑦 ∈ 𝐴 𝑖+1 for
some nonnegative integer 𝑘𝑖 ≤ 𝑝 − 1 through the self-
mapping 𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 → ⋃𝑖∈𝑝 𝐴 𝑖 so that 𝐷𝑓(𝑇

𝑛𝑥, 𝑇𝑛𝑦1) =

𝐷𝑓(𝑇
𝑛
𝑥, 𝑇
𝑛+𝑘
𝑖𝑦) → 𝐷𝑓(𝑧, 𝑇

𝑘
𝑖𝑧) = 𝐷𝑓(𝑧, 𝑧) = 0 as 𝑛 → ∞

since 𝑧 ∈ ⋂𝑖∈𝑝 𝐴 𝑖 is the unique fixed point of 𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 →

⋃𝑖∈𝑝 𝐴 𝑖 and {𝑇
𝑛𝑦} converges to 𝑧 for any 𝑦 ∈ ⋃𝑖∈𝑝 𝐴 𝑖.

The subsequent result directly extends Theorem 3 to the
𝑝-composite self-mappings 𝑇𝑝𝑖 : ⋃𝑗∈𝑝 𝐴𝑗 | 𝐴 𝑖 → 𝐴 𝑖,
for all 𝑖 ∈ 𝑝, defined as 𝑇𝑝𝑥 = 𝑇𝑗 (𝑇𝑝−𝑗𝑥); for all 𝑥 ∈

⋃𝑖∈𝑝 𝐴 𝑖, subject to 𝑖 = 𝑝 − 𝑗 − 𝑘, for all 𝑖, 𝑗 ∈ 𝑝. The subsets
𝐴 𝑖 ⊂ 𝑋, 𝑖 ∈ 𝑝 are not required to intersect since the restricted
composite mappings as defined earlier are self-mappings on
nonempty, closed, and convex sets.

Corollary 4. Assume that

(1) 𝑓𝑖 : 𝐷(≡ dom𝑓) ⊂ 𝑋 → (−∞,∞] is a proper strictly
totally convex function which is lower-semicontinuous
and Gâteaux differentiable in int𝐷, and, furthermore,
it is bounded on any bounded subsets of int𝐷;

(2) 𝐴 𝑖( ̸=⌀) ⊆ int𝐷 ⊂ 𝐻 is bounded and closed, for
all 𝑖 ∈ 𝑝, 𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 → ⋃𝑖∈𝑝 𝐴 𝑖 is a 𝑝-cyclic
self-mapping so that 𝑇𝑝𝑖 : ⋃𝑗∈𝑝 𝐴𝑗 | 𝐴 𝑖 → 𝐴 𝑖 for
some 𝑖 ∈ 𝑝 is a generalized point-dependent (𝐾, 𝜆𝑖)-
hybrid 𝑝(≥2)-cyclic self-mapping relative to 𝐷𝑓 for
some given functions 𝜆𝑖 : ⋃𝑖∈𝑝 𝐴 𝑖 → Λ ⊂ R and
𝐾 : ⋃𝑖∈𝑝 𝐴 𝑖 → (0, 1) for some 𝑖 ∈ 𝑝 defined by
𝐾(𝑦) = ∏

𝑖+𝑝−1
𝑗=𝑖 [𝐾𝑗(𝑇

𝑗−𝑖𝑦)] for any 𝑦 ∈ 𝐴 𝑖+1, for all
𝑖 ∈ 𝑝, and𝐾𝑖 : 𝐴 𝑖+1 → (0, 𝑎𝑖] for some 𝑎𝑖 ∈ R+, for all
𝑖 ∈ 𝑝, where 𝐴 := ⋃𝑖∈𝑝 𝐴 𝑖 ⊂ 𝐻, Λ being bounded and
𝐴 𝑖 being, furthermore, convex for the given 𝑖 ∈ 𝑝;

(3) there is a convergent sequence {𝑇𝑛𝑝𝑖 𝑥} to some 𝑧𝑖 ∈ 𝐴 𝑖
for some 𝑥 ∈ 𝐴 𝑖 and 𝑖 ∈ 𝑝.

Then, 𝑧𝑖 = 𝑇𝑧𝑖 is a unique fixed point of 𝑇
𝑝
𝑖 : ⋃𝑗∈𝑝 𝐴𝑗 | 𝐴 𝑖 →

𝐴 𝑖 to which all sequences {𝑇𝑛𝑝𝑖 𝑥} converge for any 𝑥 ∈ 𝐴 𝑖 for
𝑖 ∈ 𝑝.

Also, if conditions (1)–(3) are satisfied with all the subsets
𝐴 𝑖, for all 𝑖 ∈ 𝑝, being nonempty, closed, and convex for some
proper strictly convex function 𝑓 ≡ 𝑓𝑖 : 𝐷(≡ dom𝑓) ⊂ 𝑋 →

(−∞,∞] which is Gâteaux differentiable in int𝐷, then 𝑧𝑖 =
𝑇𝑧𝑖, for all 𝑖 ∈ 𝑝, is a unique fixed point of 𝑇𝑝𝑖 : ⋃𝑗∈𝑝 𝐴𝑗 |

𝐴 𝑖 → 𝐴 𝑖, for all 𝑖 ∈ 𝑝, to which all sequences { 𝑇
𝑛𝑝
𝑖 𝑥} converge

for any 𝑥 ∈ 𝐴 𝑖, for all 𝑖 ∈ 𝑝. The 𝑝 unique fixed points of each
generalized point-dependent (𝐾, 𝜆𝑖)-hybrid 1-cyclic composite
self-mappings 𝑇𝑝𝑖 : ⋃𝑗∈𝑝 𝐴𝑗 | 𝐴 𝑖 → 𝐴 𝑖, for all 𝑖 ∈ 𝑝, fulfil the
relations 𝑧𝑝−𝑖 = 𝑇𝑗𝑧𝑘 for 𝑖 = 𝑝 − 𝑗 − 𝑘, for all 𝑖 ∈ 𝑝 − 1, for all
𝑗 ∈ 𝑝.

Outline of Proof. Note that𝐷 ∩ ⋂ 𝑖∈𝑝(𝐴 𝑖) ̸=⌀. Equation (14)
is now extended to 𝑇𝑝𝑖 : ⋃𝑗∈𝑝 𝐴𝑗 | 𝐴 𝑖 → 𝐴 𝑖 for the given
𝑖 ∈ 𝑝 leading to

𝐷𝑓 (𝑇
𝑝
𝑖 𝑥, 𝑇
𝑝
𝑖 𝑦) ≤ 𝐾𝑖 (𝑦)𝐷𝑓 (𝑥, 𝑦)

+ 𝜆𝑖 (𝑦) ⟨𝑥 − 𝑇
𝑝
𝑖 𝑥, 𝑓
󸀠
(𝑦) − 𝑓

󸀠
(𝑇
𝑝
𝑖 𝑦)⟩ ,

∀𝑥, 𝑦 ∈ 𝐴 𝑖, 𝑖 ∈ 𝑝,

(20)
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since 𝑇𝑝𝑖 is a trivial 1-cyclic self-mapping on 𝐴 𝑖 for 𝑖 ∈ 𝑝. The
previous relation leads recursively to.

𝐷𝑓 (𝑇
𝑛𝑝
𝑖 𝑥, 𝑇

𝑛𝑝
𝑖 𝑦) ≤ �̂�

𝑛
(𝑦)𝐷𝑓 (𝑥, 𝑦)

+ (
1

1 − �̂� (𝑦)
+ �̂�𝑖𝑛𝑝)

× (max
1≤𝑗≤𝑛

[𝜆 (𝑇
(𝑗−1)𝑝
𝑖 𝑦) ⟨𝑇

(𝑗−1)𝑝
𝑖 𝑥 − 𝑇

𝑗𝑝
𝑖 𝑥, 𝑓

󸀠
(𝑇
(𝑗−1)𝑝
𝑖 𝑦)

−𝑓
󸀠
( 𝑇
𝑗𝑝
𝑖 𝑦)⟩] ) ,

(21)

with 𝑇𝑛𝑝𝑖 𝑥, 𝑇
𝑛𝑝
𝑖 𝑦 ∈ 𝐴 𝑖, for all 𝑦 ∈ 𝐴 𝑖+1, for the given 𝑖 ∈ 𝑝

with𝐾 (𝑦) < 1, where𝐾 (𝑦) is independent of the particular
𝑇
𝑝
𝑖 : ⋃𝑗∈𝑝 𝐴𝑗 | 𝐴 𝑖 → 𝐴 𝑖 for 𝑖 ∈ 𝑝. One gets by using very

close arguments to those used in the proof ofTheorem 3 that
∃lim𝑛,𝑚→∞𝐷𝑓(𝑇

𝑛𝑚𝑝
𝑖 𝑥, 𝑇

𝑛𝑚𝑝
𝑖 𝑦) = 0. Then, {𝑇𝑛𝑚𝑝𝑖 𝑥} converges

to some 𝑧𝑖 ∈ 𝐴 𝑖 which is proven to be a unique fixed point
in the nonempty, closed, and convex set 𝐴 𝑖 for 𝑖 ∈ 𝑝. The
remaining of the proof is similar to that of Theorem 3. The
last part of the result follows by applying its first part to each
of the 𝑝 generalized point-dependent (𝐾, 𝜆)-hybrid 1-cyclic
composite self-mappings 𝑇𝑝𝑖 :⋃𝑗∈𝑝 𝐴𝑗 | 𝐴 𝑖 → 𝐴 𝑖 relative to
𝐷𝑓, for all 𝑖 ∈ 𝑝.

Remark 5. If 𝑓 : 𝐷 | ⋃𝑖∈𝑝 𝐴 𝑖 ⊂ 𝑋 → (−∞,∞] is
totally convex if it is a continuous strictly convex function
which is Gâteaux differentiable in int𝐷, dim𝑋 < ∞ and
𝐷 | ⋃𝑖∈𝑝 𝐴 𝑖 is closed, [20]. In view of this result, Theorem 3
and Corollary 4 are still valid if the condition of its strict
total convexity of 𝑓 : 𝐷 | ⋃𝑖∈𝑝 𝐴 𝑖 → (−∞,∞] is replaced
by its continuity and its strict convexity if the Banach space is
finite dimensional. Since V𝑓(𝑥, 𝑡) ≥ 𝛿𝑓(𝑡) > 0, for all 𝑡 ∈ R+,
it turns out that if 𝑓 : 𝐷 | ⋃𝑖∈𝑝 𝐴 𝑖 → (−∞,∞] is uniformly
convex, then it is totally convex. Therefore, Theorem 3 and
Corollary 4 still hold if the condition of strict total convexity
is replaced with the sufficient one of strict uniform convexity.
Note that if a convex function 𝑓 is totally convex then it is
sequentially consistent in the sense that 𝐷𝑓(𝑥𝑛, 𝑦𝑛) → 0 as
𝑛 → ∞ if ‖𝑥𝑛 − 𝑦𝑛‖ → 0 as 𝑛 → ∞ for any sequences {𝑥𝑛}
and {𝑦𝑛} in𝐷.

Some results on weak cluster points of average sequences
built with the iterated sequences generated fromhybrid cyclic
self-mappings {𝑇𝑛𝑥} relative to a Bregman distance 𝐷𝑓, for
𝑥 ∈ 𝐴 𝑖 and some 𝑖 ∈ 𝑝, are investigated in the following
results related to the fixed points of {𝑇𝑛𝑥}.

