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This paper presents the boundedness and uniform boundedness of traveling wave solutions for the Kadomtsev-Petviashvili (KP)
equation. They are discussed by means of a traveling wave transformation and Lyapunov function.

1. Introduction

We consider the Kadomtsev-Petviashvili (KP) equation:

+u,, +cu=0.

Upy + 6uxuxx + Uysexx vy (1)

It is well known that Kadomtsev-Petviashvili equation arises
in a number of remarkable nonlinear problems both in
physics and mathematics. By using various methods and
techniques, exact traveling wave solutions, solitary wave solu-
tions, doubly periodic solutions, and some numerical solu-
tions have been obtained in [1-6].

In this paper, (1) can be changed into an ordinary differ-
ential equation by using traveling wave transformation; the
boundedness and uniform boundedness of solution for the
resulting ordinary differential equation are discussed using
the method of Lyapunov function.

2. The Boundedness

Taking a traveling wave transformation £ = ax + Sy + yt in
(1), then (1) can be transformed into the following form:

2
6 6 2 ¢
u(4)+<%+%+;u>u”+;u' +gu=0. (2)

In general, we use the following system, which is equiva-
lent to (2):

u® +au + f (t, u, u”) +g (u’) +du

3)
_ p(t, u, u’,u”,u”’),
where
2
f(t,u,u') = (oc% + % + ;u) " g(u') = ;u’z,
p(t,u,u',u”,u”') - a m’ d= é.
(4)

We consider the following system, which is equivalent to
(3):

! ! !
X = Xy, X, = X3, X3 = Xy

lex = —ax,— f(tx1, %, %3) — g (x,) - dx, ()

+p(t x, %5, X3, %) -
Theorem 1. If the following conditions hold for the system (5):
(i) there are positive constants a, b, d, 8, k, and A such that

2
k<b), abm—[m] ~d’d>8, (x,#0).
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(i) f(t,x1,%,,0) = 0,0 < f(t, %7, %5, x3) /x5 — b < 26/
k (x,#0).

2
(iii) x5 f, (£, x,, %5, x3)+x2x3f;l(t, X1, xz,x3)+x3f)£2 (t, x5
X,,%x3) < 0.

. 1/2
(IV) |P(t, x17x2) X3, x4)| < q(t)(x% +x§ +x§ +xi) N

where q(t) is a nonnegative continuous function and
I3 q(t)dt < co.

Then, all the solutions of system (5) are bounded.

Proof. We first construct the Lyapunov function V = V(t, x4,
X,, X3, x,) defined by

V = b*(2x, + ax, + bx,)’ + 2bd(2x, + ax, + bx,)’
+ (b2 - 4d) (ax, +bx,)* + 4ab”

% [g(x,) ad
<, [ P %

+ [Zb (b2 - 4d) + 4a2d] x§

+ 85? Jx3 |:f(t,x1,x2,x3) B

b| x,dx,.
. % ]3 3

It follows from conditions (i) and (ii) that

b*—4d >0,

0<

J'xz g(x;) ad X
2b 2 (8)

— dx, <
o X, b:|x2 X3

0

IN

3

JX3 [—f (b0, 0, %) - b] X3dx5 < sz.
0 X3 k
Summing up the above discussions, we get

V 2 2b(b* - 4d) x5 + 4a’dx;,. ©)

Thus, we deduce that the function V(t,x,x,, x5, x,)
defined in (7) is a positive definite function which has infinite
inferior limit and infinitesimal upper limit. Hence, there
exsits a positive constant £(>0) such that

V (t,x1, %, X3, %) = € (xf +X5 X5+ ). (10)
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Taking the total derivative of (7) with respect to t along the
trajectory of (5), we obtain

av 1 ?
il 2ab° [x4 + Eg(xz)]
t’ b b
B 2b3x2x3 [f( X1, X, X3) B b]
X3
B EIE S I
X5 a

2 2
X, x5

X [abM _g(a) azd] x5

X3
+4b° J £/ (t,x1, x5, x3) dixs
0
2 o
+4b°x, JO fa, (81, 25, 53) dixs

X3
+4b7x, Jo f;z (£, %1, Xy, x3) dx;

+ 207 (bxy + axs + 2x,) p (£, %, X5, %3, X,) .

(11)
By using conditions (i) and (iii), it follows that
2
d_V < - —2b 8x§ - 2b3x2x3 [—f (8 x1, %5, %3) - b]
dt a X5
—2ab? [f(t) X1, X0 X3) b] 2 (12)
X3
+ 267 (bxy + axs +2x,) p (£, X, X5, X3, X,) .
According to (ii), we have
26 %y x4 [f(t’ X1, X, X3) —b]
X3
+ 20t [M _b] ¥
X3
b* [f(t,xl,xz,x3) ] 2
=—— | ————-b|x;
2a X3
(13)
2T f (6 x X ?
el [M _b] . (m . éx2>
a X3 2
4 t) b b
Z—b— [f( X1» X, X3) —b]x%
2a X3
O
C2a k* ak ¥
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Hence,
d_V - 2b28x2 N b46/\x2
dt a ? ak ?

+2b% (bx, + ax; +2x,) p (£, x, X5, X3, %,)
s , b, 2
:—7x2+%(b A—k)xz

+ 2b2(4 +a + bz)l/z(xi + x5+ xﬁ)l/2

1/2
X (x; + x§ + xi) q(t)
2

b“8 2 2 2 N1/2/ 5 2 2
<-— 2b°(4 b t
" x5 + ( +a” + ) (x2+x3+x4)q()

b’s 2 2, 42\1/2 14
-— 2b°(4 b -q(t) - —
ax2+ ( +a” + ) q(t) .

<
t
< (4+a+07)" 10 v o Hw.
€
(14)
Thus, all the solutions of system (5) are bounded. O

Theorem 2. Let conditions (i)-(iv) of Theorem 1 be satisfied for
the system (5), and let the following condition hold:

t
(4+a2+b2)1/2-@-V—gx§ <0. (15)

Then, all the solutions of system (5) are uniformly bounded.

Proof. It is clear that the function V(t, x,, x,, X3, x,) defined
in (7) satisfies the conditions (15), therefore, all the solutions
of system (5); are uniformly bounded [7]. O
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