Theorem 6. Assume that
(1) 𝑋 is a reflexive space and 𝑓 : 𝐷 ⊂ 𝑋 → (−∞,∞] is a

lower-semicontinuous strictly convex function, so that
it is Gâteaux differentiable in int(𝐷), and it is bounded
on any bounded subsets of int𝐷;

(2) a 𝑝-cyclic self-mapping 𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 → ⋃𝑖∈𝑝 𝐴 𝑖

is given defining a composite self-mapping 𝑇𝑝 :

⋃𝑖∈𝑝 𝐴 𝑖 → ⋃𝑖∈𝑝 𝐴 𝑖 with 𝐴 𝑖( ̸=⌀) ⊆ int𝐷 ⊂ 𝐻

being bounded, convex, and closed, for all 𝑖 ∈ 𝑝, so
that its restricted composite mapping 𝑇𝑝𝑖 : ⋃𝑗∈𝑝 𝐴𝑗 |

𝐴 𝑖 → 𝐴 𝑖 to 𝐴 𝑖, for some given 𝑖 ∈ 𝑝, is generalized
point-dependent (1, 𝜆𝑖)-hybrid relative to 𝐷𝑓 for some
𝜆𝑖 : 𝐴 𝑖 → R and the given 𝑖 ∈ 𝑝.

Define the sequence {𝑆(𝑖)𝑛 𝑥} ≡ {(1/𝑛)∑
𝑛−1
𝑘=0 𝑇
𝑘𝑝𝑥} for 𝑥 ∈

𝐴 𝑖, where 𝑇0𝑖 ≡ 𝑇0𝑝 is the identity mapping on 𝐴 𝑖 so that
𝑇0𝑝𝑥 = 𝑥, for all 𝑥 ∈ 𝐴 𝑖, and assume that {𝑇𝑛𝑥} is bounded
for 𝑥 ∈ 𝐴 𝑖. Then, the following properties hold.

(i) Every weak cluster point of {𝑆(𝑖)𝑛 𝑥} for 𝑥 ∈ 𝐴 𝑖 is a fixed
point ]𝑖 ∈ 𝐴 𝑖 of 𝑇

𝑝
𝑖 : ⋃𝑗∈𝑝 𝐴𝑗 | 𝐴 𝑖 → 𝐴 𝑖 of 𝑇

𝑝
𝑖 :

⋃𝑗∈𝑝 𝐴𝑗 | 𝐴 𝑖 → 𝐴 𝑖 for the given 𝑖 ∈ 𝑝. Under the
conditions ofTheorem 3, there is a unique fixed point
of 𝑇𝑝𝑖 : ⋃𝑗∈𝑝 𝐴𝑗 | 𝐴 𝑖 → 𝐴 𝑖 which coincides with
the unique cluster point of {𝑆(𝑖)𝑛 𝑥}.

(ii) Define sequences {𝑆(𝑖,𝑗)𝑛 𝑥} ≡ {(1/𝑛)∑
𝑛−1
𝑘=0 𝑇
𝑘𝑝+𝑗𝑥} for

any integer 1 ≤ 𝑗 ≤ 𝑝 − 1 and 𝑥 ∈ 𝐴 𝑖 where 𝐴 𝑖
are bounded, closed, and convex, for all 𝑖 ∈ 𝑝. Thus,
{𝑆(𝑖,𝑗)𝑛 𝑥} converges weakly to ]𝑖+𝑗 = 𝑇𝑗]𝑖 ∈ 𝐴 𝑖+𝑗 for
𝑥 ∈ 𝐴 𝑖, where ]𝑖 ∈ 𝐴 𝑖 is a fixed point of𝑇

𝑝
𝑖 : ⋃𝑗∈𝑝 𝐴𝑗 |

𝐴 𝑖 → 𝐴 𝑖 and a weak cluster point of {𝑆(𝑖)𝑛 𝑥} for
𝑥 ∈ 𝐴 𝑖 and ]𝑖+𝑗 ∈ 𝐴 𝑖+𝑗 (1 ≤ 𝑗 ≤ 𝑝 − 1) is both a
fixed point of 𝑇𝑝𝑖+𝑗 : ⋃𝑗∈𝑝 𝐴𝑗 | 𝐴 𝑖+𝑗 → 𝐴 𝑖+𝑗 and a
weak cluster point of {𝑆(𝑖,𝑗)𝑛 𝑥} for𝑥 ∈ 𝐴 𝑖. Furthermore,
]𝑖+𝑗 = 𝑇𝑗]𝑖 if 𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 → ⋃𝑖∈𝑝 𝐴 𝑖 is continuous.

Proof. Using (14) with 𝑇𝑝 : ⋃𝑖∈𝑝 𝐴 𝑖 → ⋃𝑖∈𝑝 𝐴 𝑖 being a
generalized point-dependent (𝐾, 𝜆)-hybrid 𝑝(≥2)-cyclic self-
mapping relative to 𝐷𝑓 for 𝜆 : ⋃𝑖∈𝑝 𝐴 𝑖 → R, with 𝐾(𝑦) =
∏
𝑖+𝑝−1
𝑗=𝑖 [𝐾𝑗(𝑇

𝑗−𝑖𝑦)] = 1, for all 𝑦 ∈ ⋃𝑖∈𝑝 𝐴 𝑖, yields

𝐷𝑓 (𝑇
𝑘𝑝
𝑥, 𝑦) − 𝐷𝑓 (𝑇

(𝑘+1)𝑝
𝑥, 𝑇
𝑝
𝑦)

+ 𝜆 (𝑦) ⟨𝑇
𝑘𝑝
𝑥 − 𝑇
(𝑘+1)𝑝

𝑥, 𝑓
󸀠
(𝑦) − 𝑓

󸀠
(𝑇
𝑝
𝑦)⟩

= 𝑓 (𝑇
𝑘𝑝
𝑥) − 𝑓 (𝑇

(𝑘+1)𝑝
𝑥) + 𝑓 (𝑇

𝑝
𝑦)

− 𝑓 (𝑦) − ⟨𝑇
𝑘𝑝
𝑥 − 𝑦, 𝑓

󸀠
(𝑦)⟩

+ ⟨𝑇
(𝑘+1)𝑝

𝑥 − 𝑇
𝑝
𝑦, 𝑓
󸀠
(𝑇
𝑝
𝑦)⟩

+ 𝜆 (𝑦) ⟨ 𝑇
𝑘𝑝
𝑥 − 𝑇
(𝑘+1)𝑝

𝑥, 𝑓
󸀠
(𝑦) − 𝑓

󸀠
(𝑇
𝑝
𝑦)⟩

≥ 0, ∀𝑘 ∈ N0 = N ∪ {0} .

(22)

Summing up from 𝑘 = 0 to 𝑘 = 𝑛 − 1 and taking 𝑛 → ∞

yields

𝑓 (𝑥) − 𝑓 (𝑇
𝑛𝑝𝑥)

𝑛
+ 𝑓 (𝑇

𝑝
𝑦) − 𝑓 (𝑦)

+ 𝜆 (𝑦)⟨
𝑥 − 𝑇𝑛𝑝𝑥

𝑛
, 𝑓
󸀠
(𝑦) − 𝑓

󸀠
(𝑇
𝑝
𝑦)⟩
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−⟨
1

𝑛

𝑛−1

∑
𝑘=0

𝑇
𝑘𝑝
𝑥 − 𝑦, 𝑓

󸀠
(𝑦)⟩

+⟨
1

𝑛

𝑛−1

∑
𝑘=0

𝑇
(𝑘+1)𝑝

𝑥 − 𝑇
𝑝
𝑦 , 𝑓
󸀠
(𝑇
𝑝
𝑦)⟩

=
𝑓 (𝑥) − 𝑓 (𝑇

𝑛𝑝𝑥)

𝑛
+ 𝑓 (𝑇

𝑝
𝑦) − 𝑓 (𝑦)

+ 𝜆 (𝑦)⟨
𝑥 − 𝑇𝑛𝑝𝑥

𝑛
, 𝑓
󸀠
(𝑦) − 𝑓

󸀠
(𝑇
𝑝
𝑦)⟩

−⟨
1

𝑛

𝑛−1

∑
𝑘=0

𝑇
𝑘𝑝
𝑥 − 𝑦, 𝑓

󸀠
(𝑦)⟩

+⟨
1

𝑛

𝑛−1

∑
𝑘=0

𝑇
𝑘𝑝
𝑥 +

𝑇𝑛𝑝𝑥

𝑛
− 𝑇
𝑝
𝑦, 𝑓
󸀠
(𝑇
𝑝
𝑦)⟩

󳨀→ 𝑓(𝑇
𝑝
V𝑖) − 𝑓 (V𝑖) + ⟨V𝑖 − 𝑇

𝑝
𝑦, 𝑓
󸀠
(𝑇
𝑝
𝑦 )⟩

+ ⟨𝑦 − V𝑖, 𝑓
󸀠
(V𝑖)⟩ (≥ 0) as 𝑛 󳨀→ ∞, ∀𝑦 ∈ 𝐴 𝑖,

(23)

since {𝑇𝑛𝑥} is bounded for 𝑥 ∈ 𝐴 𝑖, its subsequence {𝑇
𝑛𝑝𝑥}

is then bounded for 𝑥 ∈ 𝐴 𝑖, and {𝑓(𝑇
𝑛𝑝𝑥)} is also bounded

on the bounded subset⋃𝑖∈𝑝 𝐴 𝑖 of int𝐷. Then, {(𝑥−𝑇𝑛𝑝𝑥)/𝑛}
converges to zero since {𝑥 − 𝑇

𝑛𝑝
𝑥} is bounded for 𝑥 ∈ 𝐴 𝑖.

Since 𝑓 : 𝐷 ⊂ 𝑋 → (−∞,∞] is lower-semicontinuous, the
set of subgradients is bounded in all bounded subsets 𝐴 𝑖 ⊆
int𝐷, for all 𝑖 ∈ 𝑝. As a result, {𝑆(𝑖)𝑛 𝑥} ≡ {(1/𝑛)∑

𝑛−1
𝑘=0 𝑇
𝑘𝑝𝑥}

is bounded for 𝑥 ∈ 𝐴 𝑖 and has a subsequence {𝑆(𝑖)𝑛
𝑖

𝑥} being
weakly convergent to some V𝑖 ∈ 𝐴 𝑖 for 𝑥 ∈ 𝐴 𝑖 since 𝑋 is
reflexive. One gets by taking 𝑦 = V𝑖 that

−𝐷𝑓 (V𝑖, 𝑇
𝑝
𝑖 V𝑖) = 𝑓 (𝑇

𝑝
𝑖 V𝑖) − 𝑓 (V𝑖)

+ ⟨V𝑖 − 𝑇
𝑝
𝑖 V𝑖, 𝑓

󸀠
(𝑇
𝑝
𝑖 V𝑖)⟩ ≥ 0.

(24)

Hence, it follows from Lemma 1 that V𝑖 = 𝑇
𝑝
𝑖 V𝑖 is a fixed point

]𝑖 ∈ 𝐴 𝑖 of 𝑇
𝑝
𝑖 : ⋃𝑗∈𝑝 𝐴𝑗 | 𝐴 𝑖 → 𝐴 𝑖 for the given 𝑖 ∈ 𝑝.

Now, consider {𝑆(𝑖,𝑗)𝑛
𝑖

𝑥}, 𝑥 ∈ 𝐴 𝑖, for any integers 1 ≤ 𝑗 ≤ 𝑝 − 1

so that 𝑇𝑗𝑥 ∈ 𝐴 𝑖+𝑗 for 𝑥 ∈ 𝐴 𝑖. Hence, Property (i) follows
with the uniqueness and the coincidence of the weak cluster
point of {𝑆(𝑖)𝑛 𝑥} and fixed point of 𝑇𝑝𝑖 : ⋃𝑗∈𝑝 𝐴𝑗 | 𝐴 𝑖 → 𝐴 𝑖
under Theorem 3. The previous reasoning remains valid so
that {𝑆(𝑖,𝑗)𝑛

𝑖

𝑥} is weakly convergent to some ]𝑖+𝑗 ∈ 𝐴 𝑖+𝑗 since
{𝑇𝑛+𝑗𝑥} ∈ 𝐴 𝑖+𝑗 is bounded for𝑥 ∈ 𝐴 𝑖 (since {𝑇

𝑛𝑥} is bounded
for 𝑥 ∈ 𝐴 𝑖 and 𝑗 is finite), its subsequence {𝑇

𝑛𝑝+𝑘𝑥} for 𝑥 ∈

𝐴 𝑖 is also bounded so that {(𝑇𝑗𝑥 − 𝑇𝑛𝑝+𝑗𝑥)/𝑛} converges to
zero since {𝑇𝑗𝑥 − 𝑇𝑛𝑝+𝑗𝑥} in 𝐴 𝑖+𝑗 is bounded for 𝑥 ∈ 𝐴 𝑖, 1 ≤
𝑗 ≤ 𝑝 − 1. Now, take 𝑦 = ]𝑖+𝑗 so that 𝐷𝑓(]𝑖+𝑗, 𝑇

𝑝
𝑖+𝑗]𝑖+𝑗) =

0, and then ]𝑖+𝑗 = 𝑇
𝑝
𝑖+𝑗]𝑖+𝑗, 1 ≤ 𝑗 ≤ 𝑝 − 1, is both a fixed

point of 𝑇𝑝𝑖+𝑗 : ⋃𝑗∈𝑝 𝐴𝑗 | 𝐴 𝑖 → 𝐴 𝑖+𝑗 and a weak cluster
point of {𝑆(𝑖,𝑗)𝑛

𝑖

𝑥}. Now, take 𝑥 ∈ 𝐴 𝑖 so that 𝑇
𝑗𝑥 ∈ 𝐴 𝑖+𝑗. Then,

𝑇
𝑗(𝑇𝑛𝑝𝑥) = 𝑇𝑛𝑝+𝑗𝑥 = 𝑇𝑛𝑝(𝑇𝑗𝑥) → ]𝑖+𝑗 as 𝑛 → ∞ for

𝑥 ∈ 𝐴 𝑖 and, in addition, ]𝑖+𝑗 = 𝑇𝑗]𝑖 if𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 → ⋃𝑖∈𝑝 𝐴 𝑖
is continuous. Hence, Property (ii) follows.

3. Extensions for Generalized
Point-Dependent Cyclic Hybrid
Self-Mappings on Nonintersecting Subsets:
Weak Convergence to Weak Cluster Points
of a Class of Sequences

Some of the results of Section 2 are now generalized to the
case when the subsets of the cyclic mapping do not intersect
𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 → ⋃𝑖∈𝑝 𝐴 𝑖, in general, by taking advantage
of the fact that best proximity points of such a self-mapping
are fixed points of the restricted composite mapping 𝑇𝑝𝑖 :

⋃𝑗∈𝑝 𝐴𝑗 | 𝐴 𝑖 → 𝐴 𝑖 for 𝑖 ∈ 𝑝. Weak convergence of averag-
ing sequences to weak cluster points and their links with the
best proximity points in the various subsets of the 𝑝-cyclic
self-mappings is discussed. Firstly, the following result fol-
lows from a close proof to that ofTheorem 6which is omitted.

Theorem 7. Let 𝑋 be a reflexive space, and let 𝑓 : 𝐷 ⊂ 𝑋 →

(−∞,∞] be a lower-semicontinuous strictly convex function so
that it is Gâteaux differentiable in int(𝐷) and it is bounded on
any bounded subsets of int𝐷. Consider the generalized point-
dependent (𝑝 ≥ 1)-cyclic hybrid self-mapping 𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 →

⋃𝑖∈𝑝 𝐴 𝑖 being (1, 𝜆𝑖) relative to𝐷𝑓 for some 𝜆𝑖 : 𝐴 𝑖 → R such
that 𝐴 𝑖( ̸=⌀) ⊆ int𝐷 ⊂ 𝐻 are all bounded, convex, closed,
and with nonempty intersection. Define the sequence {𝑆𝑛𝑥} ≡
{(1/𝑛)∑

𝑛−1
𝑘=0 𝑇
𝑘𝑥} for 𝑥 ∈ ⋃𝑖∈𝑝 𝐴 𝑖, where 𝑇0 is the identity

mapping on ⋃𝑖∈𝑝 𝐴 𝑖, and assume that {𝑇𝑛𝑥} is bounded for
𝑥 ∈ ⋃𝑖∈𝑝 𝐴 𝑖. Then, the following properties hold.

(i) Every weak cluster point of {𝑆(𝑖)𝑛 𝑥} for 𝑥 ∈ 𝐴 𝑖 is a fixed
point ]𝑖 ∈ 𝐴 𝑖 of 𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 → ⋃𝑖∈𝑝 𝐴 𝑖.

(ii) Define the sequence {𝑆𝑛𝑥} ≡ {(1/𝑛)∑
𝑛−1
𝑘=0 𝑇
𝑘𝑥} for 𝑥 ∈

⋃ 𝑖∈𝑝 𝐴 𝑖 which is bounded, closed, and convex, for all
𝑖 ∈ 𝑝 and any integer 1 ≤ 𝑗 ≤ 𝑝 − 1. Thus, {𝑆𝑛𝑥}
converges weakly to the fixed point ] = 𝑇] ∈ ⋂ 𝑖∈𝑝 𝐴 𝑖
of 𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 → ⋃𝑖∈𝑝 𝐴 𝑖 for 𝑥 ∈ ⋃ 𝑖∈𝑝 𝐴 𝑖 which is
also a weak cluster point of {𝑆𝑛𝑥}.

Remark 8. The results of Theorems 6 and 7 are extendable
without difficulty to the weak cluster points of other related
sequences to the considered ones.

(1) Define sequences {𝑆
(𝑗)
𝑛 𝑥} ≡ {(1/𝑛)∑

𝑛−1
𝑘=0 𝑇
𝑘+𝑗𝑥},

𝑥 ∈ ⋃𝑖∈𝑝 𝐴 𝑖, for any given finite non-negative integer 𝑗 under
all the hypotheses of Theorem 7. With this notation, the
sequence considered in such a corollary is {𝑆𝑛𝑥} ≡ {𝑆(0)𝑛 𝑥}.
Direct calculation yields (𝑆(𝑗)𝑛 𝑥 − 𝑆𝑛𝑥) = (1/𝑛)∑

𝑗−1

𝑘=0
(𝑇𝑘+𝑛𝑥 −

𝑇𝑘𝑥) → 0 for 𝑥 ∈ ⋃𝑖∈𝑝 𝐴 𝑖 as 𝑛 → ∞ since {𝑇𝑘+𝑛𝑥 − 𝑇𝑘𝑥},
and then {∑𝑗−1

𝑘=0
(𝑇𝑘+𝑛𝑥 − 𝑇𝑘𝑥)}, is bounded. Then, 𝑆(𝑗)𝑛 𝑥 → ]

weakly which is the same fixed point of 𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 →

⋃𝑖∈𝑝 𝐴 𝑖 in⋂𝑖∈𝑝 𝐴 𝑖 which is a weak cluster point of {𝑆
(𝑗)
𝑛 𝑥} for

𝑥 ∈ ⋃𝑖∈𝑝 𝐴 𝑖 for any finite non-negative integer 𝑗.
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(2) Consider all the hypotheses of Theorem 7 and
now define sequences {𝑆[𝑗]𝑛 𝑥} ≡ {(1/𝑛)∑

𝑛+𝑗−1

𝑘=0
𝑇𝑘𝑥},

𝑥 ∈ ⋃𝑖∈𝑝 𝐴 𝑖, for any given finite non-negative integer
𝑗. With this notation, the sequence considered in the
corollary is {𝑆𝑛𝑥} ≡ {𝑆[0]𝑛 𝑥}. Direct calculation yields
(𝑆[𝑗]𝑛 𝑥 − 𝑆𝑛𝑥) = (1/𝑛)∑

𝑗−1

𝑘=0
(𝑇𝑘+𝑛𝑥) → 0 weakly

for 𝑥 ∈ ⋃𝑖∈𝑝 𝐴 𝑖 as 𝑛 → ∞ since {𝑇𝑘+𝑛𝑥}, and then
{∑
𝑗−1

𝑘=0
(𝑇𝑘+𝑛𝑥)}, is bounded. Then, 𝑆[𝑗]𝑛 𝑥 → ] weakly which

is the same fixed point of 𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 → ⋃𝑖∈𝑝 𝐴 𝑖 in ⋂𝑖∈𝑝 𝐴 𝑖
which is a weak cluster point of {𝑆[𝑗]𝑛 𝑥} for 𝑥 ∈ ⋃𝑖∈𝑝 𝐴 𝑖 and
for any finite non-negative integer 𝑗.

(3) Now consider the hypotheses of Theorem 6. It turns
out that the sequence {𝑆(𝑖,𝑗)𝑛 𝑥} ≡ {(1/𝑛)∑

𝑛−1
𝑘=0 𝑇
𝑘𝑝+𝑗𝑥} for

𝑥 ∈ 𝐴 𝑖 satisfies for any integer 1 ≤ 𝑗 ≤ 𝑝 − 1,

𝑆
(𝑖,𝑗)
𝑛 𝑥 =

1

𝑛 + 1

𝑛 + 1

𝑛
(

𝑛−1

∑
𝑘=0

𝑇
𝑘𝑝+𝑗

𝑥)

+
𝑇
𝑗

𝑛
(

𝑛−1

∑
𝑘=0

𝑇
𝑘𝑝
𝑥 −

𝑛

∑
𝑘=0

𝑇
𝑘𝑝
𝑥)

= 𝑇
𝑗
(
𝑛 + 1

𝑛
𝑆
(𝑖)
𝑛+1𝑥 −

1

𝑛
𝑇
𝑛𝑝
𝑥) ,

𝑆
(𝑖,𝑗)
𝑛 𝑥 =

1

𝑛 + 1

𝑛 + 1

𝑛
(

𝑛−1

∑
𝑘=0

𝑇
𝑘𝑝
(𝑇
𝑗
𝑥))

+
1

𝑛
(

𝑛−1

∑
𝑘=0

𝑇
𝑘𝑝
(𝑇
𝑗
𝑥) −

𝑛

∑
𝑘=0

𝑇
𝑘𝑝
𝑥)

= (
𝑛 + 1

𝑛
𝑆
(𝑖+𝑗)
𝑛+1 𝑥𝑖+𝑗 −

1

𝑛
𝑇
𝑛𝑝
𝑥𝑖+𝑗) 󳨀→ ]𝑖+𝑗

≡ 𝑇
𝑝
𝑖+𝑗]𝑖+𝑗 (∈ 𝐴 𝑖+𝑘)

(25)

weakly as 𝑛 → ∞, where 𝑥𝑖+𝑗(= 𝑇𝑗𝑥) ∈ 𝐴 𝑖+𝑗 since 𝑥 ∈

𝐴 𝑖, {𝑇
𝑛𝑥} is bounded, and {𝑆

(𝑖,𝑗)
𝑛+1𝑧} ≡ (1/𝑛)∑

𝑛−1
𝑘=0 𝑇
𝑘𝑝𝑧 =

(1/𝑛)∑
𝑛−1
𝑘=0 (𝑇

𝑝
𝑖+𝑗)
𝑘
𝑧 for 𝑧 ∈ 𝐴 𝑖+𝑗 and 1 ≤ 𝑗 ≤ 𝑝−1.Thus, ]𝑖+𝑗 is

a fixed point of 𝑇𝑝𝑖+𝑗 : ⋃𝑗∈𝑝 𝐴𝑗 | 𝐴 𝑖+𝑗 → 𝐴 𝑖+𝑗 which is also a
weak cluster point of the sequences {𝑆(𝑖,𝑗)𝑛+1𝑧} for 1 ≤ 𝑗 ≤ 𝑝 − 1.
However, it is not guaranteed that ]𝑖+𝑗 = 𝑇𝑗]𝑖 = 𝑇

𝑝
𝑖 V𝑖 =

𝑇
𝑝
𝑖+𝑗V𝑖+𝑗 without additional hypotheses on 𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 →

⋃𝑖∈𝑝 𝐴 𝑖 such as its continuity, or at least that of the composite
mapping 𝑇𝑗 : 𝐴 𝑖 → 𝐴 𝑖+𝑗 allowing to equalize the function
of the limit with the limit of the function at such a fixed point.

(4) Now, define {𝑆
[𝑖,𝑗]
𝑛 𝑥} ≡ {(1/𝑛)∑

𝑛+𝑗−1

𝑘=0
𝑇𝑘𝑝𝑥} for

𝑥 ∈ 𝐴 𝑖. Note that for 𝑥 ∈ 𝐴 𝑖, ∃]𝑖 ∈ 𝐴 𝑖,

𝑆
[𝑖,𝑗]
𝑛 𝑥 =

1

𝑛

𝑛−1

∑
𝑘=0

𝑇
𝑘𝑝
𝑥

+
1

𝑛

𝑗−1

∑
𝑘=0

𝑇
(𝑛+𝑘)𝑝

𝑥 = 𝑆
(𝑖)
𝑛 𝑥

+
1

𝑛

𝑗−1

∑
𝑘=0

𝑇
(𝑛+𝑘)𝑝

𝑥 󳨀→ ]𝑖 (= 𝑇
𝑝
𝑖 V𝑖)

(26)

weakly as 𝑛 → ∞ since𝑗 is finite, which is a fixed point in
𝐴 𝑖 of the composite mapping 𝑇𝑝𝑖 and a weak cluster point of
{𝑆[𝑖,𝑗]𝑛 𝑥} for finite 𝑗.

Note that Theorem 6 are supported by boundedness
constraints for the sequences of iterates obtained through
the cyclic self-mapping 𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 → ⋃𝑖∈𝑝 𝐴 𝑖 which is
generalized point-dependent with respect to some convex
function. The results of identification of weak cluster points
of some average sequences with fixed points of the cyclic
self-mapping or its composite mappings do not guarantee
uniqueness of fixed points and weak cluster points because
the cyclic self-mapping is not restricted to be contractive. By
incorporating some background contractive-type conditions
for the cyclic self-mapping, the previous results can be
extended to include uniqueness of fixed points as follows.

Theorem 9. Assume that.

(1) Assumption 1 ofTheorem 6 holds with the restriction of
( 𝑋, ‖ ‖) to be a uniformly convex Banach space;

(2) Assumption 2 ofTheorem 6 holds, and, furthermore, all
the𝑝-cyclic compositemappingswith restricted domain
𝑇
𝑝
𝑖 : ⋃𝑗∈𝑝 𝐴𝑗 | 𝐴 𝑖 → 𝐴 𝑖; for all 𝑖 ∈ 𝑝 are either

contractive or Meir-Keeler contractions.

Then, the following properties hold.

(i) Theorem 6(i)-(ii) holds. Furthermore, each of the
mappings𝑇𝑝𝑖 : ⋃𝑗∈𝑝 𝐴𝑗 | 𝐴 𝑖 → 𝐴 𝑖 has a unique fixed
point ]𝑖 ∈ 𝐴 𝑖 which are also best proximity points of
𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 → ⋃𝑖∈𝑝 𝐴 𝑖 in 𝐴 𝑖 so that ]𝑖+𝑗 = 𝑇𝑗]𝑖; for
all 𝑗 ∈ 𝑝 − 𝑖, for all 𝑖 ∈ 𝑝.

(ii) If, in addition, ⋂𝑖∈𝑝 𝐴 𝑖 ̸= ⌀, then, there is a unique
fixed point ] ∈ ⋂𝑖∈𝑝 𝐴 𝑖 of 𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 → ⋃𝑖∈𝑝 𝐴 𝑖

and 𝑇𝑝𝑖 : ⋃𝑗∈𝑝 𝐴𝑗 | 𝐴 𝑖 → 𝐴 𝑖, for all 𝑖 ∈ 𝑝.

Proof. Note that uniformly convex Banach spaces (𝑋, ‖ ‖) are
also reflexive spaces required by Theorem 6. Each mapping
𝑇
𝑝
𝑖 : ⋃𝑗∈𝑝 𝐴𝑗 | 𝐴 𝑖 → 𝐴 𝑖 has a unique fixed point ]𝑖 ∈ 𝐴 𝑖,

for all 𝑖 ∈ 𝑝, irrespective of ⋂𝑖∈𝑝 𝐴 𝑖 being empty or not if
𝑇
𝑝
𝑖 : ⋃𝑗∈𝑝 𝐴𝑗 | 𝐴 𝑖 → 𝐴 𝑖 is either a cyclic contraction or

a Meir-Keeler contraction [1–3], since 𝐴 𝑖 (𝑖 ∈ 𝑝) are non-
empty, closed, and convex, and (𝑋, ‖ ‖) is a uniformly convex
Banach space so that each ]𝑖 ∈ 𝐴 𝑖; for all 𝑖 ∈ 𝑝 is a best
proximity point in 𝐴 𝑖 of 𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 → ⋃𝑖∈𝑝 𝐴 𝑖. It follows
from the hypothesis that there is a unique weak cluster point
of {𝑆(𝑖)𝑛 𝑥} for 𝑥 ∈ 𝐴 𝑖 which is the unique fixed point of 𝑇𝑝𝑖 :
⋃𝑗∈𝑝 𝐴𝑗 | 𝐴 𝑖 → 𝐴 𝑖, for all 𝑖 ∈ 𝑝, and also the unique best
proximity point of 𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 → ⋃𝑖∈𝑝 𝐴 𝑖 in 𝐴 𝑖 for 𝑖 ∈ 𝑝.

It is now proven that if⋂𝑖∈𝑝 𝐴 𝑖 ̸= ⌀ then (⋂𝑖∈𝑝 𝐴 𝑖) ∋ ] =

]𝑖 ∈ 𝐴 𝑖, for all 𝑖 ∈ 𝑝. Take some 𝑥 ∈ 𝐴 𝑖 ∩ 𝐴𝑗 for some
𝑖, 𝑗( ̸= 𝑖) ∈ 𝑝.Thus,𝑇𝑝𝑛𝑥 → ]𝑖(∈ 𝐴 𝑖) and𝑇

𝑝𝑛𝑥 → ]𝑗 as 𝑛 →

∞ since ]𝑖 is the unique fixed point of 𝑇𝑝𝑖 : ⋃𝑗∈𝑝 𝐴𝑗 | 𝐴 𝑖 →
𝐴 𝑖 and ]𝑗(∈ 𝐴𝑗) is the unique fixed point of 𝑇𝑝𝑗 : ⋃𝑖∈𝑝 𝐴 𝑖 |
𝐴𝑗 → 𝐴𝑗. Then, ] = ]𝑖 = 𝑇𝑘], for all 𝑖 ∈ 𝑝; for all 𝑘 ∈ N,
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𝑆(𝑖)𝑛 𝑥 → ] weakly as 𝑛 → ∞, for all 𝑖 ∈ 𝑝, and ] ∈ ⋂ 𝑖∈𝑝 𝐴 𝑖

is the unique weak cluster point of {𝑆(𝑖)𝑛 𝑥}, for all 𝑖 ∈ 𝑝.

Theorem 9 can be also extended “mutatis-mutandis” to
the convergence of weak cluster points of the alternative
sequences discussed in Remark 8. It is now proven that the
sets of fixed points of the restricted composite mapping 𝑇𝑝𝑖 :
⋃𝑗∈𝑝 𝐴𝑗 | 𝐴 𝑖 → 𝐴 𝑖, some 𝑖 ∈ 𝑝, are convex if suchmappings
are quasi-nonexpansive with respect to𝐷𝑓 in the sense that it
has (at least) a fixed point in 𝐴 𝑖 and 𝐷𝑓(V, 𝑇

𝑝
𝑖 𝑥) ≤ 𝐷𝑓(V, 𝑥),

for all 𝑥 ∈ 𝐴 𝑖, and 𝑓 : 𝐷 ⊂ 𝑋 → (−∞,∞] is a
proper strictly convex function, [16]. The concept of quasi-
nonexpansive mapping is addressed in the subsequent result
to discuss the topology of fixed points and best proximity
points of composite mappings of cyclic self-mappings.

Theorem 10. Let 𝑓 : 𝐷 ⊂ 𝑋 → (−∞,∞] be a proper
strictly convex function on the Banach space (𝑋, ‖ ‖) so that it
is Gâteaux differentiable in int𝐷, and consider the restricted
composite mapping 𝑇𝑝𝑖 : ⋃𝑗∈𝑝 𝐴𝑗 | 𝐴 𝑖 → 𝐴 𝑖 for some given
𝑖 ∈ 𝑝 built from the 𝑝-cyclic self-mapping 𝑇 : ⋃i∈p 𝐴 𝑖 →

⋃i∈p 𝐴 𝑖 so that 𝐴 𝑖 is nonempty, convex, and closed. Assume
that𝐴𝑗 ⊆ int𝐷, for all 𝑗 ∈ 𝑝, and that the composite mapping
𝑇
𝑝
𝑖 : ⋃𝑗∈𝑝 𝐴𝑗 | 𝐴 𝑖 → 𝐴 𝑖 is quasi-nonexpansive with respect

to𝐷𝑓 for the given 𝑖 ∈ 𝑝.

Then, the following properties hold.

(i) The set of fixed points 𝐹(𝑇𝑝𝑖 ) of 𝑇
𝑝
𝑖 : ⋃𝑗∈𝑝 𝐴𝑗 | 𝐴 𝑖 →

𝐴 𝑖 is a closed and convex subset of 𝐴 𝑖 for the given
𝑖 ∈ 𝑝.

(ii) Assume, in addition, that 𝐴 𝑖, for all 𝑖 ∈ 𝑝, are
nonempty convex closed subsets of 𝐻 subject to
⋃𝑖∈𝑝 𝐴 𝑖 ⊆ int𝐷, and assume also that 𝑇𝑝𝑖 : ⋃𝑗∈𝑝 𝐴𝑗 |
𝐴 𝑖 → 𝐴 𝑖 are quasi-nonexpansive with respect to𝐷𝑓,
for all 𝑖 ∈ 𝑝. Then, the set of best proximity points
in 𝐴 𝑖 of the 𝑝-cyclic self-mapping 𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 →

⋃𝑖∈𝑝 𝐴 𝑖 coincides with 𝐹(𝑇
𝑝
𝑖 ), and it is then a closed

and convex subset of 𝐴 𝑖, for all 𝑖 ∈ 𝑝. Furthermore,
if ⋂𝑖∈𝑝 𝐴 𝑖 ̸= ⌀, then 𝐹(𝑇) = cl𝐹(𝑇) ⊆ ⋂𝑖∈𝑝 𝐹(𝑇

𝑝
𝑖 ) ⊆

⋂𝑖∈𝑝 𝐴 𝑖 which is then nonempty, closed, and convex.

Proof. Take 𝑥 ∈ cl𝐹(𝑇𝑝𝑖 ) ⊆ 𝐴 𝑖 ⊆ ⋃𝑖∈𝑝 𝐴 𝑖 ⊆ int𝐷 and {𝑥𝑛 } ⊆
cl𝐹(𝑇𝑝𝑖 ) so that {𝑥𝑛} → 𝑥 as 𝑛 → ∞. Note that 𝐹(𝑇𝑝𝑖 ) and
cl𝐹(𝑇𝑝𝑖 ) are nonempty sets since 𝑇𝑝𝑖 : ⋃𝑗∈𝑝 𝐴𝑗 | 𝐴 𝑖 → 𝐴 𝑖
is quasi-nonexpansive with respect to 𝐷𝑓 then possessing at
least a fixed point. By the continuity of𝐷𝑓(⋅, 𝑇

𝑝
𝑖 𝑥) and that of

𝐷𝑓(𝑥, ⋅), the strict convexity of 𝑓 : 𝐷 ⊂ 𝑋 → (−∞,∞], and
the assumption𝐷𝑓(V, 𝑇

𝑝
𝑖 𝑥) ≤ 𝐷𝑓(V, 𝑥 ), one has

𝐷𝑓 (𝑥, 𝑇
𝑝
𝑖 𝑥) = lim

𝑛→∞
𝐷𝑓 (𝑥𝑛, 𝑇

𝑝
𝑖 𝑥)

≤ lim
𝑛→∞

𝐷𝑓 (𝑥𝑛, 𝑥)

≤ 𝐷𝑓 (𝑥, 𝑥) = 0

(27)

and 𝑥 = 𝑇
𝑝
𝑖 𝑥, from the strict convexity of 𝑓 : 𝐷 ⊂ 𝑋 →

(−∞,∞] and Lemma 1, which is in 𝐹(𝑇
𝑝
𝑖 ) which is then

a closed subset of 𝐴 𝑖 as a result. Now, it is proven that is
convex. Following the steps of a parallel result proven in [16]
for noncyclic self-mappings, take 𝑥, 𝑦( ̸= 𝑥) ∈ 𝐹(𝑇

𝑝
𝑖 ) and

consider for some arbitrary real constant 𝛼 ∈ [0, 1] a point
𝑧 = 𝛼𝑥 + (1 − 𝛼)𝑦 which is in 𝐴 𝑖 since such a set is convex.
Since 𝑇𝑝𝑖 : ⋃𝑗∈𝑝 𝐴𝑗 | 𝐴 𝑖 → 𝐴 𝑖 is quasi-nonexpansive with
respect to𝐷𝑓 leading to

𝐷𝑓 (𝑥, 𝑇
𝑝
𝑖 𝑧) ≤ 𝐷𝑓 (𝑥, 𝑧)

= 𝑓 (𝑥) − 𝑓 (𝑧) − ⟨𝑥 − 𝑧𝑓
󸀠
(𝑧)⟩ ,

𝐷𝑓 (𝑦, 𝑇
𝑝
𝑖 𝑧) ≤ 𝐷𝑓 (𝑦, 𝑧)

= 𝑓 (𝑦) − 𝑓 (𝑧) − ⟨𝑦 − 𝑧𝑓
󸀠
(𝑧)⟩ ,

(28)

and, since 𝑞 = 𝛼𝑞 + (1 − 𝛼)𝑞 and 𝑓(𝑞) = 𝛼𝑓(𝑞) + (1 − 𝛼)𝑓(𝑞)

for any 𝑞 ∈ 𝐴 𝑖, that

𝐷𝑓 (𝑧, 𝑇
𝑝
𝑖 𝑧)

= 𝑓 (𝑧) − 𝑓 (𝑇
𝑝
𝑖 𝑧) − ⟨𝑧 − 𝑇

𝑝
𝑖 𝑧, 𝑓
󸀠
(𝑇
𝑝
𝑖 𝑧)⟩

= 𝑓 (𝑧) + [𝛼𝑓 (𝑥) − 𝑓 (𝑇
𝑝
𝑖 𝑧) − ⟨𝑥 − 𝑇

𝑝
𝑖 𝑧, 𝑓
󸀠
(𝑇
𝑝
𝑖 𝑧)⟩]

+ (1 − 𝛼) [𝑓 (𝑦) − 𝑓 (𝑇
𝑝
𝑖 𝑧) − ⟨𝑦 − 𝑇

𝑝
𝑖 𝑧, 𝑓
󸀠
(𝑇
𝑝
𝑖 𝑧)⟩]

− [𝛼𝑓 (𝑥) + (1 − 𝛼) 𝑓 (𝑦)]

= 𝑓 (𝑧) + 𝛼𝐷𝑓 (𝑥, 𝑇
𝑝
𝑖 ) + (1 − 𝛼)𝐷𝑓 (𝑦, 𝑧)

− [𝛼𝑓 (𝑥) + (1 − 𝛼) 𝑓 (𝑦)]

≤ 𝑓 (𝑧) + 𝛼𝐷𝑓 (𝑥, 𝑧) + (1 − 𝛼)𝐷𝑓 (𝑦, 𝑧)

− [𝛼𝑓 (𝑥) + (1 − 𝛼) 𝑓 (𝑦)]

= − ⟨𝛼𝑥 + (1 − 𝛼) 𝑦 − (𝛼𝑧 + (1 − 𝛼)) 𝑧, 𝑓
󸀠
(𝑧)⟩

= −⟨0, 𝑓
󸀠
(𝑧)⟩ = 0,

(29)

which implies from Lemma 1 that 𝑇𝑧 = 𝑧 = 𝛼𝑥 + (1 − 𝛼)𝑦

for any 𝑥, 𝑦( ̸= 𝑥) ∈ 𝐹 (𝑇
𝑝
𝑖 ) since𝑓 : 𝐷 ⊂ 𝑋 → (−∞,∞]

is strictly convex and 𝐹(𝑇
𝑝
𝑖 ) = cl𝐹(𝑇𝑝𝑖 ) ⊆ (int𝐷 ∩ 𝐴 𝑖).

Thus, 𝐹(𝑇𝑝𝑖 ) is a convex subset of 𝐴 𝑖. Hence, Property (ii)
follows. The first part of property (ii) is a direct consequence
of property (i) if the 𝑝 composite self-mappings on all the
sets 𝐴 𝑖 are quasi-nonexpansive with respect to 𝐷𝑓 since the
respective sets of fixed points are the best proximity points
of the 𝑝-cyclic self-mapping 𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 → ⋃𝑖∈𝑝 𝐴 𝑖 in
each of the sets 𝐴 𝑖, for all 𝑖 ∈ 𝑝. If, furthermore, the sets 𝐴 𝑖,
for all 𝑖 ∈ 𝑝, have a nonempty intersection, then its set of
fixed points coincides with the intersection of the sets of best
proximity points of the composite mappings 𝑇𝑝𝑖 : ⋃𝑗∈𝑝 𝐴𝑗 |
𝐴 𝑖 → 𝐴 𝑖 which are all identical for 𝑖 ∈ 𝑝.The proof is trivial.
Take any 𝑥 ∈ ⋂ 𝑖∈𝑝 𝐴 𝑖( ̸=⌀). Then, the sequence of iterates
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obtained through the composite 𝑇𝑝𝑖 : ⋃𝑗∈𝑝 𝐴𝑗 | 𝐴 𝑖 → 𝐴 𝑖

converges to some 𝑧 ∈ ⋂𝑖∈𝑝(𝐴 𝑖 ∩ 𝐹( 𝑇
𝑝
𝑖 )). This implies that

⋂𝑖∈𝑝 𝐹(𝑇
𝑝
𝑖 ) ̸=⌀, closed and convex from property (i). Thus,

𝐹(𝑇)( ̸=⌀) ⊆ ⋂𝑖∈𝑝 𝐹( 𝑇
𝑝
𝑖 ). Then, the set of fixed points of 𝑇 :

⋃𝑖∈𝑝 𝐴 𝑖 → ⋃𝑖∈𝑝 𝐴 𝑖 is 𝐹(𝑇) ≡ cl𝐹(𝑇) ⊆ ⋂𝑖∈𝑝(𝐴 𝑖 ∩ 𝐹(𝑇
𝑝
𝑖 )).

Property (ii) has been proven.

Concerning that Theorem 10(ii), note that the set inclu-
sion 𝐹(𝑇) = ⋂𝑖∈𝑝 𝐹(𝑇

𝑝
𝑖 ) does not guarantee, in general, that

the identity 𝐹(𝑇) ⊆ ⋂𝑖∈𝑝 𝐹(𝑇
𝑝
𝑖 ) is not guaranteed for the case

when ⋂𝑖∈𝑝 𝐴 𝑖 ̸= ⌀ except for cases under extra conditions
such as the contractiveness of the composite mappings built
from the 𝑝-cyclic one leading, for instance, to the uniqueness
of the fixed point of the cyclic self-mapping. See, for instance,
Theorem 3 and Corollary 4.

It is direct to give sufficient conditions for the restricted
compositemappings of the𝑝-cyclic self-mapping to be quasi-
nonexpansive under the relevant conditions of Theorem 3,
Corollary 4, Theorem 6, and Theorem 7 (see Proposition 3.5
of [16]) for noncyclic self-mappings, as follows.

Theorem 11. Assume that.

(1) 𝑋 is a reflexive space and 𝑓 : 𝐷 ⊂ 𝑋 → (−∞,∞] is
a proper strictly convex function, so that it is Gâteaux
differentiable in int(𝐷), and it is bounded on any
bounded subsets of int𝐷.

(2) A 𝑝-cyclic self-mapping 𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 → ⋃𝑖∈𝑝 𝐴 𝑖

is given defining a composite self-mapping 𝑇𝑝 :

⋃𝑖∈𝑝 𝐴 𝑖 → ⋃𝑖∈𝑝 𝐴 𝑖 with the subsets 𝐴 𝑖( ̸=⌀) ⊆

int𝐷 ⊂ 𝐻 being bounded, closed, and convex, for all
𝑖 ∈ 𝑝.

(3) The restricted composite mapping to 𝐴 𝑖 for some given
𝑖 ∈ 𝑝, that is, 𝑇𝑝𝑖 : ⋃𝑗∈𝑝 𝐴𝑗 | 𝐴 𝑖 → 𝐴 𝑖, is generalized
point-dependent (1, 𝜆𝑖)-hybrid relative to 𝐷𝑓 for some
function 𝜆𝑖 : 𝐴 𝑖 → R and the given 𝑖 ∈ 𝑝 which
possesses a bounded sequence {𝑇𝑝𝑛𝑥} ⊂ 𝐴 𝑖 for some
point 𝑥 ∈ 𝐴 𝑖.

Then, the restricted composite mapping 𝑇𝑝𝑖 : ⋃𝑗∈𝑝 𝐴𝑗 | 𝐴 𝑖 →
𝐴 𝑖 is quasi-nonexpansive with respect to𝐷𝑓 so that 𝐹(𝑇

𝑝
𝑖 ) is a

nonempty closed convex subset of 𝐴 𝑖.

Remark 12. The well-known concepts of nonexpansive, non-
spreading, hybrid, and contractive cyclic self-mappings [12–
16, 19] are useful in the context of particular cases of
interest of (14) within the given framework for generalized
nonexpansive 𝑝-cyclic self-mappings relative to𝐷𝑓.

(1) If (14) holds 0 ≤ 𝐾𝑖(𝑦) ≤ 1 and 𝜆𝑖(𝑦) = 0, for all 𝑦 ∈

𝐴 𝑖+1, for each𝑥 ∈ 𝐴 𝑖, for all 𝑖 ∈ 𝑝, then𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 →

⋃𝑖∈𝑝 𝐴 𝑖 is said to be a generalized nonexpansive 𝑝-
cyclic self-mapping relative to𝐷𝑓.

(2) If (14) holds 0 ≤ 𝐾𝑖(𝑦) ≤ 1 and 𝜆𝑖(𝑦) = 2, for all 𝑦 ∈

𝐴 𝑖+1, for each𝑥 ∈ 𝐴 𝑖, for all 𝑖 ∈ 𝑝, then𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 →

⋃𝑖∈𝑝 𝐴 𝑖 is said to be a generalized nonspreading 𝑝-
cyclic self-mapping relative to𝐷𝑓.

(3) If (14) holds, for all 𝑥 ∈ 𝐴 𝑖, for all 𝑦 ∈

𝐴 𝑖+1, for all 𝑖 ∈ 𝑝 with 0 ≤ 𝐾𝑖(𝑦) ≤ 1 and 𝜆𝑖(𝑦) = 1,
for all 𝑖 ∈ 𝑝, then 𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 → ⋃𝑖∈𝑝 𝐴 𝑖 is said to
be a generalized nonexpansive (1, 1)-hybrid 𝑝-cyclic
self-mapping relative to𝐷𝑓.

(4) If (14) holds, for all 𝑥 ∈ 𝐴 𝑖 , for all 𝑦 ∈ 𝐴 𝑖+1, for all 𝑖 ∈
𝑝with 0 ≤ 𝐾𝑖(𝑦) ≤ 1 and 𝜆𝑖(𝑦) ̸= 1 for some 𝑦 ∈ 𝐴 𝑖+1,
for all 𝑖 ∈ 𝑝, then 𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 → ⋃𝑖∈𝑝 𝐴 𝑖 is said to be
a generalized nonexpansive (point-dependent if some
𝜆𝑖(𝑦) for some 𝑖 ∈ 𝑝 is not constant) (1, 𝜆)-hybrid 𝑝-
cyclic self-mapping relative to𝐷𝑓.

(5) If (14) holds, for all 𝑥 ∈ 𝐴 𝑖 , for all 𝑦 ∈

𝐴 𝑖+1, for all 𝑖 ∈ 𝑝 with 0 ≤ 𝐾𝑖(𝑦) ≤ 1 and 𝜆𝑖(𝑦) ̸= 0

for some 𝑦 ∈ 𝐴 𝑖+1; for all 𝑖 ∈ 𝑝 then 𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 →

⋃𝑖∈𝑝 𝐴 𝑖 is said to be a generalized nonexpansive
(point-dependent if some 𝜆𝑖(𝑦) for some 𝑖 ∈ 𝑝 is not
constant) 𝑝-cyclic self-mapping relative to𝐷𝑓;

(6) If (14) holds, for all 𝑥 ∈ 𝐴 𝑖, for all 𝑦 ∈ 𝐴 𝑖+1, for all
𝑖 ∈ 𝑝 with 0 ≤ 𝐾𝑖(𝑦) ≤ 𝐾 < 1 and 𝜆𝑖(𝑦) ̸= 1 for some
𝑦 ∈ 𝐴 𝑖+1, for all 𝑖 ∈ 𝑝, then 𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 → ⋃𝑖∈𝑝 𝐴 𝑖 is
said to be a generalized contractive (point-dependent
if some 𝜆𝑖(𝑦) for some 𝑖 ∈ 𝑝 is not constant) (𝐾, 𝜆)-
hybrid 𝑝-cyclic self-mapping relative to𝐷𝑓.

(7) If (14) holds 0 ≤ 𝐾𝑖(𝑦) ≤ 𝐾 < 1 and 𝜆𝑖(𝑦) = 0,
for all 𝑦 ∈ 𝐴 𝑖+1 for each 𝑥 ∈ 𝐴 𝑖, for all 𝑖 ∈ 𝑝, then
𝑇 : ⋃𝑖∈𝑝 𝐴 𝑖 → ⋃𝑖∈𝑝 𝐴 𝑖 is said to be a generalized
𝐾-contractive 𝑝-cyclic self-mapping relative to𝐷𝑓.

The various given results can be easily focused on these
particular cases.

4. Examples

Dynamic systems are a very important tool to describe and
design control systems in applications. Fixed point theory has
been found useful to study their controllability and stability
properties. See, for instance, [21–26] and references there
in. Two examples are now given related to discrete dynamic
systems in order to illustrate the theoretical aspects of this
paper.

Example 1. Consider the scalar discrete dynamic system

𝑥𝑘+1 = 𝑇𝑥𝑘 := 𝑎𝑘 𝑥𝑘 + 𝜂𝑘, ∀𝑘 ∈ N, (30)

for given initial condition 𝑥0 with 𝜂𝑘 = 𝜂𝑘 (𝑥𝑘), 𝑥𝑘 := {𝑥𝑗:𝑗 =

0, 1, . . . , 𝑘} being a state disturbance which can include com-
bined effects of parametrical disturbances and unmodeled
dynamics (roughly speaking, the neglected dynamic effects of
describing a higher-order difference equation by the previous
first-order one). The solution sequence is defined by the self-
mapping 𝑇 : clR → clR (clR = [−∞, +∞] being the
extended real line including the infinity points) given by
𝑥𝑘+1 = (∏

𝑘
𝑖=0[𝑎𝑖])𝑥0 + ∑

𝑘
𝑖=0( ∏

𝑘
𝑗=𝑖+1[𝑎𝑗])𝜂𝑖, for all 𝑘 ∈ N. It
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is assumed that a fixed point exists for some 𝑥0 ∈ R; that is, a
sequence {𝑇𝑥𝑘} for some initial point 𝑥0 is bounded; That is,

∃ lim
𝑘→∞

[

[

(

𝑘

∏
𝑖=0

[𝑎𝑖]) 𝑥0 +

𝑘

∑
𝑖=0

(

𝑘

∏
𝑗=𝑖+1

[𝑎𝑗]) 𝜂𝑖
]

]

= 𝑥
∗
= 𝑥
∗
(𝑥0) ,

(31)

with |𝑥∗| < +∞. In particular, this holds for the unperturbed
system with |𝑎𝑘| < 1 and 𝜂𝑘 ≡ 0 which possess a unique
globally asymptotically stable equilibrium 𝑥

∗
= 0 which is

also a unique fixed point of the solution. If 𝑎𝑘 = 1, then there
is a stable constant solution 𝑥𝑘 = 𝑥0 for each initial condition
which is also a (nonunique) fixed point. In both cases, the
mapping 𝑇 : clR → clR is trivially nonexpansive and,
in the first case, it is also contractive. Note that the previous
mapping is also a trivial cyclic self-mapping for 𝑝 = 1. Under
a cyclic repetition of the sequence {𝑎𝑘} with

𝑎 =

𝑞(𝑘+1) −1

∏
𝑖=𝑞𝑘

[𝑎𝑖] ,

𝑏 =

𝑞−1

∑
𝑖=0

(

𝑞−1

∏
𝑗=𝑖+1

[𝑎𝑞𝑘+𝑗]) 𝜂𝑞𝑘+𝑖, ∀𝑘 ∈ N0,

(32)

for some 𝑞 ∈ N being constant with |𝑎| < 1 and |𝑏| < +∞.
In this case, we can describe the given difference equation
equivalently as

𝑥(𝑘+1)𝑞 = 𝑇
𝑞
𝑥𝑘 := 𝑎𝑥𝑘𝑞 + 𝑏𝑞 (33)

for the same initial condition. Then, the composite self-
mapping 𝑇𝑞𝑥𝑞𝑘 = 𝑥(𝑘+1)𝑞 generating the subsequence {𝑥𝑞𝑘} ⊂
{𝑥𝑘} of the solution has a unique fixed point 𝑥

∗
𝑞 = 𝑏/(1−𝑎) for

any given 𝑥0. If, furthermore, there are finite limits 𝑎𝑞𝑘+𝑖 →
𝑎∗𝑖 , 𝜂𝑞𝑘+𝑖 → 𝜂∗𝑖 = (1 − 𝑎∗𝑖 ) 𝑥

∗
𝑞 = 𝑏(1 − 𝑎∗𝑖 )/(1 − 𝑎) as

𝑘 → ∞, for all 𝑖 ∈ 𝑞 − 1, then 𝑇𝑥𝑘 → 𝑥∗𝑞 as 𝑘 → ∞

which is a fixed point of 𝑇 : clR → clR. If the second
set of limits exists being all finite, but arbitrary, that is, the
identities 𝜂∗𝑖 = (1 − 𝑎𝑞𝑖)𝑥

∗
𝑞 do not all hold for 𝑖 ∈ 𝑞 − 1,

then the solution sequence converges to a cycle {𝑥∗𝑞 = 𝑏/(1 −

𝑎), 𝑥∗𝑞+1 = 𝑎∗1 𝑏/(1−𝑎)+ 𝜂
∗
1 , . . . , 𝑥

∗
2𝑞−1 = 𝑎∗𝑞−1𝑏/(1−𝑎)+ 𝜂

∗
𝑞−1}.

We now retake the example under the point if view of a
point-dependent 𝜆-hybrid map where 𝑓(𝑥) = 𝛼𝑥

2 + 𝛽 (𝛼 >

0, 𝛽 ≥ 0). The considered Banach space is (𝑅, ‖ ‖) which is a
Hilbert space for the inner product being the Euclidean scalar
product and the norm is the Euclidean norm.Then,

𝐷𝑓 (𝑦𝑘, 𝑥𝑘)

= 𝑓 (𝑦𝑘) − 𝑓 (𝑥𝑘) − 2𝛼 (𝑦𝑘 − 𝑥𝑘) 𝑥𝑘

= 𝛼 [(𝑦
2
𝑘 − 𝑥
2
𝑘) − 2 (𝑦𝑘 − 𝑥𝑘) 𝑥𝑘]

= 𝛼 (𝑦𝑘 − 𝑥𝑘)
2
,

𝐷𝑓 (𝑦𝑘+1, 𝑥𝑘+1)

= 𝛼(𝑦𝑘+1 − 𝑥𝑘+1)
2
= 𝛼 [𝑎

2
𝑘(𝑦𝑘 − 𝑥𝑘)

2
+ (𝜂𝑦𝑘 − 𝜂𝑥𝑘)

2

+2𝑎𝑘 (𝑦𝑘 − 𝑥𝑘) (𝜂𝑦𝑘 − 𝜂𝑥𝑘) ] .

(34)

Condition (14) for𝑇 : clR → clR to be point-dependent 1-
cyclic 𝜆-hybrid becomes in particular for some real functions
𝜆(𝑦) and𝐾(𝑦) ∈ [0, 1] for 𝑦 ∈ R

𝛼 [𝑎
2
𝑘(𝑦𝑘 − 𝑥𝑘)

2
+ (𝜂𝑦𝑘 − 𝜂𝑥𝑘)

2

+2𝑎𝑘 (𝑦𝑘 − 𝑥𝑘) (𝜂𝑦𝑘 − 𝜂𝑥𝑘) ]

≤ 𝛼 [𝐾 (𝑦𝑘) (𝑦𝑘 − 𝑥𝑘)
2

+2𝜆 (𝑦𝑘) (𝑥𝑘 − 𝑥𝑘+1) (𝑦𝑘 − 𝑦𝑘+1) ]

= 𝛼 [𝐾 (𝑦𝑘) (𝑦𝑘 − 𝑥𝑘)
2
+ 2𝜆 (𝑦𝑘) ((1 − 𝑎𝑘) 𝑥𝑘 − 𝜂𝑥𝑘)

× ((1 − 𝑎𝑘) 𝑦𝑘 − 𝜂𝑦𝑘)]

= 𝛼 [𝐾 (𝑦𝑘) (𝑦𝑘 − 𝑥𝑘)
2
+ 2𝜆 (𝑦𝑘)

× ((1 − 𝑎𝑘)
2
𝑥𝑘𝑦𝑘 + 𝜂𝑥𝑘𝜂𝑦𝑘

− (1 − 𝑎𝑘) (𝑦𝑘𝜂𝑥𝑘 + 𝑥𝑘𝜂𝑦𝑘))] , ∀𝑘 ∈ N0,

(35)

and, equivalently,

(𝑎
2
𝑘 − 𝐾 (𝑦𝑘)) (𝑦𝑘 − 𝑥𝑘)

2

≤ (𝜂𝑦𝑘 − 𝜂𝑥𝑘) [2𝑎𝑘 (𝑦𝑘 − 𝑥𝑘) − (𝜂𝑦𝑘 − 𝜂𝑥𝑘)]

+ 2𝜆 (𝑦𝑘) ((1 − 𝑎𝑘)
2
𝑥𝑘𝑦𝑘 + 𝜂𝑥𝑘𝜂𝑦𝑘

− (1 − 𝑎𝑘) (𝑦𝑘𝜂𝑥𝑘 + 𝑥𝑘𝜂𝑦𝑘)) ,

∀𝑘 ∈ N0.

(36)

Note that if 𝑥𝑘 = 𝑥𝑘+1 or if 𝑦𝑘 = 𝑦𝑘+1, equivalently, if 𝜂𝑥𝑘 =
(1 − 𝑎𝑘)𝑥𝑘 or if 𝜂𝑦𝑘 = (1 − 𝑎𝑘)𝑦𝑘, then the previous equivalent
constraints (35)-(36) cannot be satisfied by a choice of some
finite value of 𝜆(𝑦𝑘) unless

󵄨󵄨󵄨󵄨𝑎𝑘 (𝑦𝑘 − 𝑥𝑘) + (1 − 𝑎𝑘) 𝑦𝑘 − 𝜂𝑥𝑘
󵄨󵄨󵄨󵄨

≤ √𝐾 (𝑦𝑘)
󵄨󵄨󵄨󵄨𝑦𝑘 − 𝑥𝑘

󵄨󵄨󵄨󵄨 if 𝑦𝑘 = 𝑦𝑘+1,

󵄨󵄨󵄨󵄨󵄨
𝑎𝑘 (𝑦𝑘 − 𝑥𝑘) + (1 − 𝑎𝑘) 𝑥𝑘 − 𝜂𝑦𝑘

󵄨󵄨󵄨󵄨󵄨

≤ √𝐾 (𝑦𝑘)
󵄨󵄨󵄨󵄨𝑦𝑘 − 𝑥𝑘

󵄨󵄨󵄨󵄨 if 𝑥𝑘 = 𝑥𝑘+1,

(37)

so that any arbitrary value of 𝜆(𝑦𝑘)would satisfy the inequal-
ities. Note that both inequalities hold directly for any fixed
points.
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If the previous constraint (36) holds, subject to (37), for
some real sequence {𝜆(𝑦𝑘)}, then any weak cluster point of
{𝑆(𝑖)𝑛 𝑥} ≡ {(1/𝑛)∑

𝑛−1
𝑘=0 𝑇
𝑘𝑥} is a fixed point of 𝑇 : clR →

clR according to Theorem 6. If there is a unique fixed point
according to Theorem 3, then the unique fixed point of
𝑇 : clR → clR and weak cluster point of {𝑆(𝑖)𝑛 𝑥} ≡

{(1/𝑛)∑
𝑛−1
𝑘=0 𝑇
𝑘𝑥} coincide. The same property holds for the

weak cluster point of the average sequences referred to in
Remark 8. Note in particular the following.

(1) If 𝜂𝑥𝑘 = 𝜂𝑦𝑘 ≡ 0 and |𝑎𝑘| ≤ √𝐾(𝑦𝑘) ≤ 1, then
the previous constraint leads to 0 ≤ 2𝜆(𝑦𝑘)(1 − 𝑎𝑘)

2
𝑥𝑘𝑦𝑘

which guarantees thatTheorem 6 holds for any real sequence
{𝜆(𝑦𝑘)} satisfying 𝜆(𝑦𝑘) = sign(𝑥𝑘𝑦𝑘) if |1 − 𝑎𝑘||𝑦𝑘 −

𝑥𝑘|𝑥𝑘𝑦𝑘 ̸= 0 and taking any arbitrary real value, otherwise for
each 𝑘 ∈ N0. Since 𝜂𝑥𝑘 = 𝜂𝑦𝑘 ≡ 0, a choice of 𝜆 = 𝜆(𝑦𝑘)

independent of 𝑥𝑘 is as follows:

𝜆 = 𝜆 (𝑦𝑘) = 𝜆0 ≥ 0 if min (𝑥0, 𝑦0) ≥ 0, ∀𝑘 ∈ N0

𝜆 = 𝜆 (𝑦𝑘) = 𝜆0 < 0 if min (𝑥0, 𝑦0) < 0

or if sgn (𝑥0) = − sgn (𝑦0), ∀𝑘 ∈ N0.

(38)

Thus, any cluster point of {𝑆(𝑖)𝑛 𝑥} is a fixed point of 𝑇 : clR →

clR.There is a unique such fixed point𝑥∗𝑞 = 𝑏/(1−𝑎) if |𝑎| < 1

and |𝑏| < +∞, which is also a globally asymptotically stable
equilibrium point of the solution, and there are finite limits
𝑎𝑞𝑘+𝑖 → 𝑎∗𝑖 , 𝜂𝑞𝑘+𝑖 → 𝜂∗𝑖 = (1 − 𝑎∗𝑖 ) 𝑥

∗
𝑞 = 𝑏(1 − 𝑎∗𝑖 )/(1 − 𝑎)

as 𝑘 → ∞ for some given 𝑞 ∈ N and such a fixed point
is also a fixed point of the composite self-mapping 𝑇

𝑞 :

clR → clR. If |𝑎𝑘| > 1, then the constraint of point-
dependent 𝜆-hybrid self-mapping is satisfied for 𝜆(𝑦𝑘) ≥

(𝑎2𝑘 − 𝐾(𝑦𝑘)) (𝑦𝑘 − 𝑥𝑘)
2
/(1 − 𝑎𝑘)

2
𝑥𝑘𝑦𝑘 if 𝑥𝑘𝑦𝑘 ̸= 0, for all 𝑘 ∈

N0. If 𝑥𝑘𝑦𝑘 ≥ 0 (i.e., both 𝑥𝑘 and 𝑦𝑘 have the same sign or
one of them is zero) then 𝑇 : clR → clR is 𝜆-hybrid for
𝜆 = 𝜆(𝑦𝑘) = 𝜆0 ≥ 0, for all 𝑘 ∈ N0. However,Theorem 6 is not
applicable for cluster fixed points of the averaging sequence
since there is no fixed point of the difference equation, in
general.

(2) If 𝜂𝑘 = 𝜂𝑥𝑘 = 𝜂𝑦𝑘 is not identically zero, then the
constraint is satisfied if |𝑎𝑘| ≤ √𝐾(𝑦𝑘) ≤ 1 and

𝜆 (𝑦𝑘) = sign [(1 − 𝑎𝑘)
2
𝑥𝑘𝑦𝑘

+ [𝜂𝑘 − (1 − 𝑎𝑘) (𝑦𝑘 + 𝑥𝑘)] 𝜂𝑘] = sign
(39)

{

{

{

(1 − 𝑎𝑘)
2
(

𝑘−1

∏
𝑖=0

[𝑎𝑖]) 𝑥0𝑦𝑘 +

𝑘−1

∑
𝑖=0

(

𝑘−1

∏
𝑗=𝑖+1

[𝑎𝑗]) 𝜂𝑖𝑦𝑘

+
[
[

[

𝜂𝑘 − (1 − 𝑎𝑘)(𝑦𝑘 + (

𝑘−1

∏
𝑖=0

[𝑎𝑖]) 𝑥0

+

𝑘−1

∑
𝑖=0

(

𝑘−1

∏
𝑗=𝑖+1

[𝑎𝑗]) 𝜂𝑖)
]
]

]

𝜂𝑘
}

}

}

(40)

if [(1 − 𝑎𝑘)
2
𝑥𝑘𝑦𝑘 + [𝜂𝑘 − (1−𝑎𝑘)(𝑦𝑘 +𝑥𝑘)]𝜂𝑘]|𝑥𝑘 −𝑦𝑘| ̸= 0 and

taking any arbitrary real value, otherwise.

(3) In the general case, the constraint is satisfied if |𝑎𝑘| ≤
√𝐾(𝑦𝑘) ≤ 1 with

𝜆 (𝑦𝑘)

≥
1

2
((𝜂𝑥𝑘 − 𝜂𝑦𝑘) [2𝑎𝑘 (𝑦𝑘 − 𝑥𝑘) − (𝜂𝑦𝑘 − 𝜂𝑥𝑘)]

+ (𝑎
2
𝑘 − 𝐾 (𝑦𝑘)) (𝑦𝑘 − 𝑥𝑘)

2
)

× ((1 − 𝑎𝑘)
2
𝑥𝑘𝑦𝑘 + 𝜂𝑥𝑘𝜂𝑦𝑘 − (1 − 𝑎𝑘) (𝑦𝑘𝜂𝑥𝑘 + 𝑥𝑘𝜂𝑦𝑘))

−1
,

∀𝑘 ∈ N0,
(41)

provided that the denominator of (41) is nonzero or if so (37)
hold so that 𝜆(𝑦𝑘)may take an arbitrary value.

(4) Assume that 𝑎𝑘 ∈ [0, 1], for all 𝑘 ∈ N0, 𝑎𝑘 → 1 as
𝑘 → ∞ with 𝛼𝑘 = 1 − 𝑎𝑘 ≥ 0 and 𝜂𝑘 satisfying ∑

∞
𝑘=0 𝛼𝑘 =

+∞, 𝜂𝑘 ≥ 0 and ∑∞𝑘=0 𝜂𝑘 < +∞ and that 𝑥0 ≥ 0. Thus, the
difference equation can be described equivalently by 𝑥𝑘+1 −
𝑥𝑘 = −𝛼𝑘𝑥𝑘 + 𝜂𝑘, and summing up both sides from 𝑘 = 0 to
𝑘 = 𝑛 − 1 yields since the solution sequence is non-negative
for nonnegative initial conditions and since ∑∞𝑘=0 𝜂𝑘 < +∞:

0 ≤ 𝑥𝑛 = 𝑥0 −

𝑛−1

∑
𝑘=0

𝛼𝑘𝑥𝑘 +

𝑛−1

∑
𝑘=0

𝜂𝑘 ≤ 𝑥0 −

𝑛−1

∑
𝑘=0

𝛼𝑘𝑥𝑘 + 𝐶 (42)

for some real constant 𝐶 ≥ 0. Thus, 0 ≤ ∑
𝑛−1
𝑘=0 𝛼𝑘𝑥𝑘 ≤

𝑥0 +𝐶−∑
𝑛−1
𝑘=0 𝜂𝑘 < +∞ which implies that lim inf𝑘→+∞𝑥𝑘 =

0, lim sup𝑘→+∞𝑥𝑘 < +∞, and sup𝑘→+∞𝑥𝑘 < +∞. But
if 0 < 𝑥 = lim sup𝑘→+∞𝑥𝑘 < +∞, then 0 < 𝑥 =

lim sup𝑛→∞𝑥𝑛 ≤ 𝑥0 + 𝐶 + lim sup𝑛→∞(−∑
𝑛−1
𝑘=0 𝛼𝑘𝑥𝑘) =

−∞ which is a contradiction. Then, {𝑥𝑛} is bounded and
∃lim𝑛→∞𝑥𝑛 = 0. Thus, 𝑥∗ = 0 is a fixed point of 𝑇 : clR →

clR and the previous particular cases (1)–(3) can be applied
for weak cluster points of the average sequences.

(5)Now, consider the 𝑟(≥2)-dimensional dynamic system
𝑥𝑘+1 = 𝑇𝑥𝑘 := 𝐴𝑘 𝑥𝑘 + 𝜂𝑘, for all 𝑘 ∈ N, where 𝐴𝑘 ∈

R𝑟×𝑟, 𝜂𝑘 ∈ R𝑟, for all 𝑘 ∈ N0, and the convex function
𝑓(𝑥) = (1/2)𝑥𝑇𝑄𝑥 with 𝑄 = 𝑄𝑇 ≻ 0 (i.e., a positive
definite square 𝑟-matrix with the superscript 𝑇 standing for
transposes). The Bregman distance becomes 𝐷𝑓(𝑦𝑘, 𝑥𝑘) =

(1/2)(𝑦
𝑇
𝑘𝑄𝑦𝑘−𝑥

𝑇
𝑘𝑄𝑥𝑘)−𝑄(𝑦𝑘 − 𝑥𝑘)

𝑇
𝑥𝑘 resulting in the point-

dependent 𝜆-hybrid constraint:

(𝑦𝑘 − 𝑥𝑘)
𝑇
(𝐴
𝑇
𝑘𝐴𝑘 − 𝐾 (𝑦𝑘) 𝐼𝑟) (𝑦𝑘 − 𝑥𝑘)

≤ (𝜂𝑦𝑘 − 𝜂𝑥𝑘)
𝑇
[2𝐴𝑘 (𝑦𝑘 − 𝑥𝑘) − (𝜂𝑦𝑘 − 𝜂𝑥𝑘)]

+ 2𝜆 (𝑦𝑘) (𝑥
𝑇
𝑘 (𝐼𝑟 − 𝐴𝑘)

𝑇
(𝐼𝑟 − 𝐴𝑘) 𝑦𝑘 + 𝜂

𝑇
𝑥𝑘𝜂𝑦𝑘

− [𝑦
𝑇
𝑘 (𝐼𝑟−𝐴𝑘) 𝜂𝑥𝑘+𝑥

𝑇
𝑘 (𝐼𝑟−𝐴𝑘) 𝜂𝑦𝑘]) ,

(43)
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where 𝐼𝑟 is the 𝑟th identity matrix. A finite, in general
nonunique, real sequence {𝜆(𝑦𝑘)} exists satisfying the previ-
ous constraint if for any 𝑘 ∈ N0,

(𝑥
𝑇
𝑘 (𝐼𝑟 − 𝐴𝑘)

𝑇
(𝐼𝑟 − 𝐴𝑘) 𝑦𝑘 + 𝜂

𝑇
𝑥𝑘𝜂𝑦𝑘

− [𝑦
𝑇
𝑘 (𝐼𝑟 − 𝐴𝑘) 𝜂𝑥𝑘 + 𝑥

𝑇
𝑘 (𝐼𝑟 − 𝐴𝑘) 𝜂𝑦𝑘]) = 0

󳨐⇒ {(𝑦𝑘 − 𝑥𝑘)
𝑇
(𝐴
𝑇
𝑘𝐴𝑘 − 𝐾 (𝑦𝑘) 𝐼𝑟) (𝑦𝑘 − 𝑥𝑘)

−(𝜂𝑦𝑘 − 𝜂𝑥𝑘)
𝑇
[2𝐴𝑘 (𝑦𝑘 − 𝑥𝑘) − (𝜂𝑦𝑘 − 𝜂𝑥𝑘)]}

≤ 0,

(44)

which is a generalization of (37) to the 𝑛-the dimensional
case. Thus,

𝜆 (𝑦𝑘)

≥ ((𝑦𝑘 − 𝑥𝑘)
𝑇
(𝐴
𝑇
𝑘𝐴𝑘 − 𝐾 (𝑦𝑘) 𝐼𝑟) (𝑦𝑘 − 𝑥𝑘)

−(𝜂𝑦𝑘 − 𝜂𝑥𝑘)
𝑇
[2𝐴𝑘 (𝑦𝑘 − 𝑥𝑘) − (𝜂𝑦𝑘 − 𝜂𝑥𝑘)] )

× (2 (𝑥
𝑇
𝑘 (𝐼𝑟 − 𝐴𝑘)

𝑇
(𝐼𝑟 − 𝐴𝑘) 𝑦𝑘 + 𝜂

𝑇
𝑥𝑘𝜂𝑦𝑘

− [𝑦
𝑇
𝑘 (𝐼𝑟 − 𝐴𝑘) 𝜂𝑥𝑘 + 𝑥

𝑇
𝑘 (𝐼𝑟 − 𝐴𝑘) 𝜂𝑦𝑘]))

−1

(45a)

if (𝑥𝑇𝑘 (𝐼𝑟 − 𝐴𝑘)
𝑇
(𝐼𝑟 − 𝐴𝑘) 𝑦𝑘 + 𝜂

𝑇
𝑥𝑘𝜂𝑦𝑘

− [𝑦
𝑇
𝑘 (𝐼𝑟 − 𝐴𝑘) 𝜂𝑥𝑘 + 𝑥

𝑇
𝑘 (𝐼𝑟 − 𝐴𝑘) 𝜂𝑦𝑘]) ̸= 0

𝜆 (𝑦𝑘) = 𝜆0, otherwise.

(45b)

The previous discussion for the particular scalar difference
equation may be generalized for this case with the replace-
ment 𝑎2𝑘 → 𝜆max (𝐴

𝑇
𝑘𝐴𝑘) = ‖𝐴𝑘‖

2
2 ≤ 𝐾(𝑦𝑘) ≤ 1, for

all 𝑘 ∈ N0, where 𝜆max (⋅) stands for the maximum (real)
eigenvalue of the symmetric matrix (⋅) leading to the results
for point-hybrid mappings to hold if there is a sequence
{𝜆(𝑦𝑘)} satisfying the previous constraint (45a) and (45b).

Example 2. It is direct to extend Example 1 to a 2-cyclic self-
mapping as follows. For instance, consider a scalar difference
equation of the form

𝑥𝑘+1 = 𝑇𝑥𝑘 := 𝑎𝑘𝑥𝑘 + 𝑢𝑘 + 𝜂𝑘, ∀𝑘 ∈ N, (46)

for a given initial condition 𝑥0 ≥ 0 where {𝑢𝑘} is a con-
trol sequence. Recursive computation for two consecutive
samples yields

𝑥𝑘+2 = 𝑇
2
𝑥𝑘 := 𝑎𝑘𝑥𝑘 + 𝜂𝑘

= 𝑎𝑘𝑥𝑘 + 𝜂
0
𝑘 + 𝑢𝑘+1, ∀𝑘 ∈ N,

(47)

where 𝑥0 ≥ 0, 𝑎𝑘 = 𝑎𝑘+1𝑎𝑘; 𝜂𝑘 = 𝜂0𝑘 + 𝑢𝑘+1 = 𝑎𝑘+1(𝜂𝑘 + 𝑢𝑘) +

𝜂𝑘+1 + 𝑢𝑘+1. Define the sets 𝐴 𝑖 (𝑖 = 1, 2) as 𝐴1 = R0+ =

{𝑧 ∈ clR : 𝑧 ≥ 0} = −𝐴2 so that 𝐴1 ∩ 𝐴2 = {0}. If the

control sequence {𝑢𝑘} is chosen as 𝑢𝑘 = 𝑀𝑒−𝑘(−1)
𝑘+1, for all

𝑘 ∈ N0, for some constant𝑀 > 0, then 𝑥𝑘+1 = 𝑀𝑒−(𝑘+1)(−1)
𝑘,

sgn𝑥𝑘+1 = − sgn𝑥𝑘, for all 𝑘 ∈ N0, 𝑥𝑘 → 0 as 𝑘 → ∞, and
the sequences {𝑥2𝑘} ⊂ 𝐴1, {𝑥2𝑘+1} ⊂ 𝐴2 both converge to
the unique fixed point 𝑥∗ = 0 of both 𝑇 : clR → clR and
𝑇2 : clR → clR. Now, suppose that the control sequence
is changed to 𝑢𝑘 = max(𝑀𝑒−𝑘(−1)

𝑘+1
, 𝜀 sgn((−1)𝑘+1)), for all

𝑘 ∈ N0 for some positive real constant 𝜀, then {𝑥2𝑘} ⊂ 𝐴1,
{𝑥2𝑘+1} ⊂ 𝐴2 and 𝑥2𝑘 → 𝜀, 𝑥2𝑘+1 → −𝜀 as 𝑘 → ∞ with
𝐴 𝑖 (𝑖 = 1, 2) being redefined as 𝐴1 = R0+ = {𝑧 ∈ clR :

∞ ≥ 𝑧 ≥ 𝜀} = −𝐴2. In this case, 𝐴1 ∩ 𝐴2 = ⌀ and ±𝜀

are the best proximity points of 𝑇 : clR → clR in 𝐴1
and 𝐴2, respectively, while 𝜀 and (−𝜀) are also fixed points
of 𝑇2 : 𝐴1 → 𝐴1 and 𝑇

2 : 𝐴2 → 𝐴2, respectively.
Now, note that 𝑇2𝑘𝑥0 ∈ 𝐴1 and 𝑇

2𝑘𝑥1(= 𝑇2𝑘+1𝑥0) ∈ 𝐴2
if 𝑥0 ∈ 𝐴1 and 𝑇

2𝑘𝑥0 ∈ 𝐴2 and 𝑇
2𝑘𝑥1(= 𝑇2𝑘+1𝑥0) ∈ 𝐴1 if

𝑥0 ∈ 𝐴2. Thus, one gets

𝑥2𝑘 = (

𝑘−1

∏
𝑖=0

[𝑎2𝑖]) 𝑥0 +

𝑘−1

∑
𝑖=0

(

2𝑘−2

∏
𝑗=𝑖+1

[𝑎2𝑗]) 𝜂2𝑖

= (

𝑘−1

∏
𝑖=0

[𝑎2𝑖]) 𝑥0 +

𝑘−1

∑
𝑖=0

(

2𝑘−2

∏
𝑗=𝑖+1

[𝑎2𝑗])

× (𝑎2𝑖+1 (𝜂2𝑖 + 𝑢2𝑖) + 𝜂2𝑖+1 + 𝑢2𝑖+1) ,

𝑥2𝑘+1 = 𝑎2𝑘𝑥2𝑘 + 𝑢2𝑘 + 𝜂2𝑘, ∀𝑘 ∈ N0,

(48)

with 𝑥2𝑘 ∈ 𝐴1 and 𝑥2𝑘+1 ∈ 𝐴2 if 𝑥0 ∈ 𝐴1 and 𝑥2𝑘 ∈ 𝐴2
and 𝑥2𝑘+1 ∈ 𝐴1 if 𝑥0 ∈ 𝐴2. The Bregman constraint for the
composite self-mapping 𝑇2 : 𝐴1 → 𝐴1 to be 𝜆(𝑦)-hybrid
relative to𝐷𝑓 holds in a similar way as (36), subject to (37), by
replacing the subscripts 𝑘 → 2𝑘 and the sequences {𝑎𝑘} →

{𝑎2𝑘}, {𝑥𝑘} → {𝑥2𝑘} ⊂ 𝐴1, {𝑦𝑘} → {𝑦2𝑘} ⊂ 𝐴1, {𝜂𝑥𝑘} →

{𝜂𝑥(2𝑘)}, {𝜂𝑦𝑘} → {𝜂𝑦(2𝑘)} and “mutatis-mutandis” performed
replacements for subscripts 𝑘 → 2𝑘 + 1 for the composite
self-mapping 𝑇2 : 𝐴2 → 𝐴2 for 𝑥0 ∈ 𝐴1. If 𝑥0 ∈ 𝐴2, then
the modifications in the Bregman constraint (36), subject to
(37), are referred to {𝑥𝑘} → {𝑥2𝑘} ⊂ 𝐴2, {𝑦𝑘} → {𝑦2𝑘} ⊂ 𝐴2.

Then, we have the following.

(a) If 𝐴1 = R0+ = {𝑧 ∈ clR : 𝑧 ≥ 0} = −𝐴2 and the
control sequence {𝑢𝑘} is chosen as 𝑢𝑘 = 𝑀𝑒−𝑘(−1)

𝑘+1;
for all 𝑘 ∈ N0, then {𝑆(𝑖)𝑛 𝑥} ≡ {(1/𝑛)∑

𝑛−1
𝑘=0 𝑇
2𝑘𝑥} has

a unique weak cluster point {0} for any real 𝑥 which
is the unique fixed point and best proximity point of
𝑇2𝑘 : 𝐴1 → 𝐴1, 𝑇

2𝑘 : 𝐴2 → 𝐴2 and a fixed point of
𝑇 : clR → clR provided that the previousmodified
Bregman constraint (36), subject to (37), holds.

(b) Take a control 𝑢𝑘 = max(𝑀𝑒−𝑘(−1)
𝑘+1

,

𝜀 sgn((−1)𝑘+1 )), for all 𝑘 ∈ N0, and 𝐴 𝑖 (𝑖 = 1, 2)

are redefined as 𝐴1 = R0+ = {𝑧 ∈ clR : ∞ ≥

𝑧 ≥ 𝜀} = −𝐴2 for some positive real constant 𝜀,
then {𝑥2𝑘} ⊂ 𝐴1, {𝑥2𝑘+1} ⊂ 𝐴2, and 𝑥2𝑘 → 𝜀,
𝑥2𝑘+1 → −𝜀 as 𝑘 → ∞ if 𝑥0 ∈ 𝐴1. Then,
{𝑆(𝑖)𝑛 𝑥} ≡ {(1/𝑛)∑

𝑛−1
𝑘=0 𝑇
2𝑘𝑥} has a unique weak

cluster point {𝜀} which is the unique fixed point of
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𝑇2𝑘 : 𝐴1 → 𝐴1 and the unique best proximity point
in 𝐴1 of 𝑇 : clR → clR for any 𝑥0 = 𝑥 ∈ 𝐴1.
Also, {𝑆(𝑖)𝑛 𝑥} ≡ {(1/𝑛)∑

𝑛−1
𝑘=0 𝑇
2𝑘𝑥} has a unique weak

cluster point {−𝜀} which is the unique fixed point
of 𝑇2𝑘 : 𝐴2 → 𝐴2 and the unique best proximity
point in 𝐴2 of 𝑇 : clR → clR for any 𝑥0 = 𝑥 ∈ 𝐴2
provided that the mentioned modified Bregman
constraint (36), subject to (37), holds.
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